Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные ориентация

    В случае же мономолекулярного отщепления хлористого водорода от хлористого ментила пространственные факторы не оказывают существенного влияния на направление реакции последнее определяется полярной ориентацией. В результате этого мономолекулярное отщепление хлористого водорода от хлористого менТила идет в соответствии с правилом Зайцева. [c.135]


    На прочность сварных соединений большое влияние оказывают состав полимеров, степень его полярности, ориентация молекул и другие факторы. [c.180]

    Поскольку сегнетоэлектрические свойства триглицинсульфата проявляются в направлении полярной оси кристаллов, перпендикулярно которой проводилось декорирование, то можно прийти к заключению, что активные центры на поверхности триглицинсульфата являются полярными. Ориентация активных центров вдоль полярной оси кристаллов выше точки Кюри представляет собой весьма неравновесное состояние. Дальнейший прогрев кристаллов при 100—120° С приводит уже к равномерному зародышеобразованию серебра, которое обусловлено, вероятно, дезориентацией активных центров. При охлаждении кристаллов ниже точки Кюри дефектная структура поверхности триглицинсульфата восстанавливается постепенно, тогда как доменная структура образуется сразу. Старение кристаллов при комнатной температуре сопровождается как изменением доменной структуры, так и новым распределением активных центров. Взаимодействие доменной и дефектной структур включает ориентацию активных центров под влиянием электрической поляризации доменов, а сами активные центры в свою очередь предопределяют возникновение той или иной доменной структуры. [c.246]

    Заметим, что эта величина может быть либо положительной, либо отрицательной в зависимости от значения 0. Хотя в общем случае можно ожидать, что 0 будет равно 180°, т. е. энергия взаимодействия будет минимальной, однако зачастую пространственное строение реагирующих веществ не допускает протекания реакции при 0 = 180° и требует другой ориентации частиц. Для реакций замещения, таких, как вальденовское обращение, в которых заряженная группа атомов, несущая заряд, замещает электронейтральную группу в полярной молекуле, т. е. [c.458]

    Полярные молекулы растворяющегося вещества ориентируются в мономолекулярной пленке таким образом, что полярные концы молекул направлены внутрь, а углеводородные хвосты — в воздух. На рис. 4.4 в качестве примера показана ориентация молекул нитробензола на поверхности воды. Небольшие по размеру нейтральные молекулы стремятся расположиться в плоскости поверхности. [c.190]

    В случае водных растворов жирных кислот СНз (СН2) —СООН между полярными карбоксильными группами и молекулами воды (тоже полярными) существует сильное взаимодействие, которое определяет ориентацию этих групп внутрь водной фазы. [c.333]


    Кл-м) выше, чем дипольный момент изопрена (1,28-10 Кл-м). Высокая полярность молекулы хлоропрена способствует преобладающей ориентации звеньев в полимерной цепи в положении 1,4-1,4 [2]. [c.369]

    Изучение рассеяния рентгеновских лучей в жидкостях с многоатомными молекулами показывает, что не только относительное расположение молекул в некоторой степени упорядочено, но и их взаимная ориентация не вполне хаотична. Это, по-видимому, справедливо даже по отношению к таким симметричным молекулам, как U в- случае же несимметричных полярных молекул, например воды, имеет место вполне закономерная взаимная ориентация соседних молекул воды с образованием временных водородных связей между ними. Интересно, что преобладающая кристаллическая структура жидкой воды при повышенных температурах соответствует не структуре обычного льда, которая тоже имеется в жидкой воде, а более плотной структуре, относящейся к структуре льда так же, как относятся друг к другу две кристаллические модификации кремнезема—кварц и тридимит. [c.162]

    Необходимо отметить, что увеличение протонной поляризации за счет роста в процессе сорбции длины цепочек из сорбированных молекул и функциональных групп сорбента может иметь место в том случае, если образование таких цепочек повышает вероятность или расстояние перескока протона Н-мос-тика при включении электрического поля. При этом у сорбентов с частотной зависимостью ао особую роль в переносе протонов играют окружающие КВС молекулы и полярные функциональные группы. Ориентация их дипольных моментов, изменение положения отдельных ионов может существенно влиять на характеристики водородной связи и динамику движения протона Н-мостика [665]. [c.248]

    Ориентированная адсорбция незаряженных полярных или поляризуемых частиц на границе раздела фаз с образованием двойного электрического слоя в пределах одной фазы адсорбция молекул воды (рис. 106, э) на металле ориентация дипольных молекул у поверхности раздела жидкость —газ (рис. 106, и) — адсорбционный потенциал. [c.150]

