Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод энергия связи углерод—углерод

Таблица В.31. Энергии связей углерод — углерод и азот — азот Таблица В.31. <a href="/info/479711">Энергии связей углерод</a> — углерод и азот — азот

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]

    Известно, что относительно энергий связей углерод — углерод существуют две точки зрения, обусловленные неопределенностью в оценке энергии сублимации алма за. Помимо приведенных выше значений средних энер [c.19]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Следует отметить, что изменения энергии связей углерод-углерод в зависимости от гибридизации гораздо больше, чем соответствующие изменения для связей углерод-водород. Вследствие этого вычисленные энергии стабилизации простых олефинов и ацетиленов и классических сопряженных диенов, диацетиленов и т. д. положительны. Рассчитанные значения согласуются с опытными в той же степени, как вычисленные и опытные значения теплот образования. Этого и следовало ожидать, поскольку энергия стабилизации и теплота образования неизбежно связаны друг с другом, [c.79]

    На полярной жидкой фазе разделение происходит в зависимости от энергии связи углерод—углерод, что оказывается удобным при разделении изомеров (например, углеводородов С ). Порядок вымывания здесь следующий изопарафины, нафтены, олефины, ацетилены. [c.118]

    Происходит также рацемизация хиральных циклопропанов. Появление этих продуктов объясняется вращением метиленовых групп в бирадикале, за которым следует замыкание цикла.Общая энергия активации составляет около 65 ккал/моль, что согласуется с оцененной энергией связи углерод — углерод в циклопропане. [c.416]

    Если взять среднее арифметическое двух значений энергии для каждой связи и затем вычислить разницу для соответствующих связей кремния и углерода Д=(51 — У) — (С — V), то получатся величины, приведенные ниже соответственно порядковым номерам в табл. 6 —25, —И, —26, +13, +21, +9, +5, —1. Если теперь расположить полученные величины в порядке возрастания положительных значений, то окажется, что это соответствует следующему порядку вторых компонентов связи (У) Н<51<С<1< < Вг<С1<0<Р. Таким образом, наиболее стабильной связью с участием кремния по сравнению с углеродом является связь Si—Р, а наименее стабильной — связь 51—Н. Грубо говоря, связи между кремнием и сильно электроотрицательными атомами более стабильны, чем соответствующие связи углерода. Наоборот, для атомов, менее электроотрицательных, чем иод, стабильнее связи с углеродом. [c.31]

    Типичным примером вещества с ярко выраженной анизотропией является графит. Кристаллическая структура графита представлена параллельными слоями атомов углерода. Все углы между связями равны 120 °С (хр -гибридизация орбиталей атомов углерода). Энергия связи между атомами в слое за 168 Дж/моль слои связаны силами Ван-дер-Ваальса с энергией связи в десять раз более слабой ( 17 Дж/моль). Это и является причиной особых механических свойств графита — легкости скольжения слоев относительно друг друга и смазочных (мажущих) его качеств. [c.160]

    Благодаря высокой энергии связи углерод—фтор предотвращается возможность возникновения реакций, связанных с отщеплением атома фтора в процессе полимеризации. Маловероятным является и прекращение роста макрорадикалов в результате передачи цепи через макромолекулу. Поэтому макромолекулы политетрафторэтилена имеют преимущественно линейное строение. Отсутствие разнотипных заместителей в звеньях полимера исключает и образование стереоизомеров. Такое строение полимерной цепи политетрафторэтилена определяет возможность образования кристаллитов. По степени кристалличности политетрафторэтилен можно сравнить с полиметиленом, несмотря на то, что образование его происходит по механизму радикальной полимеризации. Степень кристалличности различных образцов политетрафторэтилена (как и полиэтилена) можно характеризовать величиной плотности. Его плотность в аморфном состоянии со- [c.256]


