Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная сольватации

    Донорно-акцепторное взаимодействие молекул. Если одна из молекул имеет электронные пары, а другая — свободные орбитали, то между ними возможно донорно-акцепторное взаимодействие. Это взаимодействие проявляется в первичных актах многих химических реакций, лежит в основе каталитических процессов, обусловливает сольватацию молекул и ионов, в растворах, может приводить к образованию множества новых соединений. [c.91]


    Это уравнение определяет изменение свободной энергии при переносе сферического иона из вакуума в растворитель с диэлектрической проницаемостью О (т. е. свободную энергию сольватации иона). Заметим, что эта величина всегда отрицательна, так что ионы более устойчивы в растворителях, чем в вакууме. Для одновалентных ионов с / = 2 Л эта величина составляет около 150 ккал/моль при О > 10. [c.456]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]

    Энергия (теплота) сольватации. Энергия сольватации ионов может быть вычислена путем сопоставления мольных величин энергии ионной решетки и и теплоты растворения соли Qp. Разность эти.х величин равна теплоте растворения свободных (газообразных) ионов 1 моль вещества (теплота сольватации Ос) [c.419]

    Коэффициенты распределения некоторых анионов и ионных пар были рассчитаны из свободных энергий сольватации и гидратации для системы вода/различные апротонные растворители [130]. [c.32]

    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    Понижение растворимости в присутствии солей называется высаливанием. Одной из ее причин может быть сольватация солей, ведущая к уменьшению числа свободных молекул растворителя, а с ним и к понижению растворяющей способности жидкости. [c.149]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]


    Можно ожидать, что силы притяжения при отрицательной сольватации будут действовать на таких же расстояниях, как и силы положительного расклинивающего давления при положительной сольватации, так как природа их одинакова. Наличие свободной поверхностной энергии должно определять устойчивость не только как термодинамический фактор, обуславливающий принципиальную неустойчивость лиофобных коллоидных систем, но и как активная движущая сила процесса сближения частиц. [c.8]

    При проведении эксперимента измеряется молярная вязкость — макроскопическая величина. Она имеет смысл для внутреннего трения слоев жидкости. Экспериментальные данные показывают, что уравнения броуновского движения, полученные на основании классической гидродинамики, оказываются применимыми к частицам, размеры которых превышают размеры молекул растворителя в 3—5 раз. В общем случае молекулярная (микроскопическая) вязкость не равна молярной. По мере уменьшения относительных размеров молекул растворенного вещества, вследствие наличия свободных пространств в жидкости часть времени движение будет происходить без трения, а значит, эффективное значение вязкости должно уменьшаться. На вязкость растворов оказывает существенное влияние сольватация молекул растворителем. [c.53]

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Непосредственный переход ионов из кристаллической решетки в сольватированное состояние, сопровождающийся тепловым эффектом Qi , может заменяться разрушением кристаллической решетки с образованием свободных ионов (на что расходуется энергия, равная по величине и обратная по знаку энергии кристаллической решетки i/q) и последующим переводом свободных ионов в раствор при этом происходит их сольватация с выделением теплоты Qs. При условии, что все стадии цикла протекают обратимо и изотермически, и с известным приближением [c.15]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Сольватация вносит значительный вклад в свободную энтальпию процесса растворения. Наблюдаются существенные различия в специфическом взаимодействии растворителя и растворенной частицы. Электрофильные частицы, например катионы, сольватируются преимущественно ДПЭ-растворителями. Вследствие присоединения молекул растворителя значительно увеличивается эффективный ионный радиус. Так, например, в диметилсульфоксиде размеры сольватированного иона лития. достигают размеров иона тетрабутиламмония. Основные центры молекул растворителя (атомы О, N или 5) в сольватной оболочке ориентированы к иону металла. Связь имеет характер [c.448]


    Как правило, при смене растворителя, в котором проводится реакция, ее равновесие смещается. Причина этого в основном состоит в том, что сольватация исходных веществ и продуктов реакции в различных растворителях происходит по-разному. Для проведения реакции наиболее удобно использовать такой растворитель, в котором равновесный выход продуктов реакции будет наибольшим. Это особенно выгодно, если изменение свободной энтальпий сольватации Л2< 0 достаточно велико по абсолютному значению, т. е. сольватация обеспечивает устойчивость продуктов реакции. [c.452]