    Смолы, содержащиеся в масляных фракциях нефти, неоднородны по структуре молекул. В их молекулах содержатся как нафтеновые, так и ароматические структуры, парафиновые цепи разных длины и степени разветвленности и атомы 5, О и N. При помощи фенола смолы можно разделить на растворимые и нерастворимые в нем [6]. В молекулах смол, не растворимых в феноле, содержатся длинные алкильные цепи, экранирующие циклические структуры и гетероатомы. Смолы, не растворимые в феноле, при совместной кристаллизации с парафиновыми углеводородами изменяют структуру кристаллов последних (рис. 40, а). Это объясняется ориентацией боковых цепей молекул смол и самой цепочки -парафина так, что полярные группы смол направлены наружу. В результате получаются крупные кристаллы неправильной формы. Поскольку полярность этих смол недостаточно велика, они не могут вызывать агломерацию кристаллов. В то же время, увеличение концентрации смол в растворе приводит к блокировке растущих центров кристаллов, затрудняя диффузию к ним молекул твердых углеводородов, что ведет к уменьшению размеров кристаллов. [c.134]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Теория взаимодействия полярных молекул была разработана Дебаем и получила развитие в работах Б. В. Ильина и В. В. Тарасова. Противоположная взаимная ориентация молекул, приводящая к притяжению между молекулами, отвечает более устойчивому состоянию, поэтому такие сочетания их преобладают, и притяжение преобладает над отталкиванием. Можно показать, что энергия взаимодействия двух диполей прямо пропорциональна произведению их дипольных моментов и обратно пропорциональна третьей степеии расстояния между ними. При низких температурах эта энергия [c.87]

    Молекулы, находящиеся в поверхностном слое жидкости, испытывают неодинаковое воздействие со стороны внутренних слоев жидкости и со стороны смежной фазы. Некоторая закономерная ориентация несимметричных молекул может приводить к меньшему поверхностному натяжению. Например, если молекулы содержат сильно полярные гидроксильные или карбоксильные группы, связанные с большим неполярным углеводородным радикалом (высокомолекулярные жирные спирты или кислоты), то [c.364]

    Рассмотренные ранее процессы взаимодействия молекул воды с ионами и атомами в кристаллогидратах ( 53) показывают, что эти молекулы могут подобным же образом взаимодействовать и с ионами или атомами, содержащимися в поверхностном слое кристалла или стекла. Взаимодействие может приводить к образованию более или менее прочной донорно-акцепторной связи и водородной связи или ионо-дипольной связи, причем наряду с типичными случаями здесь возможны и переходные формы взаимодействия, когда деление соединений по характеру связи становится условным. Такое взаимодействие, связывая молекулу воды с поверхностью кристалла, вызывает преимущественную ориентацию ее относительно поверхности, способствуя образованию упорядоченного расположения молекул относительно поверхности. Рассмотренное взаимодействие может вместе с тем вызывать дополнительную поляризацию молекул воды, что повышает их способность связывать другие молекулы воды, расположенные дальше от поверхности, увеличивая полярность этих молекул, но уже в меньшей степени. Это в свою очередь усиливает связь с ними следующих молекул воды, ио еще в меньшей степени. [c.379]

    В полимерах под действием внешнего электрического поля в общем случае может происходить электронная и атомная поляризации, Что же касается ориентационной поляризации, то она может иметь место лишь при наличии в молекулах полярных группировок атомов, в частности — гидроксильных групп, атомов галогенов и др. Поскольку такие группы в высокополимерах входят в состав больших молекул, то изменение ориентации их под действием электрического поля сильно стеснено. Соответственно с этим возрастает их время релаксации и усиливается зависимость поляризации от частоты поля. [c.595]

    Как следует из (27.6), тепловое движение препятствует ориентации молекул в поле. Полная поляризуемость полярных молекул [c.87]

Рис. 61. Ориентационное взаимодействие (две возможные устойчивые ориентации полярных молекул) Рис. 61. <a href="/info/5990">Ориентационное взаимодействие</a> (две <a href="/info/1805754">возможные устойчивые</a> <a href="/info/18316">ориентации полярных</a> молекул)
    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Поверхностная активность и ориентация й поверхностном слое определяются структурой молекул контактирующих веществ. При этом полярные группы (—ОН, —СООН, —ЫНо, —5Н и др.) направлены в сторону более полярной фазы. [c.224]

    К горизонтальной ориентации способны и полярно-цепные молекулы, имеющие на обоих концах полярные группы. Таковы, например, двухосновные жирные кислоты. [c.66]

    Изучение ориентации полярных молекул на поверхности твердой фазы позволило уточнить некоторые электрические свойства. [c.68]

