Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель в хроматографии кислотность

    Сочетание кислотной экстракции с адсорбционной хроматографией позволяет селективно выделить из нефтяной фракции азотсодержащие соединения, а затем сконцентрировать нейтральные азотсодержащие соединения. В фенольных экстрактах, полученных при очистке масел западносибирских нефтей, содержалось до 12 % азотсодержащих соединений, среди которых 54—73 % имели нейтральный характер. Хроматографией на силикагеле [c.90]


    Оксид алюминия. Поверхность этого сорбента, образованная ионами алюминия и кислорода, способна создавать сильное электростатическое поле, обладающее поляризующим свойством. Вследствие этого на оксиде алюминия соединения, имеющие систему легко смещаемых электронов (непредельные, ароматические и др.), сорбируются в большей степени, чем на силикагеле. Вода легко адсорбируется на поверхности оксида алюминия. При нагревании до 300—400°С большая часть адсорбированной воды удаляется. Остается вода, взаимодействующая с поверхностью, в результате чего образуются гидроксильные группы. В такой форме оксид алюминия используют в хроматографии. Различают три вида адсорбционных центров на оксиде алюминия кислотные, взаимодействующие с веществами, имеющими области с высокой электронной плотностью основные — адсорбирующие кислоты электронно-акцепторные, взаимодействующие с легко поляризуемыми ароматическими молекулами. [c.597]

    Концентраты, полученные кислотной экстракцией, представляют собой смесь азотистых, сернистых, кислородных и ароматических соединений. Но несмотря на это, популярность метода настолько велика, что количество работ в данном направлении постоянно растет. Недостатки метода, связанные с гидрофобностью АО и образующихся солей, можно устранить использованием хроматографии. Для этой цели широко используют адсорбционную и ионообменную хроматографию. В качестве сорбентов применяют флорисил [73], окись алюминия [74], силикагели [9, 27, 28], ароматические сульфокислоты [75]. Адсорбционные хроматографические методы не являются селективными но отношению к АО и сопровождаются адсорбцией значительного количества СС, КС и ароматических соединений. [c.76]

    Моно- и диэфиры фосфорной кислоты являются кислыми водорастворимыми соединениями и их кислотная природа определяет выбор хроматографических методов, используемых для их анализа. Бумажная хроматография была одним из наиболее ранних хроматографических методов, примененных для разделения нуклеотидов, и эта техника использовалась на протяжении многих лет [1]. Тонкослойная хроматография с использованием целлюлозы или силикагеля представляет собой другой метод быстрого анализа смеси нуклеотидов [2]. [c.132]

    Менее полярные соединения - ароматические углеводороды и многие производные с одной функциональной группой - настолько слабо удерживаются на силикагеле с привитыми цианогруппами, что добиться удовлетворительного разделения весьма сложно или даже невозможно. Однако для разделения высокополярных соединений (при их анализе на силикагеле или оксиде алюминия возникают трудности) должны быть пригодны менее сильные адсорбенты. Эти модифицированные гидрофильными группами слои смачиваются любыми растворителями в любых соотношениях, включая воду. ЫН2-5 Ог может действовать как слабоосновный ионообменник. Силикагель с привитыми цианогруппами используется для анализа кислотных соединений в ион-парной хроматографии. [c.403]


    В связи с тем что вещества основного характера нельзя анализировать на сорбентах кислотного характера и, наоборот, вещества кислотной природы нельзя хроматографировать на щелочных сорбентах, в ряде случаев возникает необходимость в изменении pH хроматографического материала (подробнее на эту тему см. в описании условий хроматографии отдельных групп веществ). Так, например, основную окись алюминия можно перевести в нейтральную или слабокислотную подкислением водным раствором уксусной или щавелевой кислоты. Силикагель, имеющий слабокислотную природу, подщелачивают добавлением гидрата окиси щелочного металла. Слои с определенным значением pH готовят непосредственно при приготовлении суспензии сорбента при этом вместо дистиллированной воды применяют водные растворы уксусной кислоты, 0,5 или 0,1 н. растворы едкого кали и т. д. [198, 199]. Аналогично готовят слои с буферной емкостью при определенном значении pH [143, 144, 198]. Ряд фирм производит сорбенты и готовые слои с определенным значением pH. [c.106]

