Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения, действующие на процесс

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]


    Азотсодержащие органические соединения в процессах гидрогенизации вначале подвергаются гидрированию, а полученные продукты претерпевают соответствующие изменения с отщеплением азота в виде аммиака. Наиболее стабилен к действию высоких температур пиридин. При деструктивной гидрогенизации он образует пиперидин [c.173]

    Одним из наиболее характерных направлений распада молекул органических соединений под действием электронного удара является отщепление алкильных заместителей от циклических ядер или функциональных групп. Ионы (М—R)+, образующиеся при таких процессах распада, как правило, имеют интенсивные пики в масс-спектре. Их масса соответствует оставшейся части молекулы, включающей циклическое ядро или функциональную группу и остальные заместители. Если вторичные процессы распада осколочных ионов, образовавшихся при отщеплении алкильного заместителя, не очень интенсивны, то разность между средними массами молекулярных и рассматриваемых осколочных ионов может охарактеризовать среднюю дЛИну отщепляемого заместителя. Подобным образом были найдены величины наиболее длинных заместителей у молекул некоторых типов ароматических сернистых соединений [7], [c.205]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Водородная связь играет большую роль в химии органических соединений, полимеров, белков. Вследствие их незначительной прочности водородные связи легко возникают и легко разрываются при обычной температуре, что весьма существенно для биологических процессов. Предполагают, что водородная связь играет большую роль в механизме наследственности действие памяти связывают с хранением информации в молекулярных конфигурациях с водородными связями. [c.93]

    При выборе модификатора и условий концентрирования следует руководствоваться известными закономерностями процессов экстракции, причем в качестве модификаторов можно использовать большинство реагентов, рекомендованных для экстракционного извлечения ионов металлов и органических соединений, действующих избирательно при определенных условиях (pH раствора, маскирующие вещества, растворители, ионная сила и т.п.). Сенсорная часть ХМЭ должна содержать определенное количество экстрагента, обеспечивающее его устойчивую работу в течение требуемого времени. [c.491]

    Эта реакция проходит в почве под влиянием микроорганизмов, вследствие чего продолжительность действия органических соединений ртути не очень велика. В зависимости от характера почвы и концентрации органических соединений ртути процесс разложения их протекает в течение 1—4 месяцев. [c.379]

    Почти половина потребляемого объема воды идет на орошение. Большое количество воды необходимо для нужд животноводческих комплексов. Возникновение новых производств обычно сопровождается применением или получением реагентов — неорганических и органических, которые часто становятся компонентами сточных вод. Если в начале века в практической деятельности людей использовались 54 химических элемента, то в настоящее время — более 80. В то же время в технологические процессы включаются и новые органические соединения, действие которых на водоемы и качество потребляемой воды еще недостаточно изучено. Наша страна имеет огромное количество источников пресной воды, но распределены они неравномерно. Лишь около 15% от общего запаса природных вод приходится на европейскую часть СССР, где производится около 85% всей промышленной продукции страны. Резкое увеличение объема производственных сточных вод, наличие в них примесей разнообразного химического состава привели к значительному загрязнению некоторых водоемов (бассейнов рек Волги, Урала и др.). Увеличение водопотребления и соответственно рост количества сбрасываемых загрязненных вод потребовали принятия решительных мер по усилению государственного надзора за потреб-лением и охраной водных ресурсов, разработки комплексных мероприятий по их рациональному использованию и глубокого всестороннего изучения проблем водного хозяйства страны. [c.5]

    В процессе очистки промышленных сточных вод активированным антрацитом ароматические вещества, содержащиеся в стоках, оседают в порах антрацита, что ухудшает его адсорбционные свойства. Для восстановления активности антрацита его регенерируют нагреванием при 700—750 °С в среде водяного пара или парогазовой смеси. Перегретый пар способствует десорбции органических соединений и, действуя как окислитель, препятствует образованию в парах антрацита смолистых и высокомолекулярных веществ. Длительность процесса регенерации в печи КС составляет 40—60 мин. Потери антрацита рри регенерации равны 10%. [c.241]

