Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этиловый спирт определение изопропилового спирт

    Для качественного определения этилового спирта про- водят реакцию образования йодоформа при действии иода в щелочной среде. Помещают в пробирку 5 мл воды, прибавляют 2—3 капли испытуемого спирта, 10 мл 1 н. раствора гидроксида калия и 10 мл 0,1 н. раствора иода. Смесь нагревают на водяной бане до 50 С. Через несколько минут выпадает осадок йодоформа — желтого кристаллического осадка с характерным запахом. Реакция является специфичной (кроме этилового спирта такую реакцию дает изопропиловый спирт). [c.197]


    Определение общего содержания ДДТ. Навеску анализируемого препарата растворяют в этиловом спирте и в течение 15"30 мин. кипятят в колбе с обратным холодильником со спиртовым раствором едкого натра или едкого кали. После охлаждения раствор разбавляют, подкисляют азотной кислотой, не содержащей галоидов, и тем или иным способом определяют образовавшиеся хлор-ионы. Чаще всего определение хлора ведут по Фольгарду, применяя в качестве индикатора железоаммиачные квасцы. Определение можно вести не только в этиловом, но и в изопропиловом спирте. В случае получения окрашенных растворов хлор-ион определяют потенциометрическим титрова- [c.85]

Рис. 19. Прибор для определения изопропилового спирта в этиловом спирте Рис. 19. Прибор для <a href="/info/665126">определения изопропилового спирта</a> в этиловом спирте
    Определение проводят следующим образом. Предварительно охлажденную пробу бензина объемом 1 мл вводят в адсорбционную колонку, заполненную силикагелем и флуоресцентным индикатором. Для продвижения дозы бензина вниз по столбу адсорбента в колонку подают безводный изопропиловый или этиловый спирт. Метано-нафтеновые углеводороды группируются в нижней части столба адсорбента, над ними располагаются непредельные углеводороды и в верхней части-ароматические. [c.60]

    Методика определения заключается в следующем. Предварительно охлажденную пробу бензина объемом 1 мл вводят в адсорбционную колонку, заполненную силикагелем и флуоресцентным индикатором. Адсорбированный образец бензина вытесняют затем изопропиловым или этиловым спиртом и далее в свете ультрафиолетовой лампы с фильтром длиной волны видимой части спектра определяют границы зон различной флуоресценции. Зону насыщенных углеводородов отсчитывают, начиная от нижнего края фронта жидкости до первого максимума интенсивности желтой флуоресценции. [c.194]

    Определение основано на том, что при действии окислителя этиловый спирт превращается в уксусную кислоту, а изопропиловый спирт в ацетон. В отгоне, полученном после окисления, ацетон определяют иодометрическим способом, основанным на реакциях [c.156]


    Метод определения содержания изопропилового спирта в этиловом спирте состоит в их окислении хромовой смесью по реакциям  [c.290]

    На основании анализа полученных данных эти авторы приш ли к заключению, что аппарат пригоден только в малотоннажных производствах. На основании своих опытов, произведенных на четырех бинарных смесях (изопропиловый спирт—вода, ацетон— вода, метиловый спирт—вода, этиловый спирт—вода) при флегмовом числе, равном бесконечности, авторы предложили формулу для определения коэффициента массопередачи для аппаратов рассматриваемого типа [c.306]

    Количественное определение этилового спирта в крови, как правило, проводится методом внутреннего стандарта, в качестве которого используются ацетон, метилэтилкетон, диоксан, но чаще всего н-пропиловый (ИПС) и трет-бутиловый (ТБС) спирты [28, 32, 42, 45]. Преимущественный выбор спиртов обусловлен, с одной стороны, возможностью быстрого проведения хроматографического анализа, при котором пик этилового спирта полностью отделяется от высших гомологов (рис. 3.12), и с другой — тем, что ИПС и ТБС не могут присутствовать в крови человека. Изопропиловый спирт не рекомендуется применять в качестве стандарта при анализе капиллярной крови, так как он иногда используется для [c.126]

    Коэффициент активности соляной кислоты был определен для некоторых водных смесей метилового, этилового и изопропилового спиртов и глицерина с водой, а также для растворов в чистых метиловом и этиловом спиртах (табл. 130). Характер зависимости коэффициента активности от концентрации для указанных сред не отличается какими-либо особенностями и аналогичен тому, который наблюдается в случае водных растворов. В области концентраций от О до 1 71/ коэффициенты активности можно вычислять по уравнению [c.328]