    Визуально наблюдаемые изменения окраски, сопровождающие адсорбцию, играют важную роль во многих процессах, представляющих техническую или научную ценность, таких, как хроматография, окраска тканей и фотография. Кроме того, на основе этих изменений окраски были сделаны некоторые теоретические выводы относительно природы поверхности адсорбента. В литературе описаны [49] наблюдения качественных изменений окраски при адсорбции самых разнообразных нейтральных, неполярных органических соединений и полярных молекул красителей на поверхности силикагеля и активированной окиси алюминия. Среди исследованных соединений были некоторые производные трифенилхлорметана. При адсорбции на поверхности окиси алюминия эти молекулы принимают окраску, сходную с окраской продуктов их ионизации в растворах сильных кислот. Эти результаты были приписаны ионизации неполярных соединений под влиянием полярной поверхности. Если предположить, что эта интерпретация правильна, то наблюдения, приводимые выше, являются первой качественной демонстрацией образования ионов карбония на поверхности активированной окиси алюминия, которую можно принять за доказательство кислотной природы поверхности препарата активированной окиси алюминия. Хотя ионизация и может иметь место в некоторых случаях изменения окраски, из результатов де Бура с очевидностью следует, что выводы, основанные исключительно на визуальных наблюдениях, должны делаться с оговоркой. [c.34]

    Метод заключается в том, что в результате обработки фракции СЖК раствором щелочи (ступенчатая нейтрализация) в водный слой в виде натриевых солей количественно переходят дикарбоновые кислоты, а в качестве сопутствующих компонентов содержатся наиболее близкие последним по кислотности низкомолекулярные монокарбоновые кислоты. В соответствии со схемой полученный концентрат дикарбоновых кислот этерифицируют метанолом и полученные метиловые эфиры разделяют методом жидкостной элюентной хроматографии па силикагеле. [c.84]

    Для методов выделения при помощи анионита и модифицированного силикагеля характерно высокое содержание кислот в кислотных (67—96%) и довольно низкое — фенолов в фенольных концентратах (5—35%). Это свидетельствует о том, что концентраты, содержащие фенолы, включают значительные количества сопутствующих соединений. Так, для фенольных концентратов, выделенных на анионите, характерно высокое содержание азота (1,8 мас.%), для выделенных хроматографией на модифицированном силикагеле — серы (3,6 мас.%) [17, 18]. [c.104]

    Вследствие этого кроме адсорбционных свойств силикагель обладает также ионообменными свойствами. Являясь гидрофильным сорбентом, силикагель обычно мало пригоден для сорбции веществ из водных растворов. Нейтральный силикагель употребляется для разделения нейтральных и основных соединений. Силикагель, обработанный уксусной или щавелевой кислотой, используется для хроматографии соединений кислотного характера. [c.24]

    Диатомиты являются традиционными материалами для получения твердых носителей уже в первой работе по газо-жидкостной хроматографии Джеймс и Мартин [4] использовали в качестве носителя диатомитовый материал — целит-545, а в 1956 г. Кейлеманс сообщил об использовании в качестве твердого носителя огнеупорного кирпича — стерхамола, также приготовляемого на основе диатомита [5]. Диатомитовые носители [5 6, с. 74 7 8] можно рассматривать как силикагели с низкой удельной поверхностью, на которой расположены силанольные ( 51—ОН) и силоксановые ( = 51—О—51 = ) группы. Примеси окисей алюминия, железа и других загрязнений в диатомитах приводят к образованию на поверхности твердых носителей не только протонных, но и апротонных кислотных центров, которые являются акцепторами электронов. Поэтому в литературе [9] давно высказывалось мнение, что адсорбционными центрами на поверхности кремнезема не обязательно должны быть гидроксильные группы. Так, при спектральном изучении адсорбции было высказано предположение, что возможной причиной проявления в спектре вторичных центров [10, II] являются примесные атомы. Примесные атомы способны мигрировать из объема на поверхность при высокой температуре и оказывать сильное влияние на спектр адсорбированных молекул даже при низких концентрациях примеси в объеме. [c.150]


    Вследствие чувствительности оксидационных красителей к ки-слороду воздуха рекомендуется добавлять к анализируемому образцу [12—14] или к элюенту сульфит или бисульфит натрия. Возможность окисления также уменьшается при использовании кислотных растворителей, поэтому для бумажной хроматографии и тонкослойной хроматографии на пластинках с силикагелем (табл. 18.4) рекомендованы в основном нейтральные или кислотные элюенты. [c.500]

