Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбониевый механизм реакций присоединения

    Механизм электрофильного присоединения согласуется с перегруппировками. Поскольку реакции электрофильного присоединения идут через стадию образования карбониевых ионов, то возможно, что эти реакции сопровождаются различными перегруппировками, которые характерны для карбониевых ионов (разд. 5.21). Например, при реакции хлористого водорода с 3,3-диметилбутеном-1 образуется не только 2-хлор-3,3-диметилбутан, но также и 2-хлор-2,3-диметилбутан [c.190]


    С точки зрения механизма реакции присоединение протона по каждому из двух возможных направлений приводит к образованию различных карбониевых ионов в качестве промежуточных соединений  [c.36]

    Исследования в области бициклических систем, как апример, бицикло (2,2,1) гептана или бицикло (2,2,2)октана, позволили решить ряд принципиальных вопросов теоретической органической химии. Так, изучение природных терпенов и их синтетических аналогов дало возможность открыть скелетную перегруппировку, носящую название перегруппировки Вагнера—Меервейна, а затем выявить и тонкие особенности ее механизма. Именно в исследованиях с применением бициклических систем в качестве модели были выяснены различные вопросы, связанные с существованием, устойчивостью и строением карбониевых ионов, гомоаллильным взаимодействием, сольволитической реакционно-способностью соединений в зависимости от различных пространственных и электронных эффектов, стереохимией реакций присоединения, легкостью протекания реакций элиминирования и др. [c.270]

    Кинетика катализируемой кислотами реакции присоединения воды к олефинам также связана с равновесием олефин—карбониевый ион, как и обмен водорода в ароматических соединениях с равновесием между ароматическими углеводородами и карбоний-ионами, являющимися соответствующими сопряженными кислотами. Механизм реакции в водном растворе включает перенос протона от кислоты-катализатора к олефину в лимитирующей стадии это означает, что в переходном состоянии протон находится на полпути от кислоты-катализатора к тому положению, которое он занимает в образующемся спирте. Детальными кинетическими исследованиями недостаточно систематически охвачена область широких структурных изменений [c.130]

    Далее, оксониевые ионы отличаются большей устойчивостью, чем карбониевые, и реакцию роста по уравнению (1У-25) можно считать энергетически более выгодным процессом. Наконец, установленный для определенных случаев механизм взаимодействия карбониевых агентов с кислородсодержащими гетероциклами [см. уравнения (1У-21) и (ГУ-22)] в течение ряда лет оправдывал сомнения в возможности непосредственного присоединения катионных активных центров карбониевой природы к мономеру, которое предусматривается механизмом (1У-24). [c.163]


    Необходимость экономить мировые запасы нефти и все возрастающее ее использование как сырья для химических производств привели к внедрению ряда каталитических реакций в нефтеперерабатывающую промышленность. В разные десятилетия тенденции в этой области менялись [186—188]. Первоначальной потребностью была очистка нефти, в особенности от серы затем появилась потребность в автомобильном и авиационном топливе повышенного качества это в свою очередь повлекло за собой поиски методов использования низкокипящих фракций, получаемых при очистке и переработке сырых нефтей. Еще позже существенную роль стало играть производство мономеров типа стирола и бутадиена для каучука и других полимеров. Хотя обычно и принято, что большинство из этих реакций включает промежуточное образование карбониевых ионов, их последующую изомеризацию, присоединение и реакции обмена, детали их механизмов пока не достаточно изучены. Благодаря усиленным исследованиям удалось эмпирически установить наилучшие условия работы применяющихся катализаторов и стали известны достаточно удовлетворительные правила для предсказания распределения продуктов. Необходимо гораздо большее число работ, которые пролили бы свет на кинетику и механизмы различных реакций. [c.335]