    В энергетическом отношении эти процессы характеризуются тем, что относительно небольшими порциями энергии (тепловой, химической, световой или ядерной) достигаются значительные химические эффекты. К этой группе относятся полимеризация, окисление органических соединений, галоидирование, процессы цепного разложения (крекинга), а также, с некоторой оговоркой (см. далее) процессы, возникающие в полимерах под действием излучений. [c.85]

    Действие ионизирующих излучений приводит к многообразным химическим превращениям в газах, водных растворах неорганических и органических соединений, радиационным превращениям органических соединений и их смесей, интенсификации ряда технологических процессов. Эти вопросы относятся к быстроразвивающейся области химической технологии - радиационно-химической технологии. [c.173]

    Силикагель представляет собой частично обезвоженную кремневую кислоту и образуется в результате действия соляной кислоты на раствор жидкого стекла. Промышленностью выпускается крупно- и мелкопористый силикагель с различным размером гранул. Для очистки нефтяных масел применяют преимущественно крупнопористый силикагель КСК (диаметр гранул 3— 7 мм). Силикагель применяют при перколяционной очистке отработанных масел в процессе их регенерации, а также в термосифонных фильтрах для непрерывной очистки масел в трансформаторах. Адсорбция загрязнений силикагелем является сложным физико-химическим процессом и может сопровождаться химическим взаимодействием адсорбента с содержащимися в масле гетеро-органическими соединениями [в]. [c.123]


    Тиофены стабильны при окислении вплоть до 150 ""С и не оказывают заметного влияния на окисление топлив. Показано [51], что органические соединения серы в малых концентрациях (меньше 1 ммоль/л) при 130 °С в течение 20—40 мин не влияют на процесс окисления, а затем начинают сильно тормозить его, т. е. при окислении топлив накапливаются ингибиторы. Таким образом, сернистые соединения на начальной стадии могут способствовать ускорению окисления, а в развившемся процессе — выступать в роли слабых ингибиторов (разрушать пероксиды) продукты окисления сернистых соединений обладают сильным тормозящим действием. [c.50]

    Большого успеха достигла экстракция в фармацевтической промышленности, где уже завоевал себе положение ряд конструктивных решений промышленного масштаба. Постоянно появляющиеся новые патенты также свидетельствуют о дальнейшем расширении и развитии экстракции в этой области. Большинство органических соединений, применяющихся в медицине, как например, гормоны, антибиотики и витамины, нестойко к действию повышенной температуры и добавляемых в процессе производства веществ, которые уничтожают при длительном воздействии их целебные свойства [250]. Поэтому при получении этих соединений в чистом виде широко применяется экстракция растворителями, которую можно осуществить в исключительно строгих условиях. Применяется экстракция одним растворителем и фракционированная. Так как часто можно допустить контакт лишь на очень короткий промежуток времени, то в фармацевтической промышленности получили широкое применение центробежные экстракторы (Подбильняка и др.) несмотря на их высокую стоимость. [c.419]

    Металлорганические соединения. Соли металлов переменной валентности могут и ускорять и замедлять процесс окисления. Если в органическое соединение попадают соединения металлов переменной валентности (Ре, Си, Сг и др.), то окисление развивается, как правило, ускоренно из-за распада гидропероксида на радикалы иод действием катионов металлов. Этот процесс можно замедлить введением деактиваторов металлов, связывающих металлы в комплекс, неактивный по отношению к гидроиероксиду. [c.178]

    К противокоррозионным присадкам относятся главным образом органические соединения, содержащие в своем составе серу или фосфор или оба эти элемента одновременно. Действие этих соединений основано на их способности образовывать на поверхности металла пленки, предохраняющие металл от разрушения (коррозии) агрессивными продуктами, образующимися в масле в процессе окисления или попадающими в пего извне, например вместе с продуктами сгорания топлива. [c.604]