    В последнее время появилось несколько работ, в которых > делаются попытки конкретизировать изменение энергии связей углерод—углерод и углерод— фтор во фторолефинах. В частности, обнаруженное понижение знергии активации в реакции чис-т анс-изомеризации перфторолефинов [117] обычно объясняют дестабилизацией двойной связи во фторолефинах по сравнению с олефинами [117, 118]. [c.143]

    Разложение углеводородов С4 обусловлено тем, что энергия связи углерод — углерод значительно ниже, чем связи углерод — водород. [c.59]

    Связи между первичными атомами углерода всегда прочнее, чем С —С —связи в комбинациях с первичным, вторичным (С и третичным (С ) атомами углерода. Энергия разрыва углерод — углеродной связи уменьшается в следующей последовательности О > О > О > О > В > О [c.14]

    Значения энергии, требуемой для разрыва связи углерод — углерод и связи углерод — водород, могут колебаться в пределах 50—80 ккал и соответственно в пределах 70—100 ккал-, значения получаются различными в зависимости от принятой величины теплоты сублимации графита, которой пользуются при вычислении энергии разрыва связи. Для разрыва связи углерод — углерод всегда требуется затрата энергии на 18—20 ккал меньше, чем для разрыва связи углерод — водород. Отсюда следует, что в отсутствие катализаторов скорость разрыва цепи должна превышать скорость дегидрирования. [c.106]

    Пользуясь языком теории локализованных связей, мы говорим, что молекула метана СН удерживается как единое целое благодаря имеющимся в ней четырем эквивалентным простым связям С—Н. Если такие представления верны, теплота разложения метана на изолированные атомы углерода и водорода должны быть вчетверо больше энергии связи С—Н. (Хотя по сути дела в дальнейшем всюду имеется в виду энтальпия, мы воспользуемся общепринятой, хотя и неправильной терминологией и будем считать, что получили значения энергии связей, а не энтальпии связей. Различие между численными значениями энтальпии и энергии связей настолько невелико, что оно находится в пределах точности самого подхода, в котором рассматриваются энергии локализованных связей.) [c.26]

    В структуре сырого кокса сера прочно связанна с углеродом. Но так как энергия связи сера-углерод значительно ниже энергии связи углерод-углерод, в процессе прокалки появляются разорванные связи. Этим объясняется более высокая адсорбционная способность и концентрация кислородных групп на единице внешней поверхности у сернистых коксов по сравнению с малосернистыми коксами. [c.45]

    Для оценки различных катализаторов в рамках этих представлений необходимы данные об энергиях связи металл—углерод и металл—водород для данных условий. В настоящее время многие из этих величин определены но не всегда можно применять величины, определенные для одной реакции, при изучении другой. [c.134]

    Кремний, как и углерод, в соединениях проявляет степень окисления, равную 4 однако его координационное число может быть равно и 4 и 6 (в отличие от углерода), что объясняется большим объемом атома кремния. Кремний — более электронодонорный элемент, чем углерод, поэтому его связь с другими элементами более поляризована. Отличие между углеродом и кремнием проявляется и в различной энергии диссоциации по связям С—X и 51—X. Так, соединения кремния со многими элементами (водородом, галогенами, серой и др.) легко гидролизуются уже при нормальной температуре (в присутствии кислот или щелочей), в то время как связь углерода с этими же элементами (за исключением галогенов) довольно прочная. Реакционная способность связи —51—Н в кремнийорганических соединениях уменьшается, в противоположность связи С—Н, [c.181]

    Энергия связи катализатора с взаимодействующими на его поверхности атомами оказывает влияние на осуществление любых каталитических реакций. Величины энергий связи атомов, участвующих в реакции, с активными центрами катализатора Qa-l являются важнейшими характеристиками системы, так как они учитывают специфику как реагирующих молекул, так и активной поверхности катализатора. Очевидно в частном случае каталитического крекинга — при более прочной связи атомов углерода, которые являются источником образования кокса, с металлами, они будут дольше удерживаться на поверхности катализатора, и это будет способствовать увеличению коксообразования. Таким образом, для повышения коксообразования требуется большая энергия связи углерода с металлом катализатора Q -к Действительно прп уменьшении энергии связи Q -к углерода с металлом, введенным в состав катализатора, время до отложения 2% кокса увеличивается (табл. 49). [c.176]