    Полимеризация алкена при действии кислых агентов должна протекать по механизму, сходному с механизмом присоединения галогеноводородов по двойной связи. На первой стадии протон кислоты присоединяется к алкену, образуя карбониевый ион. Далее, в отсутствие какого-либо другого достаточно сильного нуклеофильного агента следующая молекула алкена вступает в реакцию за счет электронной пары двойной связи, и образуется катион с более длинной цепью. Многократное повторение этого процесса может привести к катиону высокого молекулярного веса. Обрыв цепи происходит в результате потери протона. [c.184]

    Более подробно механизм влияния конформаций на реакционную способность молекул был исследован в это же время другими учеными [87, 88]. Так, X. Браун и Р. Флетчер, рассмотрев влияние строения третичных алифатических хлоридов на скорость гидролиза этих соединений (данные рис. 6), показали, что ...присоединение трех или четырех алкильных групп к одному атому углерода образует центр стерического напряжения. Это напряжение облегчает протекание реакций, при которых происходит образование менее напряженных карбониевых ионов, перегруппировка атомов или групп атомов, расположенных у центра напряжения, или разрыв связи углерод—углерод у этого центра [88, стр. 1854]. Лишь [c.37]

    Фосфины легко присоединяются к олефинам при свободнорадикальном инициировании (стр. 355) или в присутствии кислоты [94, 95] реакция, вероятно, протекает по механизму, включающему образование карбониевых ионов [95]. Такое присоединение 15  [c.227]

    Почти все карбониевые ионы настолько неустойчивы, что их нельзя наблюдать непосредственно. Их присутствие в качестве промежуточных соединений можно обнаружить способом, с которым мы познакомимся позднее. Все три основных типа реакций, рассматриваемые в данной книге, — присоединение, замещение и отщепление — могут протекать по механизму, включающему промежуточное образование карбониевых ионов. [c.21]

    Основная область научных исследований — химия бора. Разработал простые методы синтеза ди-борана. Открыл (1959) реакцию гидроборирования ненасыщенных органических соединений, заключающуюся в присоединении комплексных боргидридов или дибора-на по кратным связям (С = С, С = 0, С С, С = Ы, С=Ы) с расщеплением связи В—Н и приводящую к образованию органоборанов. Установил пути использования этой реакции для стереосиецифического гидрирования — присоединения водорода к двойной связи в цис-поло-жение, для цыс-гидратации, избирательного восстановления карбонильной группы и образования новых С — С-связей. Изучнл механизм реакций с участием 2-нор-борнил-катиона, обсуждение которого вызвало широкую дискуссию о характере карбониевых ионов и неклассической электронной делокализации. Исследуя продукты присоединения триметилбора или диборана к аминам, заложил основы теории количественного метода изучения стерических напряжений в молекуле. [c.76]

    Американские химики, специально не изучавшие механизм реакций присоединения дифторамина к карбонильным связям, во всех работах особое внимание уделяют образованию карбониевого катиона при каталитическом действии кислоты. [c.139]

    Г. Ч. Браун открыл реакцию гидроборирования ненасыщенных органических соединений, заключающуюся в присоединении комплексных боргидридов или диборана по кратным связям (С = С, С = О, С=С, С=К, =N) с расщеплением связи В—Н и приводящую к образованию органоборанов. Установил пути использования этой реакции для стереоспе-цифического гидрирования — присоединения водорода к двойной связи в г ис-положение, для ис-гидратации, избирательного восстановления карбонильной группы и образования новых С—С-связей. Изучил механизм реакций с участием 2-норборнил-катиона, обсуждение которого вызвало широкую дискуссию о характере карбониевых ионов и неклассической электронной делокализации. [c.692]


    Напишите уравнения реакций взаимодействия 2-бутена со следующими веществами а) хлором, б) бро-моводородом, в) серной кислотой, г) хлорноватистой кислотой. Для какого механизма реакций присоединения справедливо правило Марковникова Объясните правило Марковникова с учетом статической поляризации несимметрично построенных олефинов и с учетом различной устойчивости промежуточных карбониевых конов. [c.33]