    В реакциях с любыми органическими соединениями на поверхности катализатора всегда откладываются (в большей или меньшей степени в зависимости от температуры процесса) пленки углеродных продуктов. Этим объясняется дезактивация катализатора в процессе гидрогеиолиза при продолжительной его работе, когда о присутствии специфически действующих ядов не может быть и речи. Удаление таких пленок должно регенерировать катализатор при условии, если они не изменили существенно строение его поверхностного слоя. [c.49]

    Определение эффективности ингибиторов в реакциях окисления органических соединений. В присутствии ингибиторов различных классов (фенолов, аминов и др.) скорость окисления падает за счет уменьшения концентрации перекисных радикалов, ведущих цепи окисления. Конкретный механизм действия ингибитора зависит от его природы, свойств окисляемого углеводорода, условий проведения реакции. В присутствии ингибитора 1пН при низких температурах, к схеме процесса окисления добавляются следующие реакции  [c.129]

    Еще в прошлом веке стало известно, что под действием высоких температур органические соединения нефти химически видоизменяются, распадаются и вступают в различные вторичные реакции между собой. Это позволило создать новые, так называемые термические процессы переработки нефти, позволяющие получать из нее углеводородные газы, дополнительные количества жидких нефтепродуктов, а также продукт глубокого уплотнения — нефтяной кокс, т. е. такие новые вещества, которых в исходной нефти не было. [c.166]

    Она оказалась исключительно удобной для элементарного органического анализа методом сожжения. Методика процесса окисления органических соединений окисью меди была разработана еще Ю. Либихом. Сначала сжигаемое вещество перемешивали с порошкообразной СиО, но впоследствии, когда было установлено ее каталитическое действие, смешение стали применять лишь для очень трудно окисляющихся веществ. Окись меди мало пригодна для сожжения многих соединений, содержащих азот, серу и галогены для окисления этих веществ было предложено применять платину. [c.176]

    В ГЛ. I и II были рассмотрены процессы электролиза, при которых под действием электрического тока происходит разложение продуктов на его составляющие части. Однако при помощи электрического тока можно осуществлять и синтез сложных неорганических и органических соединений. Такой процесс называется электрохимическим синтезом. В руководстве рассматриваются лишь процессы электрохимического синтеза неорганических соединений. Процессы электрохимического синтеза могут проходить как на аноде, так и на катоде или в объеме электролита в условиях взаимодействия электродных продуктов. Анодные процессы, получившие название электролитического окисления, протекают с потерей электрона, а на катоде процессы связаны с присоединением электрона и называются электровосстановительными. [c.135]

    Нитрование — введение нитрогруппы в молекулы органических соединений действием нитрующих агентов НМОз, HNOз + НзЗО,, N20,, N205 и др. Алифатические углеводороды нитруются НМОз(см. Коновалова реакция)] процесс протекает по 3 -механизму с участием радикала N02. [c.203]

    Реакции обнаружения окислителей, описанные на стр. 161 и 162, применимы только для исследования нейтральных или щелочи ых растворов исследуемого вещества. Реакция, выполнимая в концентрироганной серной кислоте, основана на окислении N,N -дифeнилбeнзидинa (I) в синее хиноидное соединение (II). Этот процесс вызывается органическими соединениями, действующими как доноры кислорода или акцепторы водорода  [c.197]

    Данных по изучению превращения органических соединений в процессе МСТД пока немного и все же можно полагать, что на этой основе могут быть созданы методы, позволяющие исследовать как различные стороны действия катализаторов, так и их изменения в процессе эксплуатации. [c.175]