    Нуклеофильная реакционная способность анионов зависит не только от степени их сольватации, но и от степени ассоциации с соответствующим катионом. Связанный в ионную пару анион имеет значительно меньшую реакционную способность, чем свободный. С увеличением размеров ионов ионные пары становятся неустойчивыми, поэтому в апротонных растворителях галогениды тетраалкиламмония, имеющие сравнительно большие размеры, более активно обменивают галогены в комплексных соединениях, чем галогениды лития и натрия. [c.453]

    Для решения некоторых задач неорганического синтеза большое значение имеют среды с сильноосновными свойствами. В водной среде невозможно создать основность большую, чем та, которую имеют гидратированные ионы 0Н , —/Сь = 55,3 (разд. 33.4.1.5). Гидратированные ионы 0Н сильно отличаются по степени основности от свободных ионов ОН . Стабилизированная водородными мостиками гидратная оболочка экранирует свободную пару электронов гидроксид-иона, в то же время для свободного иона ОН" (/Сь 10 ) способность к присоединению протона возрастает на несколько порядков. Применение в качестве среды дипольных апротонных растворителей, в которых невозможна сольватация анионов, позволяет проявиться сильноосновным свойствам свободного иона 0Н . [c.458]

    На первой стадии набухания происходит сольватация макромолекул в результате диффузии растворителя в высокомолекулярное вещество. Эта стадия характеризуется выделением тепла и упорядочением расположения молекул растворителя около макромолекул, в результате чего энтропия системы в первой стадии растворения обычно даже понижается. Основное значение этой стадии при растворении сводится к разрушению связей между отдельными макромолекулами, вследствие чего цепи становятся свободными и способны совершать тепловое движение в целом. [c.444]

    Учитывая, что свободная энергия сольватации ДОз=Л а2й ь [c.22]

    На границе воздух — раствор из-за определенной ориентации диполей растворителя возникает некоторый скачок потенциала % — так называемый поверхностный потенциал. Поэтому энергетический эффект, сопровождающий перенос заряженной частицы через границу воздух — раствор (из точки 2 в точку 3 на рис. 5), отражает не только ион — дипольное взаимодействие, но и электрическую работу, которая для моля ионов с зарядом 2,60 равна Л A2 eoX=2 f) Изменение свободной энергии, обусловленное только взаимодействием ионов с диполями растворителя и отнесенное к молю ионов, называется химической энергией сольватации ДО з " . Таким образом, между реальной и химической энергиями сольватации существует [c.25]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Введение электронодонорных растворителей вследствие сольватации активных центров и увеличения полярности связи Ь —С приводит к переходу от координационного механизма полимеризации к полимеризации на ионных парах или свободных карбанио-нах. Понижается координирующая роль металла в построении цепи и, как следствие, увеличивается присоединение бутадиена в положение 1,2, [c.273]

    Известно, что ионы не существуют в водном растворе в свободном состоянии, они гидратированы (сольватированы). Уравнения электролитической диссоциации не учитывают этого. Запись уравнений диссоциации с учетом сольватации принципиально более правильна, однако такая запись при отсутствии точных данных о сольватации практически ничего не дает, и поэтому для простоты будем условно писать уравнения для электролитической дисссциации и для ионных реакций в растворах без учета сольватации ионов (кроме иона водорода — гидроксония Н3О ). Однако о наличии сольватации и о ее важной роли следует всегда помнить. [c.389]

    С возрастанием концентрации электролита зона неискаженной и частично искаженной структуры воды сокращается. При концентрации, отвечающей связыванию всех молекул растворителя в первичные сольватные оболочки, достигается граница полной сольватации. Понятие об этой грагшце было введено К- П. Мищенко и А. М. Сухотиным. Ей отвечает такая концентрация раствора, которой соответствует сумма координационных чисел катионов и анионов, т. е. отсутствие свободного растворителя и наиболь- [c.171]