    Особенно широкие возможности открывает кулонометрия при титрованиях электрогенерированными ионами 0Н и Н+ в неводных средах или в смесях органических жидкостей с водой. Для этой цели применяют смеси этиленгликоля и изопропилового спирта [553], ледяную уксусную кислоту [555], уксусный ангидрид [556], ацетонитрил [557, 558], растворы с высоким содержанием ацетона [559] или этилового спирта [560]. Хорошие результаты получаются при использовании неводных сред для определения слабых органических кислот в присутствии минеральных (нанример, уксусной в присутствии азотной [578]), при определении микро- и миллиграммовых количеств фторидов [556] и ряда других соединений. Фториды титруют в смесях уксусной кислоты и уксусного ангидрида, генерируя ионы Н на ртутном электроде по реакции  [c.66]

    Химические методы определения спиртов основаны на реакциях окисления и этерификации. Содержание непредельных спиртов в растворе определяют бромированием, так же как и другие непредельные соединения. Метод окисления может быть применен только при отсутствии посторонних восстановителей или после их удаления. Данным методом анализируют изопропиловый спирт, глицерин-сырец, этиленгликоль, а также определяют содержание этилового и метилового спиртов в водно-спиртовых растворах. В качестве окислителя применяют бихромат калия. Этиловый спирт окисляется до уксусной кислоты, метиловый до муравьиного альдегида или муравьиной кислоты. Вторичные спирты переходят в кетоны, а многоатомные сгорают до двуокиси углерода. Реакцию этерификации применяют для определения содержания низших спиртов жирного ряда (метилового, этилового) и многоатомных спиртов. Реакция этерификации протекает по уравнению [c.237]

    Число кислотных центров в упомянутой работе [212] (см. также [213—216]) определялось титрованием бутиламином из раствора гептана. Для некоторых изученных реакций была найдена линейная связь между каталитической активностью и числом кислотных центров, определенных по предельной адсорбции бутила-мина. На рис. 29 изображена зависимость каталитической активности в реакциях дегидратации этилового и изопропилового спиртов от числа кислотных групп на цирконий-силикатных катализато- [c.67]

    Метод перегонки с использованием радиоактивного изотопа был применен для исследования равновесия жидкость — пар в разбавленных растворах изопропилового спирта, меченного углеродом-14, в этиловом спирте [306]. Результаты определения коэффициента разделения приведены в табл. 19. [c.169]

    Существующие методики по определению кислородных функциональных групп в нефтях и смолисто-асфальтеновых веществах рекомендуют в качестве растворителя применять смеси изопропилового спирта с бензолом и н-бутилового спирта с бензолом. Некоторые исследователи используют в качестве растворителя смесь бензола с этиловым спиртом. Несмотря на меньшую растворяющую способность, этиловый спирт имеет существенные преимущества перед более высокомолекулярными спиртами а) он более доступен и дешев б) гораздо легче поддается очистке от примесей  [c.174]


    Растворитель для анализируемого продукта при определении щелочных и кислотных чисел готовят смешением (по объему) 30% этилового спирта и 70% толуола (или бензола) или 50% изопропилового спирта, 49% толуола (или бензола) и 1% воды. [c.142]

    Простая схема обогащения, принятая для анализа воды и кислот, в большинстве случаев пригодна и для определения следов металлических примесей в чистых органических растворителях. Так, простым выпариванием отмеренного объема жидкости на коллекторе получают аналитический концентрат при анализе ацетона [627], этилового спирта [726], диоксана и изопропилового спирта [446], хлорированных углеводородов [587]. Однако упаривание некоторых неполярных органических жидкостей может сопровождаться потерями многих примесей, предположительно, в виде летучих внутрикомплексных соединений. Поэтому легкие неполярные органические растворители (толуол, и<-ксилол) во избежание потерь примесей предлагают [587] упаривать под слоем разбавленной серной кислоты, а растворители с плотностью более [c.266]

    Из литературных данных известно, что дисульфиды могут восстанавливаться на ртутном капельном электроде при довольно высоких отрицательных потенциалах, выше —1 в (относительно насыщенного каломельного электрода). Впервые о полярографическом методе определения дисульфидов в бензинах сообщила Гербер [3]. В качестве фона ею применялся 0,02М раствор йодистого тетраметиламмония в 85%-ном этиловой спирте. Несколько позже Голл [4] описал полярографическое определение дисульфидов в нефтепродуктах, фоном для которого служил раствор гидроокиси тетрабутиламмония в смеси метилового и изопропилового спирта, содержащей 20% воды. Затем появилось сообщение [5] об определении дисульфидов методом производной полярографии. Общим недостатком примененных в цитируемых работах фонов является плохая растворимость в них нефтепродуктов и обусловленная этим низкая чувствительность определения. [c.256]