    Характеристика работ. Ведение прерывного процесса кар-боксилирования (непосредственного введения карбоксильной группы в органические соединения действием углекислоты) органических соединений. Прием, подготовка и дозировка сырья, реагентов, загрузка их в аппараты, карбоксилирование и ведение сопутствующих процессов насыщения, нейтрализации, фильтрации, кристаллизации, осаждения, центрифугирования и др. Регулирование процесса по показаниям контрольно-измерительных приборов и результатам анализов. Отбор проб для контроля и выполнение предусмотренных инструкцией анализов. Пуск и остановка оборудования. Проверка герметичности аппаратов и коммуникаций. Обслуживание реакционных аппаратов (карбоксилаторов, вакуум-фильтров, друк-фильтров, растворителей, кристаллизаторов, центрифуг, мерников, сборников), контрольно-измерительных приборов, коммуникаций и арматуры. Учет сырья, полуфабрикатов и готовой продукции. Ведение записей в производственном журнале. Подготовка оборудования к ремонту, прием из ремонта. Руководство аппаратчиками низших разрядов — при их наличии. [c.42]

    Характеристика работ. Ведение технологического процесса метоксилирования— (образования метоксильных групп — СНзО) органических соединений действием различных меток-силирующих веществ на галлоидо-замещенные органические [c.52]

    При описании реакции окисления каучука было указано, что некоторые вещества способны ускорять, другие замедлять эту реакцию. В этой связи следует рассматривать действие ряда органических соединений на процесс пластикации. Типичные антиоксиданты, например фенил- -нафтиламин замедляют пластикацию, в особенности если последняя ведется при высоких температурах, при которых окислительная деструкция превалирует над механической. Тиокрезол ускоряет пластикацию -нитро-диметиланилин ускоряет ее при низких температурах и замедляет при высоких. В особенности эффективно действуют такие ве щества, как меркаптобензотиазол (каптакс), -нафтилмеркаптан, ксилилмеркаптан и др. Их действие связано с ускоряющим влиянием на процесс окислительного распада каучука. Каталитический характер действия указанных веществ подтверждается тем, что их влияние сказывается уже при незначительных дозировках (0,2—1,0%) от веса каучука. Цинковые соли жирных кислот, апример лаурат цинка, при более высоком содержании их (3—5%) также производят положительный эффект. Так как они проявляют свое действие и в том случае, когда пластикация ведется в атмосфере инертного газа, то можно считать, что их роль иная по сравнению с катализаторами окисления. Ряд производных гидразина, например фенилгидразин, ускоряют процесс механической пластикации и даже способны вызывать заметное увеличение пластичности в результате простой диффузии их в каучук. При этом обнаруживается зависимость действия гидразинов от характера заместителей в их молекуле. Если одно-замещенные гидразины в большинстве случаев вызывают смягчение каучука, то дифенилгидразин и тетрафенилгидразин имеют обратное действие — увеличивают эластичность и жесткость этого продукта. В отмеченных случаях мы имеем дело с химическим и отчасти с физико-химическим взаимодействием каучука с гидразинами. Однако существо процесса пока остается невыясненным. [c.291]

    С начала 1930-х годов Г. А. Разуваевым и М. М. Котоном [62] для выяснения химизма процесса выделения металла из его органических соединений действием водорода изучались такие реакции применительно к ртутноорганическим соединениям. При этом были получены первые данные по возникновению в растворах свободных арильных радикалов, всесторонне изучено влияние различных факторов на характер термического распада ртутноорганических соединений н реакции замены ртути в них на водород в присутствии металлов [63]. Эта реакция пыпе широко используется в синтетических целях. [c.110]

    Кислород в меньшей степени смягчает процесс заедания, чем сера. Кислородсодержащие присадки — кислоты и эфиры — являются значительно менее эффективными агентами, чем серусодержащие соединения — тиокислоты и тиоэфиры. Кислородсодержащие органические соединения действуют преимущественно адсорбционно как поверхностно-активные вещества. [c.187]