    Ниже приводятся данные по влиянию полярной ориентации и пространственных факторов на реакцию отщепления хлористого водорода спиртовой щелочью от хлористого ментила и хлористого неоментила в спиртовом растворе  [c.134]

    Обращение ряда Траубе, наблюдаемое нри адсорбции кислот (табл. 2), можно объяснить, исходя из теории полярной ориентации. В случае амипосмол и фенолальдегидных слюл аммиачной конденсации молекулы жирных кислот ориентируются на поверхности раздела смола—вода так, что полярные карбоксильные группы направлены к более полярной смоле, а неполярные группы направлены к воде и,ли располагаются под какргм-либо углом между водой и смолой. Дипольный момент жирных кислот уменьшается с увеличением длины углеводородной цепи (табл. 4). Поэтому при увеличении длины углеводородной цепи образуется новая фаза и молекулы кислот поворачиваются так, что на поверхности [c.195]

    Пространственная и полярная ориентация элиминирования в ментилхлоридах и триметиламмониевых ионах [c.574]

Рис. 32. Влияние адсорбированного мо-нослоя полярных молекул на ориентацию неполярных молекул растворителя Рис. 32. Влияние адсорбированного мо-нослоя <a href="/info/4876">полярных молекул</a> на <a href="/info/98102">ориентацию неполярных</a> молекул растворителя
    Второй эффект, обусловливагощий возрастание емкости конденсатора, проявляется для полярных молекул, т. е. молекул, обладающих постоянным моментом диполя ц. Электрическое поле стремится ориентировать молекулы соответствующими концами диполя в направлении положительной и отрицательной обкладок конденсатора. Этот эффект называют ориентационной поляризацией Р . Она тем значительнее, чем больше г. Ориентационная поляризация зависит эт температуры, так как нагревание, усиливая тепловое движение молекул, препятствует их ориентации. [c.156]

    Ориентапионное взаимодействие. Когда молекулы жидкости или растворителя и сырья обладают полярностью, то есть дипольным моментом (дипольный момент молекулы равен произведению заряда на расстояние между центрами тяжести зарядов), то между различными частями молекул, несущими электрический заряд, в зависимости от взаимного их расположения (ориентации) возникают либо силы отталкивания (по — [c.214]

    Из предложенного механизма реакции (XLVI) очевидно, что выражение скорости реакции замещения должно содержать коэффициент, соответствующий стойкости индивидуального я-комплекса. При обсуждении сравнительных скоростей замещения в различные положения молекулы этот коэффициент будет исключен и наблюдаемые ориентации можно непосредственно связать с относительными скоростями замещения в различные положения. Кроме того, из имеющихся данных видно, что этот коэффициент относительно невелик и мало зависит от структуры ароматического соединения. Следовательно, в случае сильно полярных заместителей, которые сильно влияют на стойкость тг-комплекса, этот коэффициент для <т-комплекса становится столь незначительным, что им можно пренебречь  [c.418]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    Таким образом, анализ диэлектрических изотерм сорбции воды на гидрофильных материалах в области малых величин сорбции показывает, что наблюдаемые для различных материалов зависимости е = /(а) могут быть объяснены с помощью двух основных видов поляризации ориентационнон, обусловленной ориентацией сорбированных молекул и полярных групп сорбата, и протонной, связанной с изменением положения протона Н-мостика. При этом характер зависимости e = f(a) определяется изменением подвижности сорбированных молекул и протонов в процессе сорбции. [c.248]

    В белках всех живых организмов обычно встречается только 20 различных типов аминокислот, которые указаны в табл. 21-5. Некоторые из них имеют углеводородный состав, например валин (Вал), лейцин (Лей), изолейцин (Иле) и фенилаланин (Фен). Гидрофобные группы молекул всегда более устойчивы, если их можно удалить из водного окружения. Поэтому белковые цепи в водном растворе складываются в молекулы, у которьгх такие группы обращены вовнутрь. Некоторые остатки аминокислот оказываются заряженными например, аспарагиновая (Асп) и глутаминовая (Глу) кислоты входят в белки в ионизованной форме и несут на себе отрицательный заряд, а основания лизин (Лиз) и аргинин (Apr) при pH 7 положительно заряжены. Несмотря на то что некоторые другие группы, например аспарагин (Асн), глутамин (Глу) и серии (Сер), незаряжены, они имеют полярность и поэтому совместимы с водным окружением. Одним из наиболее важных факторов, определяющих свертывание белковой цепи в глобулярную молекулу, является устойчивость, достигаемая при ориентации гидрофобных групп вовнутрь молекулы, а заряженных групп-наружу. Хотя каждый из двух оптических изомеров, показанных на рис. 21-12, пред- [c.314]