    При переходе от 5%-ной концентрации к 100%-пой, т. е. при увеличении молярности в 36 раз, протонирующая сила серной кислоты изменяется на И порядков. Наибольшее изменение происходит в интервале от 90%-ной концентрации до 100%-ной (на три порядка). Сравнительно низкая сульфирующая способность 86%-ной серной кислоты по отношению к сульфидам и кислородным соединениям нефтепродуктов позволяет использовать эту кислоту для их извлечения без изменения структуры. Это объясняется следующим. В водном растворе серной кислоты вода играет роль достаточно сильного основания. Ее эквимо.тьная смесь с серной кислотой образует бисульфат гидроксония. Для такой смеси функция кислотности — Яо равна примерно 7,5. Однако истинную основность воды установить трудно, поскольку с изменением концентрации растворов серной кислоты относительное содержание различных агрегатов свободной воды также изменяется — образуются ионы гидроксония от Н9О4 (в разбавленных растворах) до НдО" (в наиболее концентрированных растворах, в которых количество свободной воды для сольватации мало). [c.229]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Исследование межмолекулярных взаимодействий. В ИК-спектрах веществ в жидкой фазе часто обнаруживаются полосы, которых нет у отдельных компонентов смеси. Такие полосы объясняются межмолекулярными взаимодействиями с образованием новых связей. Типичным примером может служить водородная СВЯЗЬ, когда атом водорода, который связан в молекуле с электроотрицательным атомом, взаимодействует с атомом другой молекулы, имеющим иеподеленную пару электронов. Так, в растворах спиртов полоса свободной гидроксильной группы наблюдается в области около 3625 см . Эта узкая полоса четко проявляется в разбавленных растворах (<0,01 моль/л) в и-нертпых растворителях, когда все межмолекулярные связи разорваны. При увеличении концентрации спирта наблюдается широкая полоса, которая относится к ассоциированным гидроксильным группам, и интенсивность ее зависит от концентрации спирта. Наличие межмолекулярных взаимодействий необходимо учитывать при сравнении спектров веществ, снятых в разных растворителях, так как характеристические частоты некоторых групп могут изменяться в результате сольватации вещества растворителем. [c.219]

    Системы полимер - растворитель, концентрация полимера в которых такова, что взаимодействием между растворенными макромолекулами можно пренебречь, называются разбавленными растворами. Концентрационной границей является величина [ril i. Макромолекулы в разбавленном растворе представляют собой более или менее анизотропные по форме статистические клубки, способные удерживать в результате сольватации или иммобилизации некоторое количество молекул растворителя. Свободное движение таких молекулярных клубков может быть уподоблено движению сферической частицы, радиус которой соответствует большой полуоси гипотетического эллипсоида вращения, а объем ее равен объему статистического клубка. Вязкость таких растворов описывается уравнением Эйнштейна [см. уравнение (2.43)]. Однако асимметрия молекулярных клубков является причиной проявления аномалии вязкостных свойств даже в разбавленных растворах синтетических и природных полимеров вследствие ориентации таких частиц в потоке при достаточно больших т, а также из-за гидродинамического взаимодействия. При небольших и средних т разбавленные растворы полимеров являются ньтоновскими жидкостями. [c.194]

    Имеются данные о незначительном влиянии природы растворителя ш скорость радикальных реакций. При этом обсуждается возможность сольватации свободных радика юв. В т(елом в.тиянне природы раствортеля на гемолитические реакции значительно ниже, чем на гетеролитические. [c.25]

    В нефтяных системах, кроме взаимодействия растворенных веществ с растворителем большую роль играет взаимодействие между различными молекулами многокомпонентного растворителя. Это ведет к большим отклонениям их поведения от поведения идеальных смесей. Так, соотношение компонентов бинарного растворителя в сольватной оболочке растворенной частицы иное, чем в массе раствора, так как частица сольватируется преимущественно тем компонентом растворителя, для которого свободная энтальпия сольватации наиболее отрицательна (селективная или избирательная сольватация [167]). Известно, что многие ВМС растворяются лучше в смесях, чем в чистых растворителях, и наоборот [167]. Это связано с селективной сольватацией отдельных звеньев (например, полярной и неполярной) макромолекул компонентами бинарн010 растворителя. В этом аспекте явление селективной сольватации должно иметь широкое распространение в нефтяных системах, отличающихся разнозвенностью молекул компонентов. [c.71]


Смотреть страницы где упоминается термин Свободная сольватации: [c.6]    [c.47]    [c.393]    [c.130]    [c.316]    [c.148]    [c.155]    [c.84]    [c.49]    [c.449]    [c.323]    [c.44]    [c.27]    [c.48]    [c.30]   
Явления переноса в водных растворах (1976) -- [ c.576 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте