Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфология Напряжения

    Как известно, молекулярные напряжения зависят от молекулярных деформаций, которые в свою очередь зависят от морфологии образца и ориентации цепей. Поэтому любой реальный образец содержит множество осцилляторов, напряженных в различной степени. Форма искаженной полосы поглощения D(v), представляющая подобную систему осцилляторов, может быть выражена интегралом свертки  [c.231]


    Различные экспериментальные наблюдения позволяют сделать вывод о том, что длительные периоды начала роста простой трещины и трещины серебра при низких значениях напряжения не просто вызваны уменьшением вероятности образования зародыша трещины в остальном не измененного материала. Природа изменений, происходящих на молекулярном уровне в процессе утомления образца, исследовалась разными авторами (например, [138, 143—147, 153]). Так, по затуханию колебаний торсионного маятника [138, 134—144] и методом ИК-поглощения [138] были исследованы молекулярная подвижность, взаимодействие молекул и их роль в поглощении энергии путем измерений плотности и методом рассеяния рентгеновских лучей [144—146], а также путем применения образцов с различной молекулярной массой [153] были исследованы упаковка молекул и дефектность структуры, а с помощью кинетики рекомбинации захваченных свободных радикалов [146] было исследовано изменение морфологии материала. Результаты, полученные с помощью этих различных экспериментальных методов, характеризуют упорядочение молекул, но еще не позволяют получить количественные значения пределов усталости. [c.295]

    За исключением ПК, у неориентированных аморфных полимеров в процессе вынужденной эластичности при растяжении не зафиксирован рост числа разорванных цепей. Данное поведение является результатом различий морфологии цеией. В отсутствие кристаллитов большие осевые усилия, вызывающие разрыв цепей, могут быть получены лишь при наличии трения между проскальзывающими сегментами цепей. Расчетная объемная концентрация разрывов цепей (из-за большого числа проскальзывающих сегментов) намного меньше, чем в частично кристаллических полимерах. Кроме того (ввиду отсутствия эффекта выравнивания микрофибриллярной подструктуры), макроскопическое ослабление материала при растяжении происходит прежде, чем достигаются значения напряжений и деформаций, достаточные для равномерного распределения разрывов цепей. [c.309]

    В рамках данной книги необходимо исследовать влияние термомеханического разрыва цепей на механические свойства полимеров. Поэтому вплоть до данного момента автор старался по возможности отделить и исключить влияние окружающей среды. Во многих случаях подразумевалось, что исследуемые зависимости свойств материала (например, от деформации, напряжения, температуры, морфологии образца, концентрации свободных радикалов) являлись доминирующими по сравнению с зависимостями от влажности, содержания кислорода, воздействия химической среды или облучения. Совершенно очевидно, что данные внешние факторы чрезвычайно важны для выяснения сроков службы элементов конструкций из полимерных материалов. Значительное число последних подробных монографий и основополагающих статей касается деградации полимеров при воздействии окружающей среды (например, [196— 203]). В них подробно рассматриваются такие аспекты внешних условий деградации, которые в данной книге в дальнейшем не рассматриваются, а именно термическая деградация, огне- и теплостойкость, химическая деградация, погодные изменения и старение, чувствительность к влаге, влияние электромагнитного излучения, облучения частицами, кавитации и дождевой эрозии, а также биологическая деградация. За любой детальной информацией по перечисленным вопросам и методам [c.313]


    Предыдущие рассмотрения применимы к однородным изотропным материалам, т. е. к аморфным [61, 198, 200] и частично кристаллическим полимерам со слабо развитой микроструктурой [130]. В этих материалах направленность разрушения более или менее определяется полем локальных напряжений. Во всяком случае, судя по морфологии поверхности разрушения, ничего нельзя сказать о ее микроструктуре. Это не исключает существования определенной глобулярной микроструктуры (гл. 2, разд. 2.1.3), которую можно выявить путем ионного травления [132, 208]. Однако для полимеров с явно выраженной микроструктурой, обусловленной присутствием кристаллитов с вытянутыми цепями и сферолитов, отчетливо выявляются особенности поверхности разрушения. В таких полимерах сопротивление материала распространению трещины сильно зависит от ориентации плоскости разрушения относительно элемента структуры. [c.393]

    Микроструктурный и рентгеновский анализ образцов показывает, что при длительной эксплуатации металла в условиях ползучести и цикличности наложенных пиковых нагрузок с уровнем напряжений, на два порядка превышающих допускаемые, происходят существенные структурные изменения. Изменяются фазовый состав и морфология вторичных фаз, происходит перераспределение легирующих элементов между различными фазами. Одновременно возрастает поврежденность металла микропорами. В связи с этим возникают два направления применения результатов. [c.319]

    Описанные выше превращения приводят не только к изменению морфологии, но также и к изменению формы деформируемого образца. Растяжение образца не носит однородный характер, а развивается с образованием и распространением шейки (уменьшении площади поперечного сечения), возникающей вначале в каком-либо месте растягиваемого образца. Кривая напряжение—деформация и конфигурации образца, соответствующие разным ее участкам, приведены на рис. 3.15. [c.64]

    Экстремальное изменение напряжений — нелинейное вязкоупругое явление, поэтому оно не предсказывается в рамках теорий линейной вязкоупругости. Заметим, что в процессах переработки полимеров напряжения экстремально возрастают в периоды, соответствующие заполнению формы при литье под давлением и при получении заготовки в периодических процессах формования с раздувом. Полагают поэтому, что эта особенность реологического поведения оказывает влияние на ход этих процессов. Более того, особенности вязкоупругого поведения полимеров, в частности их способность к релаксации напряжений и упругому восстановлению, играют важную роль в процессах переработки полимеров (особенно сильно они влияют на структурообразование и формуемость). Как было показано в гл. 3, остаточные напряжения и деформации, существующие в изделии после формования, в значительной степени определяют его конечные морфологию и свойства. [c.139]

    Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры и приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1—6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1—6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности). [c.41]

    Воздействие среды на высокотемпературное разрушение, в данном случае — разрыв, было бы лучше всего рассматривать, по-видимому, на основе представлений о зарождении и росте трещин. В общем случае нельзя заранее предполагать, что гетерогенность, вызываемая коррозией, всегда усиливает образование трещин. Хотя в окислительных газовых средах часто наблюдается более раннее зарождение трещин [18—21, 173], известны и случаи, когда окислительные среды замедляли растрескивание [25, 29, 61]. Подобный положительный эффект возникает, по-видимому, когда образующиеся продукты коррозии могут обволакивать поверхностные включения, являющиеся более вероятными концентраторами напряжений, чем сами коррозионные продукты. Способность фаз продуктов коррозии вызывать растрескивание зависит от хрупкости этих продуктов [116], напряжений, возникающих при их выделении [102], и морфологии [140]. Морфологический аспект особенно важен в случаях, когда межзеренные границы подвержены прямому окислению с образованием длинных клинообразных включений окислов [18—21, 103]. [c.44]


    Текстура сплава оказывает влияние и на морфологию разрушения. Как будет показано в следующем разделе, транскристаллитное разрушение в а- и р-фазах часто обусловлено кристаллографией и имеет вид скола. В случае а-фазы плоскость разрушения обычно составляет угол около 15° с базисной плоскостью [219], а в р-фазе разрущение обычно происходит вдоль 100 [204]. Таким образом, текстура материала в сочетании с направлением приложенного напряжения может облегчать или затруднять протекание растрескивания. [c.105]

    В целом усталостная прочность изделий существенно зависит не только от саморазогрева, но и от наличия на детали концентраторов напряжения, от частоты нагружения, от влажности окружающей среды, наличия в материале пластификаторов и их содержания, от свойств, морфологии и расположения в пластике наполнителей. [c.100]

    Как правило, цепи в кристаллитах, возникших при растяжении, ориентированы преимущественно вдоль оси растяжения. Такая ориентация особенно типична для процессов кристаллизации при очень больших деформациях. Морфология, возникающая при ориентационной кристаллизации, этим и отличается от обычной кристаллической текстуры, которая получается при постепенном охлаждении и характеризуется беспорядочным распределением ориентаций кристаллитов. При включении части деформированной цепи в кристаллит среднее напряжение, которое она испытывает на концах, уменьшается. Это заключение [c.170]

    Здесь будут рассмотрены предельная деформация цепей, кинетика образования свободных радикалов механическим путем и их реакций, начало роста и распространение обычных трещин, трещин серебра , а также дано объяснение сопротивления и критического коэффициента интенсивности напряжений и удельной энергии разрушения с точки зрения представлений о молекулярной структуре. Хотя основной интерес представляют именно эти вопросы, оказалось невозможным привести всю литературу по перечисленным проблемам. Автор заранее просит извинить его за все намеренные и случайные пропуски, которые будут обнаружены. Во веяком случае, в этой книге упоминается известная литература по морфологии, вязкоупругости, деформативности и разрушению полимеров. Надеюсь, что для объяснения разрушения полимеров с точки зрения молекулярных представлений она будет полезным дополнением к данной монографии. [c.7]

    Таким образом, фактор а макроскопической чувствительности к напряжению зависит от морфологии образца и ориентации цепей. Как показано на рис. 8.3, для одних и тех же полос поглощения на различных образцах были получены совершенно различные зависимости Ау от напряжения [36]. В любом реальном образце фактор а макроскопической чувствительности к напряжению является средней величиной. Для полосы 975 см полипропилена а изменяется в интервале значений (2—6) см на 1 ГПа (рис. 8.3). Для полосы 1168см  [c.233]

    В этом разделе была рассмотрена морфология поверхностей разрушения, позволяющая выявить виды локального разделения материала. Были определены микроскопические размеры структурных элементов, которые разрываются или разделяются молекулярных нитей, фибрилл или молекулярных клубков, ребер, кристаллических ламелл, сферолитов. Однако, когда говорят об их основных свойствах, используют макроскопические термины разрыв, деформация сдвига, пределы пластического деформирования, сопротивление материала распространению трещины. Не было дано никаких молекулярных критериев разделения материала. Такие критерии существуют для отдельных молекул температура термической деградации и напряжение или деформация, при которых происходит разрыв цепи. По-видимому, следует упомянуть критическую роль температуры при переходе к быстрому росту трещины [30, 50, 184—186, 197] и постоянное значение локальной деформации ву в направлении вытягивания материала (рис. 9.31), которая оказалась независимой от длины трещины и равной - 60 % на вершине обычной трещины в пленке ПЭТФ, ориентированной в двух направлениях [209]. Следует также упомянуть критическую концентрацию концевых цепных групп определенную путем спектроскопических ИК-исследоваиий на микроскопе ориентированной пленки ПП в окрестности области, содержащей обычную трещину (рис. 9.32), и поверхности разрушения блока ПЭ [210]. Оба материала вязкие и прочные. По распределению напряжения перед трещиной в пленке ПП можно рассчитать параметры Кс = (У г)Уш = ,,г 2 МН/м" и G = 30 17 кДж/м [11]. Эти значения в сочетании с данными табл. 9.2 довольно убедительно свидетельствуют о том, что разрыв цепи сопровождается сильным пластическим деформированием. Возможная роль разрыва цепи в процессе применения сильной ориентирующей деформации или после него была детально рассмотрена в гл. 8. [c.403]

    Фактические значения температуры, температурных градиентов и ориентационных напряжений имеют для каждого полимера свои значения. Исследования морфологии жестких эластичных структур показали, что они образованы рядами ламелярных" агрегатов, возникающих вследствие уже рассмотренного механизма фибриллярного зародышеобразования [33]. При отжиге эта ламелярная суперструктура становится еще более совершенной (ламели располагаются почти перпендикулярно направлению вытяжки), одновременно наблюдается и некоторое увеличение толщины ламелей. [c.61]

    Рассмотрим конкретный практический пример ламинарного смешения. Жидкий компонент вводят в смеситель, содержащий расплав полимера в форме капель микроскопических размеров. Мы утверждаем, что то, что произойдет с каплями в потоке жидкости в начальной стадии смешения, не зависит от смешиваемости компонентов. Это объясняется тем, что при быстром растворении образуется тонкий (в лучшем случае) пограничный слой. Постепенно капли де формируются, подвергаясь воздействию локальных напряжений.. Поле напряжений неоднородно, поскольку компоненты смеси имеют различные реологические свойства (как вязкость, так и эластичность). Влияние поверхностного натяжения несущественно (соответственно несущественно и наличие или отсутствие четких границ раздела), Вязкие силы превышают поверхностное натяжение По мере деформации капель и увеличения площади поверхности раздела степень смешиваемости двух компонентов начинает играть все возрастающую роль. Для смешиваемых систем внутренняя диффузия способствует достижению смешения на молекулярном уровне, а в случае несме-шиваемых систем — вводимый компонент дробится на мелкие домены. Эти домены вследствие вязкого течения и под воздействием сил поверхностного натяжения достигают состояния, характеризуемого постоянной величиной деформации. Таким образом, для несме-шиваемых систем смешение начинается по механизму экстенсивного смешения и постепенно переходит в гомогенизацию. Морфология доменов, образующихся как в смесях, так и в сополимерах, является предметом интенсивных исследований [19]. [c.388]

    В дополнение к упомянутым выше напряжениям в литьевых изделиях накапливаются упругие напряжения, вызванные ориентацией при течении расплава. Используя уравнение состояния расплава, с помош,ью выражения (14.1-9) при заданных значениях Т х, у, t) можно оценить величину ориентации в каждой точке отливки в конце процесса заполнения формы при Т решения этой задачи в первую очередь необходимо расчетным путем установить наличие фонтанного течения, поскольку именно такой характер течения приводит к образованию поверхностных слоев литьевого изделия. Далее следует подобрать уравнение состояния, соответствующее данному характеру течения и большим деформациям, и определить степень их влияния на кинетику кристаллизации и морфологию кристаллизующихся полимеров. В работе Кубата и Ригдала [44] предпринята косвенная попытка решения подобной задачи. Можно надеяться, что в ближайшее десятилетие будет достигнут существенный прогресс в этой области исследований. Конструкция пресс-формы и технологические параметры литья под давлением также являются факторами, влияющими на структурообразование в литьевых изделиях. [c.541]

    Изменяются условия формирования конденсационно-кристал-лизационной структуры. Это проявляется в изменении pH суспензий, снижении основности гидратных фаз, изменении морфологии и степени дисперсности новообразований и уменьшением внутренних напряжений за счет большего содержания гелевидных фаз, служащих буфером при деструкциях. Эти особенности находят отраже- [c.122]

Рис. 74. Зависимость между пределом текучести, вязкостью разрушения ( ij) и пороговым коэффициентом интенсивности напряжений (KiKp) для нескольких структур и фазовых морфологий сплава Ti —6А1 —4V, испытанного в растворе 3,5% Na l ( = 24 "С) [178] Рис. 74. <a href="/info/25969">Зависимость между</a> <a href="/info/8939">пределом текучести</a>, <a href="/info/71487">вязкостью разрушения</a> ( ij) и пороговым <a href="/info/1573231">коэффициентом интенсивности напряжений</a> (KiKp) для <a href="/info/1495160">нескольких структур</a> и <a href="/info/1815455">фазовых морфологий</a> сплава Ti —6А1 —4V, испытанного в растворе 3,5% Na l ( = 24 "С) [178]
    В предыдущих разделах в графической зависимости скорости роста трещины от коэффициента интенсивности напряжений о—К были выделены три области I, 11, 111). В этих областях наблюдается больщое разнообразие морфологий разрущения в зависимости от состава силава, факторов микроструктуры, среды и уровня напряжения. На рис. 83 делается попытка представить морфологию разрушения, определяемую воздействием среды на рост трещины относительно обобщенного графика зависимости V ос К. В большинстве случаев рост трещины в области I определяется межкристаллитным разрушением (участок А) в области 11 — транскристаллитным сколом (участок С) и в суиеркритиче-ской области 111 [Л >Л 1с] — слиянием микропор (участок Е). Вследствие этого имеются переходные области между I я 11 — смешанное межкристаллитное и транскристаллитное разрушение-(участок В) между II и III — смешанное разрушение транскристаллитным сколом и ямочное разрушение (О). Имеется несколько исключений из этого общего описания разрущения, поэтому данные рис. 83 должны рассматриваться как сверхунрощенные. Эти исключения для различных сред рассматриваются ниже. [c.376]