    Зависимость между энергиями связи углерода с катализаторами Q -к и коксообразованием в процессе каталитического крекинга [c.177]

    Таким образом, зная энергию связи углерода с металлом, введенным в катализатор, можно предсказать коксообразующее влияние добавок. Чем выше будет энергия связи, тем интенсивнее должно быть коксообразование в процессе каталитического крекинга в присутствии данного катализатора. [c.177]

    Ограничение процесса стадией диффузии согласуется и с энергиями связей сера-углерод и углерод-углерод. [c.33]

    Высокие значения энергии активации объясняются совмещением процесса диффузии серы с разрывом прочных связей углерод-углерод. [c.33]

    В положительных ионах металлов электроны остова сильнее притягиваются ядром, так что энергии связи электронов в оксидах, солях и т. п. выше, чем в нейтральных атомах металлов. В соединениях углерода также наблюдаются, как видно на рис. VII.1, разные линии С 15 в зависимости от окружения атомов углерода (электроотрицательности заместителей). [c.159]

    Углеводороды и некоторые силиконы содержат углерод-уг-леродные связи (энергия связи 85). Теоретически связь кремний— углерод должна первой расщепляться при термических условиях связь кремний— кислород должна быть наиболее стабильной. При расчете по уравнению Аррениуса и диаграммам энергий связей константа скорости разложения для связи кремний — углерод при 537,8° С составляет примерно 10" моль сек. По мнению Милса и Льюиса , этот расчет показывает, что температура 537,8° С, возможно, является верхним пределом термической стабильности силиконовых полимеров. Эксперименты в Доу Корнинг с циклическими силоксанами подтвердили этот расчет и показали, что расщепление связи кремний — углерод происходит при температурах 483—538° С. Скала с сотрудниками нашел, что некоторое термическое расщепление связи кремний — углерод в силиконах с высоким соотношением фенильных и метильных групп происходит при 399°С. [c.205]

    Во многих источниках приведены энергии связей углерод — углерод и углерод—водород [3, 4, 10—13. Однако они основаны на неверном допущении, что энергии всех связей (С—С), (С=С) и (С = С), а также (С—Н) одинаковы, независимо от того, в каких соединениях они находятся. Расчет теплот сгорания и образования по этим энергиям связей в сравнительно небольшом количестве случаев дает близкие к экспериментальным данным результаты. Большие расхождения наблюдаются при расчете изоалканов и недопустимо большие расхождения — при расчете ароматических соединений, алкенов и соединений, содержащих больше одной двойной связи в молекуле. Причина, видимо, в том, что средние значения энергии связи (С—Н) в группах —СНз, >СНз и в (С—С) в метильной и метиленовой группах значительно отличаются. [c.5]

    Энтальпии перехода 1 моль атомов углерода из структур алмаза и графита в состояние газообразных изолированных атомов (энтальпия атомиза-дии) составляют 170,4 (713,0) и 170,9 ккал/моль (715,0 кДж/моль) соответственно. Как из этих данных вычислить энергию связи атомов углерода в алмазе и графите Какие сведения необходимы для ответа на вопрос Проведите вычисления и объясните неожиданность результата. [c.174]

    Из изложенного выше следует, что энергию связей углерод-углерод (Сар—Сар) и энергию связей углерод — водород (С р—Н) можно однозначно установить на основе экспериментально определенных атомарной теплоты образования бензола и энергии диссоциации связи gHj-СН3. Отсюда следует несостоятельность одного из тезисов концепции теории резонанса, который основан на разности экспериментально определенной теплоты образования бензола и рассчитанной по энергиям связей, установленных без учета типов и подтипов углерод-углеродных связей. [c.26]

    На активированном угле время вымывания отдельных компонентов определяется температурой кипения. Первым выходит пропилен, последним метплацетилен. На силикагеле порядок выхода другой пропан, циклопропан, тропнлен, метилацетилен. Здесь время вымывания зависит от величины энергии связи углерод—углерод. [c.41]

    Описанные выше эксперименты не обнаруживают какой-либо связи между обратимой абсорбцией двуокиси углерода у растений в темноте и восстановлением двуокиси углерода на свету. Теперь мы опишем опыты, которые указывают, что иная (хотя тоже обратимая и нефотохимическая) абсорбция двуокиси углерода тесно связана с фотосинтезом предположительно в качестве предварительной стадии этого процесса (как принималось в главе VII). Количество двуокиси углерода, участвующей в этой абсорбции, в 20—50 раз меньше, чем количество, учитываемое из равновесий двуокись углерода — бикарбонат, т. е. около 2 10- моль1л клеточного объема, или 5 10- % СОд на сухой вес клеток, или 0,5 мл углекислого газа на 10 г свежих клеток. С другой стороны, сродство к двуокиси углерода акцептора, обусловливающего эту абсорбцию, должно быть выше, чем у фосфатных или карбонатных буферов, так как его насыщение происходит при давлениях двуокиси углерода порядка 1 мм. Эта цифра получается из кривых зависимости фотосинтеза от концентрации двуокиси углерода. Эти кривые показывают полунасыщение при значениях [СОз] около 0,03°/о в воздухе. Одно из объяснений этого насыщения заключается в том, что кривые двуокиси углерода являются изотермами равновесия комплекса акцептор — двуокись углерода. Эти кривые могут быть искажены ограничениями притока и передачи, которые мешают равновесию карбоксилирования во время интенсивного фотосинтеза йли заставляют скорость процесса стать нечувствительной к концентрации двуокиси углерода задолго до полного насыщения комплекса СОд . Однако это искажение не меняет порядка величины концентрации двуокиси углерода, потребной для насыщения. Если комплекс СОд полунасыщен при концентрациях СОа в воздухе порядка 10- моль л, или 0,03%. то свободная энергия его образования должна быть порядка — 6 ккал при комнатной температуре (Рубен [119] определяет Д = — 2 ккал), т. е. это значительно более отрицательная величина, чем свободные энергии карбаминирования и карбоксилирования, приведенные в первой части настоящей главы, и даже бодее отрицательная, чем свободная энергия ассоциации двуокиси углерода с карбоангидразой. [c.209]

    Термодинамические величины очень важны для оценки возможных направлений разложения углеводородов и фторуглеродов. Например, пиролиз углеводородов приводит к потере водорода и образованию ненасыщенных углеводородов или угля. С другой стороны, оторвать фтор от фторуглерода с образованием олефина энергетически гораздо труднее. Действительно, энергия, необходимая для отрыва фтора, значительно выше энергии связи углерод — углерод, так что энергетически более выгодно расщепление молекулы, чем отрыв фтора. Разложение углеводородных и фторуглеродных производных, например три-метиларсина и трис(трифторметил)арсина , на начальной стадии, очевидно, одинаково, так как в обоих случаях образуются радикалы. Более того, энергии активации образования метиль-ного и трифторметильного радикалов очень близки, так же как, например, их поведение с ненасыщенными системами. Однако механизмы разложения этих радикалов совершенно различны. Если последовательные превращения метильных радикалов, полученных из триметиларсина, можно с достаточной точностью предстапить в виде уравнений [c.38]

    Многие из специфических особенностей фторорганических соединений тесно связаны с их энергетикой. Так, исключительно высокая химическая и термическая инертность перфторуглеводородов может быть объяснена большим значением энергии связи углерод —фтор. Известно, что при образовании четырехфтористого углерода из простых веществ освобождается в 2,5 раза больше энергии (в расчете на массу углерода), чем при образовании углекислого газа. Высокие значения средних энергий связей углерод—фтор свойственны и другим фторуглеродам. Поэтому, например, отщепление фтора от перфторалкана с образованием перфтор-алкена энергетически более затруднительно, чем отщепление водорода от алкана с образованием алкена. [c.104]