    На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются [ итрогруппами — NO2. Этот процесс называется нитрованием и нмеет большое значение в органической химии. [c.414]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    Н. М. Караваев (92, 93, 94] из смол пиролиза керосина выделил нафталин в количестве 3,1% на смолы (из фракции 200—230°С) а- и р-метилнафталин в количестве 1,87о на смолу (из фракции 226—250°С) инден в количестве 1,4% на смолу (из фракции 175—182 °С) пирен (из фракции 160—290 °С) антрацен и хризен. Молекулярный вес асфальтенов при этом снижается (табл. 8 и 9). Следовательно, и молекулярный объем их уменьшается довольно значительно. Разукрупнение молекулярных структур тяжелых пиролизных остатков, естественно, приводит к уменьшению истинной плотности получаемого кокса в большом диапазоне значений. Образующиеся при этом карбоиды по размерам частиц (0,1—5 мк) и по высокой поверхностной активности сходны с обычной термической сажей. Они, надо полагать, играют немаловажную роль в формировании молекулярных структур органических соединений при пиролизе и выступают в роли катализаторов. Механизм происходящих при этом процессов наиболее удачно объясняется, по нашему мнению, если исходить из современных представлений об ионе карбония. При электронной недостаточности, возникающей в процессе пиролиза (особенно при глубоких формах пиролиза), ион карбония сковывается действием активных центров твердых контактов — сажеобразных высокореакционных карбоидов. [c.30]

    Под дегидрированием понимают химические процессы, связанные с отщеплением тамов водорода от органического соединения. Гидрирование (или гидрогенизация) заключается в превращениях органических соединений под действием молекулярного водорода. В ряде случаев гидрирование приводит к восстановлению кислородсодержащих веществ, а дегидрирование — к их окислению. [c.456]

    Под действием каталитических ядов в процессе эксплуатации катализаторы могут частично или полностью потерять свою активность. В ряде случаев, если не полностью, то частично возможно восстановить его активность после того, как прекратилось действие каталитического яда. Некоторые вещества отравляют катализатор необратимо. К каталитическим ядам следует отнести сероводород и органические соединения серы, соединения мышьяка, галогенов, фосфора, свинца и меди. Сырье (углеводороды) и водяной пар, поданные отдельно или нри малых концентрациях одного из компонентов, также можно рассдштривать как каталитические яды. [c.84]

    Сущность масс-спектрометрии состоит в том, что под действием электронного удара происходит диссоцггативная ионизация молекул органических соединений с образованием набора регистрируемых осколков, характеризующих гсходные молекулы. Процесс протекает при глубоком вакууме, исключающем соударения молекул, которые могли бы отразиться иа масс-спектрах. Ионизация молекул, т. е. отрыв валентных электронов и образование молекулярного иона, происходит при столкновении с электронами, имеющими энергию несколько выше порога ионизации (10— [c.93]

    При экстрагировании углей бензолом в автоклаве при 250— 270 °С и давлении около 5,4 МПа извлекаются так называемые битумы В, выход которых значительно выше выхода битумов А. Повышение выхода битумов можно объяснить прежде всего процессами термической деструкции. Под действием температуры сапропелитовые и липтобиолитовые компоненты углей превращаются в более простые продукты, уже способные растворяться в бензоле. Очень возможно при подобном нагревании углей в автоклаве образование растворимых веществ и из гуминовых составных частей угля. Поэтому многие углехимики считают, что веществами, входящими в неизменном состоянии в состав твердых горючих ископаемых, могут быть только битумы А. Мягкие условия извлечения (температура около 80 °С) не могут влиять на химическое изменение их природы. Битумы В, экстрагируемые при высоких температурах (до 300°С), являются главным образом продуктами термической деструкции наименее устойчивых органических соединений, о чем свидетельствует значительно больший выход битумов В по сравнению с битумом А. [c.151]

    Отравляющее действие органических сернистых соединений на ни--гелевый катализатор аналогично действию сероводорода, так как в процессе конверсии метана органические соединения серы превраищ)т-л в сероводород по реакциям [c.44]