    Недавние исследования показали также новые возможности методов ИПД для получения наноструктурных сплавов с метаста-бильной структурой и фазовым составом (см. гл. 2). Как уже отмечалось, было установлено, например, полное растворение цементита и формирование пересыщенного твердого раствора углерода в армко-Ре в случае высоколегированной стали, подвергнутой ИПД [66], а таже образование пересыщенных твердых растворов в А1 сплавах с исходными взаимно нерастворимыми фазами [67]. Формирование таких метастабильных сотояний позволяет ожидать получения особопрочных материалов после последующих отжигов. Вместе с тем, структура этих образцов характеризуется не только малым размером зерен и большеугловыми разориентировками соседних зерен, но также специфической дефектной структурой границ зерен, необычной морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д. В связи с этим, очень важным является изучение комплексного влияния структурных особенностей наноматериалов на их механическое поведение. [c.183]

    Растворимость постоянных газов в полимерах довольно мала, чтобы повлиять на деформацию и перестройку структуры полимера Так, растворимость азота в натуральном каучуке составляет всего около 0,01 вес.%, что соответствует концентрации приблизительно в одну молекулу азота на 5500 звеньев цепной молекулы полиизопрена. Действительно, неоднократно экспериментально показывалось, что в пределах подчинимости закону Генри коэффициент растворимости газов и паров сохраняется постоянным независимо от давления Однако при сорбции легко конденсируемых паров коэффициент сорбции может существенно зависеть от концентрации или давления паров сорбируемого вещества. Хорошие растворители могут сорбироваться полимерами в больших количествах, что приводит к искажению структуры полимера, в частности к его пластификации, изменению морфологии кристаллических образований и релаксации напряжений. Для сорбции неполярных паров органических растворителей полиэтиленоми другими неполярными полимерами выведено полуэмпирическое уравнение изотермы абсорбции [c.49]

    Наполненные резиновые смеси отличаются по литьевым свойствам от ненаполненных эластомеров. Поведение при действии напряжений, довольно сильная анизотропия, пониженные эластические свойства - вот неполный список необычных реологических свойств, причиной которых является морфология композиции, связанная с сильными взаимодействиями между частицами наполнителя и цепями эластомера. На основе данных микрофотографии сложная морфоло- [c.466]

    Изучение ориентации, формы и состав нитевидных включений и диагональных прослоев в большом количестве (до 5000) кристаллов показало, что эти включения располагаются по следам нарастания только октаэдрических и комбинационных вершин и соответствующих ребер кристаллов. При этом точка пересечения трасс нитевидных включений и диагональных прослоев является центром роста данного кристалла, который редко совпадает с центром объема (т. е. имеет место искажение облика). Характерно, что включения присутствуют только в части объема алмаза, росшей в сторону графита, и всегда связаны с направлением удлинения, т. е. с направлением наибольшей нормальной скорости роста граней кристалла. Указанные особенности морфологии включений третьего типа позволяют предположить, что частицы жидкого металла захватываются растущим кристаллом по механизму внутренней адсорбции на дефектах, образующихся при взаимодействии слоев роста смежных граней, т. е. вблизи ребер и вершин (эффект адлинеации), на фоне сравнительно большой, порядка 8- 10 м/с, скорости роста алмаза. При этом, как и в случае образования включений подтипа 1а, при затвердевании жидкого металла происходит образование границы раздела фаз без заметного напряжения кристаллической решетки алмаза. [c.403]

    Эпитаксиальному росту сверхпроводящих тонких пленок состава Bi2Sr2 a u20y с плоскими поверхностями посвящен обзор [19], содержащий 11 ссылок. Изучены влияние материала подложки на морфологию и качество пленок, их электрические свойства. Пленки, выросшие на подложках с большим несоответствием решеток, имеют низкую температуру сверхпроводящего перехода. Напротив, пленки, выросшие на подложках с малым несоответствием решеток, имеют очень гладкую поверхность и высокую температуру перехода в сверхпроводящее состояние. Эти результаты интерпретируются в терминах внутренних напряжений, возникающих между пленкой и подложкой. [c.241]

    Электронно-микроскопические данные показывают, что в процессе эксплуатации происходят изменение морфологии цементитных пластин, увеличение скалярной плотности дислокации и изменение дислокационной структуры, которая из сетчатой становится ячеисто-клубковой. Происходит фрагментация цементитных пластин путем перерезания их дислокациями, что приводит к уходу атомов углерода из цементита. Установлено, что объемная доля цементита в перлите за 30 лет эксплуатации уменьшается на 20-30 %. На электронномикроскопических снимках длительно эксплуатированных труб (20 лет и более) по границам зерен перлита наблюдаются частицы вновь образованного карбида и увеличение количества изгибных контуров [93]. На образцах параллельно со структурными исследованиями проводились измерения микротвердости с помощью микротвердомера ПМТ-3 и определение остаточного напряжения (А<1/(3) с применением рентгеновской методики. Полученные данные показывают, что с увеличением длительности эксплуатации металла труб значения микротвердости в области концентраторов.напряжений увеличиваются от 22-10, а значения А(1/<1 в основном металле увеличиваются от [c.613]

    На конформацию макромолекулы и морфологию надмолекулярной организации (НМО) ПВДФ может влиять способ полимеризации ВДФ [156]. При полимеризации в полярной среде, например воде, образуется напряженная зигзаг-конформация ( -форма), в слабополярной — менее напряженная, свернутая в спираль, конформация (а-форма). В процессе полимеризации в слабополярной среде наряду с образованием а-формы возможно возникновение и -формы кристаллитов последние увеличивают дефектность кристаллической решетки. Поэтому а-форма кристаллитов, образующихся прн полимеризации, всегда низкоуиорядоченна (ан-форма). Высокоупорядоченная ав-форма получается при кристаллизации полимера из расплава или из слабополярных растворителей [156]. Морфология НМО тонких пленок ПВДФ также зависит от способа синтеза полимера и его молекулярной массы. Сферолитную структуру имеют пленки образцов полимера, полученных радиационным и химическим инициированием с молекулярной массой а 10 . При [c.83]

    Данные о морфологии быстрокристаллизующегося полихлоропрена показали, что на границе раздела с наполнителем происходит ориентация кристаллических образований, возникновение которых обусловлено высокой плотностью зародышей кристаллизации и возможностью роста кристаллических структур только в направлении, перпендикулярном поверхности раздела. При этом наполнитель оказывает на кристаллизацию действие, аналогичное созданию дополнительного напряжения, в поле которого протекает кристаллизация [137]. [c.71]

    Таким образом, с помощью примесных молекул, используемых в качестве зондов, для полиэтилена удалось обнаружить различия в плотности аморфных областей в транскристаллических поверхностных слоях, морфология которых практически не зависит от температурного режима плавления и кристаллизации. Было установлено также, что резкое возрастание плотности аморфных областей в граничных слоях полимера не связано с транскристалличностью поверхностного слоя. Методом молекулярного зонда показано также, что температурные режимы плавления и кристаллизации пленок могут оказывать нивелирующее действие на изменение структуры поверхностных слоев таким образом, что энергетические характеристики подложки практически не будут проявляться. Важен лишь сам факт существования этой поверхности. Кроме того, при рассмотрении процессов, протекающих в граничных слоях полимеров, следует обращать внимание на возможность сочетания нескольких факторов, влияющих на формирование структуры. Так, плавление с неполным разрушением исходных структур на высокоэнергетических подложках может привести к образованию напряженных поверхностных структур, к существенному увеличению плотности аморфных областей в этих структурах. При отделении такой полимерной пленки от подложки напряженные структуры испытывают релаксацию, в ряде случаев проходящую через стадию аморфизации с последующей рекристаллизацией. [c.80]

    Четвертая глава посвящена изучению влияния внутренних напряжений, связанных с фазовым превращением, на морфологию гетерофазного состояния. В ней изложена общая теория внутренних напряжений в произвольной системе когерентных включений новой фазы и рассмотрены вопросы, касающиеся форм, ориентаций и ориентационных соотношений включений новой фазы и матрицы. Обсуждаются эффекты, связанные с образованием когерентных пластинчатых включений и зон Гинье — Престона. Общая теория внутренних напряжений используется также для объяснения эффекта -состояния — образования стабильных микросегрегаций атомов в однофазной области диаграммы состояния. [c.7]

    Проблема установления связи между кристаллогеометрией фазового превращения, морфологией гетерогенного кристалла и энергией внутренних напряжений требует построения количественной теории внутренних напряжений. Для того чтобы выполнить эту задачу, необходимо, чтобы теория удовлетворяла ряду основных требований она должна учитывать упругую анизотропию среды, приводить к замкнутому выражению для упругой энергии систем включений произвольной формы и произвольной конфигурации и, наконец, давать относительно простой рецепт для определения тех форм и конфигураций включений, которые обеспечивают минимум энергий внутренних напряжений. [c.199]

    В заключение отметим, что кроме диффузионных фазовых превращений существует довольно обширная группа бездиффузи-оппых фазовых превращений, идущих без изменения состава (полиморфные и мартенситные превращения). Теоретический анализ структуры, образующейся в результате бездиффузионного фазового превращения, был впервые предложен в работах [222, 223]. В них развит геометрический подход, который позволил установить габитус и морфологию мартенситных кристаллов. Шаг вперед был сделан в работах [162, 214, 224], в которых явно учтены внутренние напряжения, возникающие при когерентном сопряжении фаз. В [162, 214, 224] показано, что бездиффузионные фазовые превращения также приводят к образованию упругих доменов. Процесс доменизации здесь, как и во всех рассмотренных выше случаях, обусловлен релаксацией внутренних напряжений при фазовых превращениях. [c.299]

    В предыдущем параграфе рассматривались процессы упорядочения углерода в изолированных мартенситных кристаллах, свободных от внутренних напряжений. В реальных случаях, как правило, имеет место несколько иная ситуация, при которой кристалл мартенсита заключен в матрицу остаточного аустенита. Существующие в настоящее время морфологические теории Векслера — Либермана — Рида [222], Боулса — Маккензи [223] и Ройтбурда [154, 2241 исходят из предположения, что морфология мартенситных кристаллов определяется из условия минимума энергии внутренних напряжений. Это предположение, безусловно, отвечает физической реальности, так как вытекающие из него следствия находятся в хорошем количественном согласии с данными эксперимента (см. обзор [262]). Таким образом, можно полагать, что свежезакаленный мартенсит обладает минимальной упругой энергией. [c.353]


Смотреть страницы где упоминается термин Морфология Напряжения: [c.385]    [c.24]    [c.235]    [c.266]    [c.285]    [c.395]    [c.68]    [c.523]    [c.375]    [c.86]    [c.267]    [c.270]    [c.228]    [c.165]    [c.92]   
Кинетика гетерогенных процессов (1976) -- [ c.179 , c.183 , c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Морфология



© 2024 chem21.info Реклама на сайте