    Аминокислотный анализ проводился либо методом бумажной и тонкослойной (на силикагеле) хроматографии гидролиза с последующим проявлением пятен аминокислот раствором нингид-рина и изменением плотности смытых с сорбента нингид-риновых производных [17], либо на автоматическом кислотном анализаторе. [c.362]

    Установление природы моносахаридов. Для установления природы моносахаридов, входящих в дисахарид, последний подвергается кислотному или ферментатив1НОму гидролизу. В полученной таким образом смеси моносахаридов последние идентифицируются одним из описанных выше методов. Чаще всего первоначальная оценка проводится с помощью бумажной хроматографии, которая очень подробно разработана для моносйхаридов. После этого смесь моносахаридов подвергают разделению методом препаративной распределительной хроматографии на носителе, в качестве которого чаще всего применяются целлюлоза, силикагель, уголь или их комбинации. Разделенные моносахариды идентифицируют в виде одного из кристаллических производных. [c.138]

    Загрязнения образца, обусловленные неподвижными фазами, являются результатами химической нестабильности или разрушения насадки или одновременного элюирования загрязнений, содержащихся в матрице насадки. Первая ситуация, вероятно, наблюдается при использовании привитых силикагелей или ионообменников (на основе смол или силикагеля). Например, почти все доступные сейчас привитые фазы на основе силикагеля получают с силоксановой связью —Si—О—Si— между матрицей силикагеля и привитой группой на поверхности. Хотя эта связь является термически стабильной (допускает использование определенных связанных фаз в газовой хроматографии), реакции, используемые для ее получения, обратимы [116, 117]. Эта часто не принимаемая во внимание характеристика обусловливает гидролитическую нестабильность, которая становится значительной в кислотных или щелочных условиях. Часто случается, что условия, ускоряющие гидролиз привитой фазы (например, очистка пептидов на ig с использованием водной подвижной фазы, содержащей трифтороуксусную кислоту при pH 2- 3), способствуют также удерживанию продуктов гидролиза на насадке (например, октадецилдиметилсиланол удерживается на is в водном растворе). При этом образуется in situ поверхностная фаза с разделительными свойствами, [c.75]

    По практическим соображения.м большинство разделений в ТСХ проводят на силикагеле. Использование силикагеля позволяет анализировать большие пробы. Пластины силикагеля выпускаются в широком ассортименте. В публикациях чаще всего ссьшаются на использование силикагеля. Силикагель является слабо кислым (рН=5), а оксид алюминия - основным (рН=12), поэтому силикагель обычно более надежен в ЖАХ. Обычно при разделении на оксиде алюминия чувствительных к щелочной среде соединении (такая ситуация встречается сравнительно часто) возникают определенные трудности. Напротив, на силикагеле реакции, катализируемые кислотой, протекают весьма редко. На силикагеле из-за его кислотности нельзя разделять катионные соединения или вещества, содержашие основные группы в этих случаях прибегают к ион-парной хроматографии. [c.396]

    Еще труднее преодолеть проблемы при анализе оснований. Остаточные силанольные группы сорбента, обладающие кислотными свойствами, могут при определенных условиях взаимодействовать с сорбатами по ионообменному механизму, что отрицательно сказывается на форме пиков и устойчивости величин удерживания. При нормально-фазовой хроматографии оснований в органическую подвижную фазу можно добавить 0,5—1% основания, например диметилформамида. Однако в данном случае этот подход не столь эффективен, как добавление уксусной кислоты при хроматографии кислот. При обращенно-фазовой хроматографии оснований на алкилсиликагелях метод подавления ионизации неприменим, так как модифицированные силикагели неустойчивы при pH >7,5. При использовании кислых буферных растворов [c.305]

    Не.тьсои [99] применял ХТС в комбинации с адсорбционной хроматографией на колонках с силикагелем для анализа липидов пшеницы. Он применял газовую хроматографию для определения кислотного состава триглицеридноп фракции липидов пшеницы. Янистин [41] исследовал неомыляемую фракцию из метанольных экстрактов проросшей пшеницы. [c.157]

    Сочетание кислотной экстракции с адсорбционной хроматографией позволяет селективно выделить из нефтяной фракции азотсодержащие соединения, а затем сконцентрировать нейтральные азотсодержащие соединения. В фенольных экстрактах, полученных при очистке масел западносибирских нефтей, содержалось до 12 % азотсодержащих соединений, среди которых 54-73 % имели нейтральный характер. Хроматографией на силикагеле получают 72-87 %-е концентраты азотсодержащих соединений. Из фенольных экстрактов фракции 350-450 °С были выделены ал-килкарбазолы с 2-4 метильными или этильными заместителями. [c.50]

    Большие возможности открывает путь предварительного перевода составляющих оксидат соединений, содержащих одну или две карбоксильные группы,, в их метиловые эфиры. В частности, предварительно метилированная проба оксидата — продукта направленного окисления октадекана до кислот — подробно исследована по групповому и компонентному составу в результате многоступенчатого разделения, включающего стадии жидкостного хроматографирования на силикагеле, обработки щелочью, экстракции [204]. Учитывая, однако, сложность, длительность и недостаточную изученность такой схемы для исследования оксидатов фракций парафинов, предлагаете) более упрощенная схема разделения и анализа, опробированная на оксидатах Шебекинского химкомбината с различными кислотными числами [205]. Она заключается в том, что из исходной пробы оксидата отгоняют под вакуумом легкокипящую часть, остаток без перевода в метиловые эфиры разделяют, на анионо-обменнике на фракцию парафинов и неомыляемых соединений и фракцию жирных кислот. Легкокипящую часть оксидата, а также извлеченную из слоя анионообменника фракцию парафинов и неомыляемых соединений анализируют по фракционному составу методом газо-жидкостной хроматографии. Фракцию жирных кислот анализируют с помощью методов, применяемых для фракций СЖК (см. разд. 1.3.1.2.5). [c.79]

    Основным методом оценки фракций алкилсалициловых кислот, Еспользуемых для получения алкилсалицилатных присадок MA K, -АСК и АСЕ к смазочным маслам, в настоящее время является определение кислотных чисел фракций этих кислот в виде их натриевых олей [558] или в свободном виде по ГОСТ 11362—6,5. Жидкостная адсорбционная хроматография на активном силикагеле позволяет определить во фракции алкилсалициловых кислот (после разложения их натриевых солей) содержание не вошедших в реакцию карбокси-лирования групп парафино-олефиновых углеводородов, вторичных алкилфенолов и алкилсалициловых кислот [559]. Установлено, что, изменив условия жидкостной адсорбционной хроматографии, гможно во фракциях алкилсалициловых кислот в виде натриевых солей определить группы алкилсалициловых кислот. Причем не вошедшие в реакцию карбоксилирования алкилфенолы выходят из слоя силикагеля двумя фракциями в виде алкилфенолятов натрия >в смеси с парафино-олефиновыми углеводородами и алкилфенолов, с алкилфениловыми эфирами. Практически полное протекание реакции замещения катионов натрия, содержащихся в исходной пробе алкилсалицилатов, на ион водорода происходит за счет наличия необходимого числа парных ОН-групп, связанных с атомом кремния на поверхности силикагеля. Активной в этом обмене является одна из парных ОН-групп, одиночные ОН-группы неактивны [560]. [c.330]

    Групповой состав кислых концентратов, выделенных щелочной экстракцией из сеноманской нефти (Вань-Еганское месторождение) и из нижнемеловой (товарная западно-сибирская) [23], приведен в табл. 4.6. Данные по групповому составу кислот показывают, что кислотные концентраты из нижнемеловой нефти содержат значительно больше алифатических кислот по сравнению с нефтью сеномана — 49,6 и 6,4% соответственно. В то же время концентраты кислот выделенные из нефти Самотлорского месторождения методом адсорбционной хроматографии на силикагеле, модифицированном силикатом калия [19], содержат значительно меньше алифатических кислот ( 24%), чем концентрат кислот товарной нефти (см. табл. 4.6), хотя эти нефти близки по своим физико-химическим характеристикам, вследствие того что самотлорская нефть составляет основную часть товарной. Различие в групповом составе кислот этих нефтей связано, видимо, со способом выделения концентрата кислот. Адсорбционная хроматография на модифицированном сорбенте позволяет выделить кислоты полностью, а щелочной экстракцией — в основном низкомолекулярные. По- [c.105]

    Хроматографические свойства различных карборанов зависят от их дипольных моментов (величины дипольных моментов молекулы определяются конфигурацией скелета, локализацией гетероатомов и заместителей), а также от природы и числа заместителей. Наиболее устойчивыми являются /oso-карбораны СгВпНп+г они, как правило, достаточно стабильны к действию тепла, окислителей и в условиях кислотного гидролиза их можно удовлетворительно разделять на силикагеле и окиси алюминия. Заслуживает внимания тот факт, что о-, м- и п-кар-бораны, т. е. соединения, имеющие одинаковые размеры и форму молекул, но значительно различающиеся по своему дипольному моменту, хорошо разделяются методом гель-проникающей хроматографии [1], которая, как полагают, не зависит от величины дипольных моментов молекул. Некоторые примеры применения колоночной хроматографии для разделения /oso-карборанов и их производных приведены в табл. 43.2. [c.171]

    Гидролитический и восстановительно-гидролитический процессы имеют наибольшее значение для деструкции антрахиноновых производных, содержащих гидроксильные и замещенные аминогруппы в положениях 1,4, 1,5, 1,4,5 и 1,4,5,8, простые или иногда более сложные алкоксильные группы в положении 2 и сульфогруппы в случае кислотных красителей. Отщепление ацильных и алкильных групп, присоединенных к азоту или кислороду, с последующей заменой аминогрупп на гидроксильные группы происходит в результате гидролиза [19] в соляной кислоте при 180 °С, восстановительного гидролиза при действии хлорида олова и соляной кислоты при высоких температурах [50], нагревания в адсорбированном виде на силикагеле или окиси алюминия [2], а также в результате пирогидролиза [51]. Образующиеся простые амино-, аминогидрокси- и гидроксиантрахиноны легко могут быть идентифицированы с помощью бумажной и тонкослойной хроматографии. Для хроматографирования на бумаге гидроксиантрахинонов (хинизарин, пурпурин) лучше всего использовать 1-бром-нафталин/80% уксусную кислоту для аминоантрахинонов подходит система 1-бро мнафталин/пиридин — вода (1 1) [52]. Отщепляющиеся ароматические амины обнаруживают описанным выше методом, алифатические амины идентифицируют с помощью бумажной хроматографии, используя бутанол — концентрированную соляную кислоту (4 1) и нингидрин [53]. [c.306]

    Слейки и Ленде [63], используя ферментативную реакцию с участием липазы поджелудочной железы и комбинируя тонкослойную хроматографию на обычном силикагеле и на силикагеле, пропитанном раствором нитрата серебра, с газохроматографическим определением метиловых эфиров, установили состав жирнокислотных остатков в положениях 1,2 и 3 при разделении триглицеридов печени крысы. Они нашли, что распределение остатков кислот в положениях 1 и 3 не беспорядочное. Применяя стереоспецифический анализ триглицеридов, Брокер-хофф [64] частично разрушал триглицерид метилмагнийброми-дом до образования 1,3-диглицерида, который удалось выделить хроматографированием на слоях силикагеля, пропитанных 3 %-ным раствором борной кислоты. Последующее превращение в фосфолипид и обработка фосфолипазой А позволили определить кислотные группы, находящиеся в положениях I и 3. [c.64]

    Русева-Атанасова и Янак [113] разделяли метиловые эфиры по числу углеродных атомов методом газовой хроматографии на неполярной неподвижной фазе и осаждали элюат на тонком слое силикагеля, пропитанного раствором нитрата серебра (т. е. объединили ГХ и ТСХ). При последующем элюировании смесью петролейного и диэтилового эфиров (7 3) происходило разделение сложных эфиров по степени ненасыщенности. Метиловые эфиры для газохроматографического анализа получить довольно быстро и просто переэтерификацию проводят непосредственно на пластинке для ТСХ [114, 115]. После нанесения образца на слой силикагеля или после первоначального элюирования слой опрыскивают 2 н. раствором метилата натрия. Пе-реэтерификация заканчивалась за 5 мин, и в указанных условиях расщепляются только сложноэфирные, а не кислотно-амидные связи. [c.76]

    Сапонины — это гликозиды, водные растворы которых образуют при встряхивании устойчивую пену. При кислотном гидролизе сапонины расщепляются на сахара и соответствующие сапогенины. Разделение стероидных сапогенинов можно проводить на слоях силикагеля. Чеше и др. [310—312] исследовали ряд сапогенинов методом хроматографии на бумаге и ТСХ. В качестве растворителей в ТСХ использовали этилацетат и смеси хлороформ—ацетон (4 1) и диизопропиловый эфир—ацетон (3 1). [c.344]

    Растворенную МХК в маточном растворе определяли с помощью раопредел ительной колоночной Х рамат0графи1и на силикагеле, иро-питанном 0,25н соляной кислотой, при полуградиентном элюировании бензолом с эфиром при обнаружении продукта в пробах тонкослойной хроматографией с последующим взвешиванием основного вещества (2). Содержание органических кислот в мат очном растворе в пересчете на муравьиную мислоту (Е НСООН ) определяли по разности ионов водорода (из общей кислотности — [c.78]

    Растворенную МХК в маточном растворе определяли с помощью распределительной колоночной хроматографии на силикагеле, пропитанном 0,25н соляной кислотой, при полуградиентном элюировании бензолом с эфиром при обнаружении продукта в пробах тонкослойной хроматографией с последующим взвешиванием основного вещества (2). Содержание органических кислот в маточном растворе в пересчете на муравьиную мислоту (S НСООН ) определяли по разности ионов водорода (из общей кислотности — S НС1 и хлористого водорода), полученной при титровании анализируемой пробы точно 0,1н растворами едкого натра и азотнокислой ртути меркурцметричесмим методом. [c.78]

    Для качественного и количественного анализа высших жирных спиртов, являющихся составной частью липидов, применяют различные методы. Большая часть из них основана на выделении алкиловых эфиров глицерина при помощи щелочного гидролиза или восстановления Ь1АШ4 фракции нейтральных или сложных липидов и последующего разделения полученной смеси алкиловых и алкен-1-иловых эфиров глицерина либо тонкослойной хроматографией на силикагеле, пропитанном А ЫОз, либо расщеплением алкен-1-иловых эфиров глицерина кислотным гидролизом. [c.215]

    Снятие тритильной группы в глицеридах можно проводить кислотным гидролизом, однако при этом наблюдается ацильная миграция и образуется равновесная смесь изомеров. При синтезе насыщенных глицеридов детритилирование удобнее проводить каталитическим гидрированием в присутствии платинового или палладиевого катализаторов. Предложен метод детритилирования при хроматографии на кремневой кислоте или силикагеле, однако он не имеет препаративного значения в связи со специфическими требованиями, предъявляемыми к адсорбенту, трудностью отделения от образующегося трифенилкарбинола и наблюдаемой частичной изомеризацией глицеридов. Детритилирование с помощью борной кислоты сопровождается меньшей ацильной миграцией, чем в случае применения других методов [74]. [c.241]

    Триптофан претерпевает некоторое разрушение независимо от того, применяется ли в качестве гидролизующего агента кислота или щелочь. В присутствии углеводов его разрушение горячей кислотой обычно протекает сполна [14, 134]. Тирозин при этих -условиях такл е изменяется г134], а цистеин в присутствии углеводов является более лабильным, чем в других случаях [135]. Тирозин может также претерпевать разрушение при щелочном гидролизе [136]. Предполагается, что в горячей кислоте триптофан в присутствии некоторых других аминокислот может быть менее стабилен, чем когда он одни. Доступ кислорода может также усиливать его стабильность и влиять на количество получающегося гумина. Следует ожидать также иЗхМенения других аминокислот, если происходит такое взаимодействие с триптофаном. При обработке кислотами триптофан, вероятно,, переходит в дикарбоновую аминокислоту [137]. В связи с этим аминокислотным распадом интересны полосы, имеющие характер артефактов при хроматографии на силикагеле [78]. Тристрам [138] показал распад аргинина при кислотном гидролизе в присутствии углевода. Шейн и Берг [121а] при кислотном гидролизе [c.57]

    Экс гракт I разделяли на фракции карбоновых кислот и фенолов (рис. 9) двухступенчатой ионообменной хроматографией на ионитах различной основности с последующей хроматографией на силикагеле. Установлено, что более 90% присутствующих в данной нефти кислот сосредоточено во фракциях В и Д, кислотные числа которых равнялись 76 и 155 мг КОН/г. В более кислой фракции Д (1,1% на нефть) содержалось 40% всех кислот этой нефти. Средние молекулярные массы кислот, определенные по кислотам и их метиловым эфирам, были в пределах 300-400. Природа фенолов (фракции В = 1аЧ-В = 1с), свободных от кислот, была подтверждена методами ЯМР и масс-спектрометрии. [c.42]


Смотреть страницы где упоминается термин Силикагель в хроматографии кислотность: [c.82]    [c.588]    [c.279]    [c.71]    [c.71]    [c.214]    [c.161]    [c.1494]    [c.1494]    [c.161]    [c.79]    [c.448]    [c.260]    [c.186]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель

Силикагель для хроматографи

Силикагель для хроматографии



© 2025 chem21.info Реклама на сайте