    Сначала рассмотрим реакции присоединения реагентов, содержащих способный к ионизации водород галогеноводородов, серной кислоты и воды. Общепринятый механизм дается лишь в общих чертах и иллюстрируется некоторыми примерами. Подобно дегидратации спиртов, присоединение включает стадию образования карбониевого иона. Между этими двумя реакциями существует аналогия, которая доказывает, что обе реакции протекают через одну и ту же промежуточную стадию. [c.185]

    Массон и Тьюльер [I], изучавшие хлорирование ненасыщенных би-циклических соедииений, пришли к выводу, что реакция протекает по механизму радикального присоединения и инициируется термически или фотохимически. Стереохимия присоединения в заметной степени завпсит от пространственных эффектов. Перегруппировка Вагнера — Меервейна в этих условиях не наблюдается. Ионный механизм возможен в отсутствие инициирования илп в присутствии трифторуксусной кислоты в этом случае наблюдается обычная перегруппировка карбониевого иона. [c.128]

    Наибольшую трудность представляет привести в соответствие с вышеописанным иопно-карбониевым механизмом очень часто наблюдаемое стереоспецифичное транс-присоединение к олефинам. Ионы карбония имеют плоское строение (см. главу 4), поэтому реагент может подходить с любой из двух сторон с приблизительно равной вероятностью (ср. рис. 17, стр. 130). При этом происходит рацемизация ранее оптически активного центра. Затруднение, возникающее в рассматриваемом случае, было бы устранено, если предположить, что стадия в в схеме (7.8) (нуклеофильная атака воды) происходит синхронно с образованием иона карбоиия (стадия б), т. е. в смысле многоцентровой реакцин ( пуш-пулл ). Однако это исключается низким значением энтропии активации реакции присоединения, которое составляет для реакции изобутен —> —> грег-бутанол только —3 кал/град моль. Таким образом, образование переходного состояния возможно с исключительно малой пространственной затратой, что согласуется с образованием нона карбония, а не какой-либо иной усложненной структуры, как изображается в переходном состоянии реакции пуш-пулл (ср, стр. 112 и 134). [c.378]

    Слабым местом этой интерпретации механизма является, очевидно, природа диазониевого промежуточного соединения 15. Алкилдиазониевый ион склонен очень быстро терять азот фактически, это, по-видимому, единственный известный случай экзотермической ионизации, приводящей к карбониевому иону [304]. Предположение, что реакции диазоалканов с электрофильными алканами будут сопровождаться элиминированием азота, не выполняется многие реакции присоединения этого типа протекают без заметного газовыделения. Если все же наблюдается газовыделение в ходе реакции, то правдоподобным объяснением может служить разложение часто неустойчивых производных А1-пиразолинов. Двухстадийный механизм, описанный выше, привел бы к конкуренции между разложением иона диазония и замыканием цикла бетаина с образованием устойчивого пиразолина, но никогда не наблюдалось, чтобы устойчивый пиразолин и продукт элиминирования азота были обнаружены в реакционной смеси одновременно. [c.501]

    Рив (1952) исследовал течение этой реакции, применяя синтетический изобутилен, меченый радиоактивным в положении 1. Если бы атака хлором сопровождалась замещением водорода метильной группы и образованием соединения а, озонирование (см. 5.31) образующегося хлористого металлила привело бы к радиоактивному формальдегиду. Так как образовавшийся формальдегид не был радиоактивным и так как дихлорид пзобутилена очень устойчив, то вместо присоединения иона С1 , реакция должна включать атаку ионом С1+, сопровождающуюся образованием третичного карбониевого иона б. От иона б отщепляется протон и образуется хлористый металлил в. Положение двойной связи 3 продукте реакции, таким образом, отличается от положения связи в исходном соединении. Свободнорадикальный механизм реакции исключается вследствие того, что реакция в жидкой фазе не подвернсена влиянию освещения или кислорода, а реакция в паровой фазе не дет в области температур от 70 до 150°С. [c.178]