    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ И АЛЛИЛОВОГО СПИРТА, ОБРАЗУЮЩИХСЯ НРИ КОНТАКТНОМ ВОССТАНОВЛЕНИИ АКРОЛЕИНА ЭТИЛОВЫМ И ИЗОПРОПИЛОВЫМ СПИРТАМИ [c.209]

    Анализ спиртов, образующихся при окислении метана и этана, сводился к окислению метилового спирта марганцевокислым калием до формальдегида, а этилового спирта — хромовой смесью до уксусной кислоты. В случае окисления пропана водный раствор, содержащий, кроме метилового и этилового, еще и пропиловые спирты, насыщался твердым СаС1а и встряхивался с ксилолом. При этом пропиловые спирты переходили в ксилольный слой, а в водном оставались метиловый и этиловый. Из кси-лольного слоя пропиловые спирты извлекались водой и сумма их определялась окислением хромовой смесью. Параллельно с определением общего количества пропиловых спиртов определялись количества изопропилового спирта и ацетона. Для этого порция конденсата из опыта, в которой альдегиды связывались солянокислым гидроксиламином, окислялась на холоду хромовой смесью. При этом изопропиловый спирт превращался в ацетон. Из полученного раствора ацетон перегонялся с водяным паром и общее его количество в перегонке определялось гидроксиламинным способом. Количество ацетона в исходном конденсате находилось при помощи [c.20]

    N о е t Z е 1 дает следующую методику для определения изопропилового спирта в присутствии этилового (см. также стр. 246). Смесь спиртов окисляется бихроматом калия в присутствии серной кислоты, причем образуются ацетон и уксусная кислота. Чтобы избежать дальнейшего окисления ацетона, необходимо перед отгонкой раскислить избыток хромовой кислоты каким-нибудь восстановителем обычно это делается раствором железного купороса. После этого производят отгонку и в погоне определяют ацетон солянокислым гидроксиламином титрованием щелочью в присутствии метилоранжа  [c.253]

Рис. 68. Прибор для определения изопропилового спирта в этиловом спирте 7 — круглодонная кол )а, 2 — тр хходовой кран, 3 — ч I ыр Хшариковый обратный холодильник, < —прямой холодильник. 5 — приемник дистиллята Рис. 68. Прибор для <a href="/info/665126">определения изопропилового спирта</a> в <a href="/info/7424">этиловом спирте</a> 7 — круглодонная кол )а, 2 — тр хходовой кран, 3 — ч I ыр Хшариковый <a href="/info/49647">обратный холодильник</a>, < —<a href="/info/1116072">прямой холодильник</a>. 5 — приемник дистиллята
    При анализе биологического материала на содержание пропиловых спиртов техника определения полностью соответствует приведенной в указанных работах, за исключением следующего температура инкубации исследуемого образца с раствором бихромата калия должна быть повышена до 70° время инкубации увеличено до 3 ч вместо 0,05 и. раствора бихромата желательно использовать 0,075 н. Константа Видмарка, используемая для окончательного расчета содержания пропилового спирта в исследуемом материале, составляет 0,043 при определении изопропилового спирта эта константа равна 0,046 (Neymark, 1938). (Константа Видмарка для этилового спирта равна 0,113.) [c.179]

    Инертные газы используются не только для флегма-тизации технологических процессов со взрывоопасными средами, их применение на химических заводах весьма широко, особенно азота. Во взрывоопасных производствах азот используется для продувки аппаратов и коммуникаций перед пуском, чтобы освободить систему от воздуха, а после остановки — для освобождения ее от взрывоопасных смесей. Азотом перёдавливают легковоспламеняющиеся жидкости, им заполняют свободные пространства емкостей с летучими или легкоокисляю-щимися жидкостями, например ацетальдегидом, этиловым эфиром, изопропиловым спиртом, защищают от искр статического электричества замкнутые простра нст-ва аппаратов. Содержание кислорода в азоте не должно превышать определенной нормы, иначе его защитное действие снижается или вовсе прекращается, например в производствах, где применяют или получают перекис-ные и металлоорганические соединения, азот не должен [c.144]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов ЗЬОз , ЗЬОг , ЗЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит в фильтрат [53]. Лучще всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового и свинцового производств, в цинковом электролите, металлическом кадмии, В ряде работ, посвященных хроматографии на бумаге, имеются данные и о солях таллия. В качестве растворителя наиболее часто применяются амиловый или бутиловый спирты, насыщенные 1—2Л/ раствором НС1, или смеси изопропилового или этилового спиртов с 5Л/ раствором НС1 (9 1). Для характеристики разделения катионов приводим значения Rf [620—622] (табл. 17). [c.74]