    Индукционное взаимодействие. В случае растворения двух,веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние I, что проводит к возникновению индуцированного двпольного момента tи в молекулах неполярного вещества (рис. 1). Затем происходит ориентация полярных молекул и молекул, в которых индуцирован диполыный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения [c.43]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

    С1ЧЛЫ межмолекулярного взаимодействия имеют электрическую природу. На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Еслп молекулы полярны, то сказывается электростатическое взаимодействие их друг с другом, называемое ориентиционным. Оно тем значительнее, чем больше дииольный момент молекул [х. Повыи1ение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием г между ними. Теории (В. Кеезом, 1912 г.) в простейшем случае для энергии ориентационного взаимодействия дает следующее соотношение  [c.136]

    Наличие в жидкости пространственного упорядочения молекул подтверждается и многими другими фактами, в частности экспериментальными данными по рассеянию света, дифракции рентге-(ювского излучения, нейтронов и электронов. Дебаеграммы жидкостей, изученных при температурах, близких к температурам кристаллизации, сходны с рентгенограммами кристаллов, они отличаются лишь размытостью колец, которая возрастает с повышением температуры. Рентгеноструктурные исследования показали, что в жидкостях, состоящих из многоатомных молекул, наблюдается не только упорядоченное расположение молекул, но и известная закономерность во взаимной ориентации частиц. Эта ориентация усиливается для полярных молекул и при формировании водородной связи. .  [c.155]

    На границе соприкосновения различных фаз (например, металл -электролит) возникает пространственное распределение электрических зарядов в виде так называемого двойного электрического рлоя. Разделение зарядов может вызываться различными причинами переходом ионов из электрода в раствор (или наоборот) - ионный двойной электрический слой специфической адсорбцией ионов на поверхности электрода - адсорбционный слой ориентацией полярных молекул растворителя и поверхности электрода - ориентационный слой. Во всех случаях двойной слой электронейтрален. [c.36]

    Молекулы веществ, повышающих маслянистость, могут содержать не только полярные, но и неполярные группы. Так, углеводороды ряда СяНая или СпНгп+г могут образовывать на металлической поверхности слои ориентированных молекул, которые адсорбируются вследствие поляризации. Эффект ориентации неполярных длинноцепных молекул может быть достигнут введением в смазочную композицию ПАВ в весьма небольшой концентрации. Молекулы, оринтированные наиболее сильно, образуют слой толщиной около 20 нм, при нагревании толщина этого адсорбционного слоя уменьшается вследствие дезориентации молекул. Температура критического перехода, соответствующая предельной смазочной способности, связана с температурой десорбции ПАВ. При температурах ниже точки плавления металла молекулы группируются на его поверхности так, что полярная группа находится в контакте с металлом, а другие группы направлены наружу. Методом электронной дифракции можно установить, как изменяется поверхность металла при трении, — кристаллическая структура поверхностного слоя превращается в аморфную. [c.130]

    Поляризация капельки объясняется следующим молекулы воды, представляя собой жесткие диполи со значительно смещенными центрами тяжести положительных и отрицательных зарядов, отличаются большой полярностью. Под влиянием внешнего поля молекулы воды стремятся повернуться таким образом, чтобы векторы их дипо1Аных моментов, совпали по направлению с силовыми линиями поля. Хотя тешювое движение молекул хаотически разбрасывает диполи и препятствует их упорядочению вдоль поля, тем не менее в капельке возникает преимущественная ориентация векторов дипольных моментов вдоль линий поля. Эта ориентация тем более полная, чем сильнее электрическое поле и чем слабее тепловое движение молекул, т. е. чем ниже температура. [c.48]

    Характер адсорбции и ориентации зависит от взаимодействия адсорбционных центров поверхности с активными центрами молекул. Наиболее полно изучена экспериментально адсорбционная ориентация полярно-цепных молекул с одним активным центром расположенным в конце цепи молекулы. К их числу относятся насыщенные нормальные основные карбоновые кислоты, одноатомные спирты и другие аналогичные или однозамещенные углеводо роды. Молекулы этих веществ имеют вертикальную ориентацию при адсорбции. Бездипольные молекулы углеводородов ориентируются горизонтально относительно твердой поверхности. Такая ориентация характеризуется наиболее слабым взаимодействием молекул или его отсутствием. [c.66]


Смотреть страницы где упоминается термин Полярные ориентация: [c.366]    [c.55]    [c.16]    [c.481]    [c.154]    [c.51]    [c.75]    [c.364]   
Учебник общей химии 1963 (0) -- [ c.123 , c.124 ]




ПОИСК







© 2025 chem21.info Реклама на сайте