    Механизм электрофильного замещения в ароматическом ядре. Между механизмами реакций электрофильного замещения в ароматическом ядре и электрофильного присоединения к олефинам имеется определенное сходство. Многие реагенты, способные присоединяться к двойной связи, способны вызывать и реакции замещения в ароматическом ядре (С1г, Вгг, НМОз, Н2804, НОС1, НОВг и др.). Оба типа реакций являются по своему механизму полярными ступенчатыми процессами. В обоих случаях реакции предшествует быстрое образование л-комплекса, и стадией, определяющей скорость реакции, является переход к-ком-плекса в промежуточный карбониевый ион, при ароматическом замещении — 0-комплекс  [c.371]

    Механизм электрофильного присоединения галогеноводородов такой же двухступенчатый, как и механизм присоединения галогенов, однако л-комплексы в этом случае, вероятно, не образуются реакции идут через карбониевые ионы и, следовательно, должны быть нестереоснецифичными. Наблюдаемая в ряде случаев стереоспецифичность объясняется тем, что в реакции участвуют не свободные карбкатионы, а ионные пары карбкатион — анион. [c.78]

    Изучение стереохимии реакций присоединения галогенов позволило разграничить два механизма один — через промежуточное образование карбониевого иона с открытой цепью и второй — через промежуточное образование трехчленного ониевого цикла. Гораздо меньше сведений получено относительно реакций присоединения НХ. Имеются данные, указывающие на стереоспецифичность одних и нестереоспеци-фичность других реакций присоединения НХ. Так, при гидратации 1,2-диметилциклогексена образуется смесь цис- и гранс-изомеров, в то время как присоединение НВг к тому же олефину приводит к образованию только гранс-продукта  [c.32]

    Катионная полимеризация. Катионная полимеризация протекает через карбониевые ионы, и при использовании кислот Льюиса необходимо вводить сокатализатор. Последний инициирует полимеризацию, причем рост цепи происходит путем присоединения мономера к карбониевому иону. При катализе протонными кислотами, которые сами способны генерировать катион, добавление сокатализатора является излишним в этом случае реакция протекает по механизму, аналогичному механизму свободнорадикальной полимеризации. [c.242]

    Стереохимию радикального присоединения тиолов изучали Кристол [90, 92], Горинг [93, 94] и другие авторы. Так, радикальное присоединение к норборнену не сопровождается перегруппировкой Вагнера — Меервейна, как это происходит в реакциях, протекающих по ионно-карбониевому механизму, и образующийся продукт имеет экзо-строение [90—92]  [c.83]

    Образовавшееся соединение далее реагирует с непредельным углеводородом по так называемому Карбониевому механизму образование молекул полимера происходит в результате последовательного присоединения молекул непредельного углеводорода К положительно заряженному трехвалентному углероду. После каждого акта присоединения молекулы мономера на конце растущей цепи полимера вновь образуется трехвалентный заряженный углеродный атом, чем и обусловлено течение реакции полимеризации в соответствии со схемой  [c.14]

    Присоединение галогенов к олефинам в полярных растворителях можно представить двухступенчатым механизмом с промежуточным образованием карбониевого иона этот процесс вполне аналогичен реакциям присоединения сильных кислот к олефинам, уже рассмотренным ранее [c.798]

    Если катионная полимеризация прекращается вследствие израсходования мономера, в смеси могут присутствовать цепи с активными концевыми группами, т. е. карбониевые или оксониевые ионы. В этом главное отличие катионной полимеризации от (в большинстве случаев) радикальной полимеризации, и в этом ее сходство с анионной полимеризацией, особенно полимеризацией типа Шварца. По этой причине стоит высказать некоторые соображения о методе дезактивирования реакционной смеси. В самом деле, как и в анионной полимеризации, указанную особенность можно использовать для присоединения характерных концевых групп к еще живым цепям. Эту благоприятную возможность, по-видимому, до сих пор не использовали, за исключением методики быстрого обрыва, в которой для установления механизма реакции применяют С2Н5ОТ, содержащий С. Анионные полимеры приобретают концевой атом трития, а катионные растущие концы становятся меченными С. [c.568]