    Растворители участвуют в электрохимической реакции только в тех случаях, когда их молекулы способны к диссоциации или образуют водородные связи (пиридин, метанол). К растворителям промежуточной группы, влияющим на реакцию нейтрализации в некоторой степени, относятся ацетон, ацетонитрил, нитрометан и др. Для определения кислот пригодны растворители инертные (бензол, толуол, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), основные и про-тофильные (этилендиамин, н-бутиламин, пиридин, диметилацетамид, диметилформамид, 1,4-диоксан, трет.-бутанол, изопропиловый, этиловый, метиловый спирты, пропиленгликоль). Для определения оснований применяют растворители инертные (н-гексан, циклогексан, диок-сан, четыреххлористый углерод, бензол, толуол, хлороформ, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), кислотные и протогенные (муравьиную, уксусную и пропионовую кислоты, уксусный ангидрид, нитробензол, этиленгликоль, изопропиловый спирт). Растворители, участвующие в неводном титровании, не должны содержать примесей кислот и оснований и воды. [c.302]

    Аминогруппы в полиамидах определяют титрованием в среде смешанных растворителей, содержащих фенол или крезол, например в среде фенол — этиловый спирт — вода [576] фенол — этиловый спирт [575] и л-крезол — изопропиловый спирт [573]. Для определения кислотных или основных концевых групп обычно применяются органические растворители, поэтому особое значение приоб- [c.174]

    На основе полученных данных по полярографии органических перекисей разработаны методики их определения в метиловом, этиловом, изопропиловом спиртах, питрометане, нитробензоле, бензоле и ледяной уксусной кислоте. [c.282]

    В основу метода определения числа омыления положена методика А5ТМ, несколько видоизмененная Дж. Кнотнерусом применительно к техническим битумам и основанная на омылении продукта спиртовым раствором КОН, последующем подкислении спир- товым раствором соляной кислоты и потенциометрическом титровании ее избытка спиртовой щелочью до pH = 10,0. Применяемый в этой методике в качестве растворителя щелочи, кислоты и исследуемого продукта изопропиловый спирт заменен по приведенным выше соображениям этиловым спиртом. [c.180]

    Подводя итоги всему вышесказанному, можно совершенно определенно сказать, что зам ена изопропиловым спиртом этилового в некоторых областях применения последнего, особенно же в тех препаратах, которые служат для наружного использования, совершенно свободна от сколькочнибудь серьезных возражений. [c.395]

    В связи с широким использованием изопропилового спирта в фармацевтических лабораториях S hamelhout указывает, что изопропиловым спиртом можно заменить этиловый при определении кислотности и чисел омыления жиров масел, и растительных бальзамов, а также в таких пробах, как обнаружение европейского ревеня в китайском. [c.397]

    Noetzel указывает, что присутствие изопропилового спирта в этиловом, обусловливает лишь очень малые изменения в удельном весе и температуре кипения последнего, но заметно увеличивает преломления. Использование определения показателя преломления как критерия, в случае вин, не является практически целесообразным, вследствие мешающего влияния присутствующих в винах кислот и сложных эфиров. Окисление до ацетона представляет со бой наилучший метод определения изопропиловото спирта. Эту операцию можно проводить количественно, определяя полученный ацетон путем взаимодействия его с соляно- [c.399]

    Ar hibald и Beamer предложили метод, который применим к смесям изопропилового и этилового спиртов. Он основан на разнице в растворимости едкого натра в этих спиртах. Операция заключается во взбалтывании 10 сл испытуемой спиртовой смеси с 20 с/и 30%-ного водного раствора едкого натра. Во время перемешивания смесь должна иметь температуру не выше 25°. Затем 1 сл спиртового слоя титруют 0,1 N раствором серной кислоты. Объем затраченной кислоты соответствует определенному проценту 91%-ного изопропилового спирта (по объему), что и находится прямо по специальной таблице. Этим методом можно пользоваться в том случае, если содержание изопропилового спирта не превышает 50%, наиболее же точные результаты получаются в смесях, содержащих менее чем 20% изопропилового спирта. Если присутствует бол ьше 50% изопропилового спирта, то первоначальная смесь должна быть разбавлена определенным объемом этилового спирта и затем уже содержание изопропилового спирта определяется в разбавленной смеси. [c.401]