    В отличие от никелевых катализаторов, применяемых при конверсии в од5шым паром, катализаторы на основе железа, используемые на первой стадии процесса получения водорода, не обладают такой же высокой восприимчивостью к дезактивирующему действию серы. Поэтому полученньА из кокса, загрязненного серой, синтез-газ может содержать примеси сероводорода и некоторых серусодержащих органических соединений. Допустимые концентрации серы при использо нии некоторых катализаторов составляют 5 10 -1 10 %H2S и 2 10 органической серы. Если конвертируемьА газ содержит OS, последний гидролизуется до СО и H S в ходе конверсии /8/. [c.165]

    Растения поглощают на свету оксид з глерода (IV). Процесс усвоения этого оксида, поды и минеральных солей под действием солнечной энергии с образованием углеводов, белков и жиров называется фотосинтезом. Ежегодно мировая флора потребляет около 10 кг углерода. В то же время углекислый газ непрерывно пополняет атмосферу за счет жизнедеятельности животных и растений, промышленной деятельности человека, процессов разложения органических соединений и вулканической активности. В результате происходит постоянный круговорот углерода в природе. [c.131]

    Действие излучения на битумные материалы изучено значительно хуже, чем основные процессы, протекающие при облучении простых органических соединений. Работы Матесона [10] и Свеллоу [11] содержат полный обзор химических реакций, протекающих в простых и сложных органических соединениях под действием облучения. Изменения в технических материалах под действием облучения рассматриваются в работе Болта и Кэррола (121. [c.155]

    Содержание серы зависит от природы нефти, из которой выработано масло, а также глубины его очистки. При применении процессов гидрооблагораживания содержание серы в масле указывает на глубину процесса гидрирования. В очищенных маслах из сернистых нефтей сера содержится в виде органических соединений, не вызывающих в обычных условиях коррозии черных и цветных металлов. Агрессивное действие серы возможно при высоких температурах, например, при использовании масел в качестве закалочной среды, контактирующей с раскаленной поверхностью металла. Масла с присадками, в состав которых входит сера, содержат больше серы, чем базовые масла. Серусодержащие присадки вводят в масло для улучшения его смазывающих свойств. [c.266]

    Первый и второй законы фотохимии применимы к любым фотохимическим реакциям. Третий и четвертый законы относятся главным образом к фотохимии органических соединений. Однокванто-вость поглощения связана с тем, что время жизни электронно-возбужденного состояния молекулы достаточно мало, а обычно используемые интенсивности света невелики (10 —10 квантов, поглощенных в 1 смз за 1 с). Если удается повысить интенсивность света (импульсный фотолиз, действие лазеров), или увеличить время жизни возбужденных состояний за счет устранения диффузионно-контролируемых процессов тущения (понижение температуры, увеличение вязкости среды), становится возможным поглощение кванта света молекулой, находящейся в электронпо-возбуж-деипом состоянии или одновременное поглощение двух квантов света молекулой, находящейся в основном состоянии. [c.132]

    Диоксиды серы и азота являются причиной выпадения так называемых кислотных дождей. Кислотные дожди значительно повыщают кислотность почвы, оказывают разрушающее действие на конструкционные материалы, влияют на урожайность сельскохозяйственных культур, здоровье человека. Вместе с воздушными массами оксиды азота и серы могут переноситься на большие расстояния. В ходе газофазных окислительных процессов, в которых участвуют в основном летучие органические соединения, олефины, продукты неполного окисления углеводородов, образуются также и органические кислоты, главным образом муравьиная и уксусная, которые также являются предшественниками кислотных дождей. Формирование кислотного дождя зависит от скорости поглощения загрязнений аэрозольными частицами. [c.330]


Смотреть страницы где упоминается термин Органические соединения, действующие на процесс: [c.65]    [c.24]    [c.428]    [c.133]    [c.138]    [c.53]   
Физическая химия силикатов (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Органические процессы



© 2025 chem21.info Реклама на сайте