    Хотя кислотный характер каталитической дегидратации спиртов установлен довольно твердо, детальный механизм остается невыясненным. В частности, открытым остается вопрос, какой из механизмов — Е1 или Е2, предложенных для реакций отщепления [37], лучше соответствует экспериментальным данным. Если предположить, что первый, то дегидратация должна начинаться с отщепления воды от протонированной молекулы спирта. После этого образуется адсорбированный ион карбония, а далее произойдут отрыв протона и присоединение его к кислороду цеолитного каркаса [реакция (8)]. Возможно, что подобное превращение сопровождается перегруппировкой промежуточного карбониевого иона. [c.136]

    В отличие от этого в молекуле трет-бутилбромида группы, присоединенные к атому углерода (три группы СН3), слишком велики, чтобы ОН и Вг могли одновременно связываться с ним. Образование активированного комплекса, соответствующего механизму 8 2, в этом случае невозможно. Реакция не будет происходить до тех пор, пока молекула трет-бу-тилбромида самопроизвольно не диссоциирует. Появившийся в результате диссоциации карбониевый ион подвергается атаке либо со стороны иона Вг , в результате чего снова образуются реагенты, либо со стороны иона ОН с образованием продукта. Если наличие ионов Вг определяется только предшествующей реакцией трет-бутилбромида, их концентрация, по-видимому, должна быть намного меньше, чем концентрация ОН , и большая часть карбониевых ионов будет превращаться в трет-бути-ловый спирт, (СНз)зСОН. [c.383]

    Таким образом, электрофильное замещение, подобно электрофильному присоединению, представляет собой ступенчатый процесс, протекающий через стадию образования карбониевого нона. Эти две реакции отличаются, однако, судьбой иона карбония. Хотя механизм нитрования, по-видимому, лучше изучен, чем механизмы других реакций замещения в ароматическом ряду, кажется справедливым утверждение, что все эти реакции протекают по аналогичной схеме. [c.339]

    Возможный механизм этой реакции включает стадии образования промежуточного карбониевого иона, миграции углеводородного остатка с выделением молекулы азота и присоединения второй молекулы азотистоводородной кислоты. [c.29]

    В качестве примера перегруппировки, протекающей через ста дию карбониевых ионов, рассмотрим, реакцию хлорирования 2-ме ТИЛ-1-пропена, которая сопровождается перемещением связей и Присоединением хлора не к тому атому углерода, который потерял водород [448, 449]. Возможны два механизма этой реакции а) электрофильная атака положительного иона хлора на атом углерода в положении 1 с образованием карбониевого иона, после ст абилизации которого отщепляется атом водорода одной из ме тильных групп по схеме  [c.240]

    В 1953 г. Леви, Тафт и Гаммет [20] показали, что общепринятый механизм гидратации олефинов, изображенный на схеме 6 и состоящий в предравновесном образовании из олефина карбониевого иона с последующей стадией превращения этого иона, определяющей скорость реакции, является непригодным в случае присоединения к изомерным 2-метилбутенам. Эти авторы показали, что при гидратации 2-метилбутена-2 и 2-метил-бутена-1, протекающей по механизму, который должен быть связан с образованием общего катиона, изомеризация не наблюдается, если превращение прощло на 50% (схема 10). [c.46]


Смотреть страницы где упоминается термин Карбониевый механизм реакций присоединения: [c.7]    [c.190]    [c.37]    [c.216]    [c.149]    [c.124]    [c.860]    [c.207]    [c.139]    [c.395]    [c.76]    [c.217]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Карбониевый механизм

Карбониевый механизм реакций

Присоединение механизм

Реакции присоединения



© 2024 chem21.info Реклама на сайте