    Для повышения чувствительности [27] в водную фазу вводят большие количества сульфатов аммония, натрия или лучше лития. Встряхивают 10 мл исследуемого раствора, содержащего 15—300 мкг изопропилового спирта, с 3—4 г L12SO4 до получения насыщенного раствора, вводят 0,01 н. H2SO4 до pH=4—4,5 и затем 10 мл бензольного раствора реактива 3 и взбалтывают 20 мин. Водный слой отделяют, а слой бензола промывают 10 мл 1 н. раствора NaOH. Красный бензольный раствор центрифугируют и измеряют оптическую плотность при 380 нм. Аналогичный способ предложен для определения примеси этилового спирта в хлористом этиле [33]. [c.260]

    В большинстве случаев зависимость степени превращения от обратной объемной скорости была линейной, что соответствовало [176] пулевому порядку. Величины определенных констант скорости относили к 1 поверхности катализатора. Сопоставление полученных импульсным хроматографическим методом каталитических данных с различными физическими и физико-химическими свойствами катализаторов показало эффективность применения статистической обработки результатов для прогнозирования каталитической активности твердых тел. Полученные ранее [177, 178] по литературным данным корреляционные зависимости для дегидрирования изопропилового спирта совпали с корреляционными зависимостями для этилового спирта, определенными хроматографически. И в том и другом случае каталитическая активность растет с ростом параметра решетки и уменьшается с ростом ширины запрещенной зоны AU и разности электроотрицательностей Аж. На рис. VI.59 приведена корреляционная зависимость между активностью окислов в дегидрировании этанола и шириной запрещенной зоны. Авторы [175] объясняют такую зависимость протеканием дегидрирования спиртов с участием электронов и дырок проводимости, например по следующей схеме, предложенной ранее для дегидрирования изопропилового спирта [179]  [c.353]

    В экспресс-методе [23] эта трудность устранена тем, что подвижная фаза представляет собой смесь растворителей с определенной элюирующей силой. Для того чтобы понять поведение смешанной подвижной фазы достаточно сложного состава в хроматографической колонке, мы должны вернуться к фронтальному методу анализа, рассматривая сложную подвижную фазу как анализируемый образец, i aлизиpyeмaя смесь растворителей имела следующий состав [в % (объемн.)] изооктан — 92,0 1,2-дихлорэтан - 1,15 изопропиловый эфир - 1,15 этилацетат - 1,15 этиловый спирт - 4,55. На выходе из колонки отбирали фракции равного объема, в которых определяли состав растворителя методом газовой хроматографии. Результаты анализа представлены соответствующими кривыми на рис. 14. Видно, что в отличие от классической схемы фронтального анализа каждый растворитель дает четкий фронт с достаточно большим максимумом, концентрация растворителя в котором превьппает его концентрацию в исходной смеси. При этом зона предьщущего растворителя находится шфронте последующего. Как и следовало ожидать, эффект расслоения растворителей проявился здесь достаточно чежо. [c.43]

    В данной работе исследовалась растворимость 4,4 -ДХДФС в н-геп-тане, толуоле, четыреххлористом углероде, хлороформе, хлорбензоле, изопропиловом спирте, этиловом спирте, уксусной кислоте, диметилсульфоксиде, ацетоне, диоксане и диметилформамиде. Исследование проводилось путем определения температур кристаллизации растворов 4,4 -ДХДФС в данном растворителе, считая, что начало кристаллизации соответствует насыщению раствора при данной температуре. [c.31]

    Электрохимическое определение меркаптанов, как и других сернистых соединений, связано с поисками растворителя, обеспечивающего растворение анализируемого образца и реактива, а также электродной системы. Наиболее подходящими для этой цели растворителями оказались метиловый, этиловый, изопропиловый спирты, их смеси с бензолом, н. бутиламин и пиридин. Применяемые неводные растворители оказывают существенное влияние на характер поведения меркаптанов, повышая их кислотные свойства настолько, что меркаптаны удается количественно титровать сильными основаниями (алкоголяты щелочных металлов или тетрабутиламмониевое основание) [442]. Кривые потенциометрического титрования имеют большой, достаточно хорошо видимый скачок потенциала в точке эквивалентности. [c.51]


Смотреть страницы где упоминается термин Этиловый спирт определение изопропилового спирт: [c.247]    [c.65]    [c.408]    [c.136]    [c.328]    [c.208]    [c.26]    [c.214]   
Химико-технические методы исследования Том 3 (0) -- [ c.246 , c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Изопропиловый спирт

Изопропиловый спирт в этиловом спирте

Изопропиловый спирт определение

Определение в синтетическом этиловом спирте веществ, окисляющихся в условиях определения изопропилового спирта (ГОСТ

Спирты Изопропиловый спирт

Этиловый спирт

Этиловый спирт определение спирта

Этиловый спирт определение этиловом спирте



© 2025 chem21.info Реклама на сайте