    В атоме углерода в отличие от всех других элементов число валентных электронов равно числу валентных орбиталей. Это одна из основных причин большой устойчивости связи С — С и исключительной склонности углерода к образованию гомонепей. Наблюдается резкое уменьшение энергии связей от углерода к азоту  [c.391]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    В интервале температур до 750"С скорость нерпо11 стадии выше скорости второй. Отсутствие водорода в углеродистых отложениях также говорит в пользу их образования по механизму карбидного цикла. На катализаторах, содержащих оксиды металлов, склонностью к переходу в кокс обладают главным образом ненасыщенные, преимущественно дненовые углеводороды, и в гораздо меньшей степени — насыщенные парафиновые углеводороды [3.19]. Чем выше энергия связи углерода углеводородных молекул с металлом, тем интенсивнее должно быть коксообразование. [c.64]

    Несмотря на более высокую энергию, связь С — Он СО гораздо более реакционноснособка сильные электронодонорные свойства этой молекулы и прочность координационных связей в карбонильных комплексах (а- и я-связи см. разд. И.1.В) является результатом гибриди-зованного состояния атома углерода (зр) в поляризованной тройной [c.190]

    Структуру карбина можно изобразить двумя способами только с двойными связями или с чередующимися одинарными и тройными связями. Определите, какая модель энергетически более выгодна, если энергии связи атомов углерода равны в этане С—С 326 кДж/моль, в этилене С=С 586 кДж/моль, в ацетилене С С 808 кДж/моль. Предскажите свойства, которыми должен обладать карбин, соответствующий обеим моделям. [c.45]

    Величтша энергии связи углерод—фтор больше энергии связи углерода с водородом, причем в присутствии атомов фтора повышается прочность соседних с ними связей между углеродными атомами. Вследствие этого полимеры фторпроизводных этилена обладают наиболее высокой химической и термической стойкостью по сравнению с другими органическими полимерами, в том числе и по сравнению с полиэтиленом. Особенность связи углерод— фтор ярко выражена в свойствах политетрафторэтилена, который отличается наибольшей химической инертностью и термоустойчивостью. [c.253]

    Энергия связи углерод—хлор меньше энергии связи углерод— ьодород, поэтому поливинилхлорид обладает меньшей термической и химической стойкостью, чем полиэтилен. Подавляющее большинство процессов химических превращений поливинилхлорида, его термическая, световая и окислительная деструкции происходят с замещением или отщеплением H I от макромолекул гюлимера. [c.253]

    Для синтеза но. шмерных соединений, содержащих титан, применяют соединения четырехвалентного титана. Энергия связи титан—углерод меньше энергии связи титан—кислород, поэтому полее стабильны полимеры, н которых титан соединен с органи- [c.497]

    Очень высокая энергия связи в молекуле азота делает егО чрезвычайно инертным. Сравнение энергий связей между атомами углерода (в полимерных соединениях) и между атомами азота (табл. В.31) показывает, что оцениваемая по аналогии величина энергии тройной связи в N2 лежит значительно ниже,, чем истинное значение 946 кДж/моль. Большинство простых соединений азота эндотермично и может разлагаться с образованием устойчивых молекул N2 (см. опыт 2). [c.531]

    Руководствуясь тем, что кратные связи можно сравнивать по их энергии и длине, установите, для какого вещества в ряду С2Н6—С2Н4—С2Н2 связь углерод—углерод а) прочнее, б) длиннее. [c.54]


Смотреть страницы где упоминается термин Углерод энергия связи углерод—углерод: [c.51]    [c.254]    [c.268]    [c.630]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.321 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Углерод связи

Углерод энергия связей

Энергии с углеродом

Энергия связи



© 2025 chem21.info Реклама на сайте