Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциальная энергия внутреннего вращения Барьер внутреннего вращения

    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]


    Однако, как уже отмечалось (см. 5.3.1), у кристаллических полимеров в отличие от низкомолекулярных кристаллов плавление происходит не при определенной температурной точке, а в некотором интервале температур. Под Тпя понимают среднюю температуру этого интервала. Кроме того, у полимеров температура плавления и температура обратного фазового перехода из аморфного (высокоэластического релаксационного состояния) в кристаллическое состояние - температура кристаллизации (Гкр)-не одинаковы, причем Г л > (средней температуры интервала кристаллизации). С увеличением Гкр интервал температуры плавления сужается. Все это связано с явлениями релаксации. Таким образом, у однофазного кристаллического полимера существуют три температурных характеристики Гкр <Тпл<Ту. Температура плавления, как и Т , зависит от энергии межмолекулярного взаимодействия (энергии когезии) и от способности макромолекул к конформационным превращениям (гибкости цепей) тем выше, чем больше энергия когезии и меньше гибкость макромолекул. В каждом конкретном случае определяется соотношением двух величин энергии когезии и потенциального барьера внутреннего вращения. [c.152]

    Связь константы Генри с потенциальной функцией внутреннего вращения. При внутреннем вращении молекулы, в зависимости от угла поворота а ее фрагментов относительно друг друга, расстояния силовых центров молекулы от плоской поверхности адсорбента изменяются, что вызывает изменение потенциальной энергии межмолекулярного взаимодействия Ф молекулы с адсорбентом, а следовательно и константы Генри. Если внутреннее вращение фрагментов молекулы является свободным, т. е. оно не связано с преодолением потенциальных барьеров, то молекула стремится расположиться на поверхности неспецифического адсорбента по возможности (в зависимости от температуры) так, чтобы ее силовые центры находились на наименьших расстояниях от поверхности. Если же внутреннее вращение в молекуле не свободно, но заторможено внутримолекулярными потенциальными барьерами, то расположение на поверхности адсорбента соответствующих фрагментов молекулы связано не только с потенциальной функцией межмолекуляр- [c.189]

    Изменение формы молекул под влиянием теплового движения (или под действием внешнего поля), не сопровождающееся разрывом химических связей, называют конформационным превращением, сами же формы молекулы — конформациями. Переход макромолекулы из конформации, которой соответствует потенциальная энергия в конформацию, которой соответствует потенциальная энергия осуществляется не мгновенно, а с определенной скоростью, которая зависит от взаимодействия соседних Атомных групп. Для преодоления этого взаимодействия требуется некоторая энергия активации АН, равная — (рис. II.3). Следовательно, гибкость (или жесткость) макромолекулы, т. е. способность ее к конформационным превращениям, определяется значением потенциального барьера внутреннего вращения Иными словами, потенциальный барьер внутреннего вращения он ределяет скорость конформационных превращений. Чем больше значение потенциального барьера внутреннего вращения макромолекул отличается от энергии внешнего воздействия (теплового механического) на полимер, тем медленнее осуществляются по". [c.20]


    Для того, чтобы перейти из положения, соответствующего одному минимуму потенциальной энергии, в положение, соответствующее соседнему минимуму, СНз-группа должна иметь кинетическую энергию, превышающую высоту потенциального барьера (или равную этой величине). Для этана и ряда других молекул, в которых вращение возможно вокруг оси симметрии Сз, потенциальная энергия внутреннего вращения зависит от угла поворота ф в соответствии со следующей приближенной формулой  [c.19]

    Потенциальная энергия внутреннего вращения как функция от углов внутреннего вращения 1/ - имеет ряд достаточно узких и глубоких локальных минимумов, разделенных потенциальными барьерами (рис. 1.1). [c.13]

    Потенциальные барьеры внутреннего вращения, представляющие собой, собственно, энергии активации превращения одной конформации в другую, могут быть в некоторых случаях тоже вычислены из термодинамических постоянных и из спектроскопических данных о вращательных энергетических уровнях. Ниже приведены результаты расчетов для некоторых простейших соединений. [c.513]

    С несколько иных позиций подходит к вопросу высокоэластического состояния М. В. Волькенштейн, рассматривая различные конформации как поворотные изомеры с одной и той же энергией. Гибкость цепи связывается с перераспределением отдельных звеньев за счет их поворотов, при которых преодолеваются потенциальные барьеры внутреннего вращения. Чем легче происходит это перераспределение, тем меньше высота барьера. Одни поворотные изомеры соответствуют более вытянутой цепи, а другие — менее вытянутой или свернутой. При повышении температуры ускоряется переход одного поворотного изомера в другой, вследствие чего цепь становится более гибкой. По всей вероятности, в реальных полимерах при малых высотах потенциального барьера преобладает механизм Волькенштейна, а при более высоких — механизм ограниченных вращательных колебаний. [c.380]

    НИЗКИХ температурах. В случае применения пластических масс, являющихся жесткими материалами в условиях эксплуатации, назначение пластификатора состоит прежде всего в снижении хрупкости и времени релаксации, а также в том, чтобы задерживать развитие микротрещин за счет рассасывания перенапряжения в их вершинах. Введение пластификатора, снижая потенциальные барьеры внутреннего вращения и облегчая взаимное перемещение макромолекул, уменьшает энергию активации Е перегруппировок и, следовательно, время релаксации т в соответствии с формулой [c.512]

    При исследовании разбавленных растворов (и растворов вообще) большое значение имеет качество растворителя, которое принято оценивать по термодинамическому сродству растворителя к полимеру, т. е. по величине свободной энергии смешения их при постоянных давлении и температуре (ДТ) Растворители делят на хорошие , характеризующиеся большими абсолютными величинами Дц , сильным понижением давления пара над раствором, большими значениями осмотического давления и второго вириального коэффициента, и плохие , где, наоборот, значение Дц , понижение давления пара и величины осмотического давления малы, а второй вириальный коэффициент меньше н ля. Качество растворителя проявляется также в существенном его влиянии на высоту барьера внутреннего вращения и, следовательно, на степень свернутости макромолекулы. Если потенциальный барьер невелик, а цепь длинна и гибка, она может принимать в растворе различные конформации но если барьер высок, цепь коротка и жестка, число конформаций ее ограничено и цепь имеет более или менее вытянутую форму (о числе конформаций можно судить по величине энтропии растворения полимера) [c.520]

    Зная потенциальные функции молекул, можно, по крайней мере в принципе, рассчитать все термодинамические функции веществ, состоящих из свободных молекул (а учитывая, что атом—атом-потенциалы применимы и для межмолекулярных взаимодействий, можно рассчитать термодинамические свойства жидкости и кристалла). Можно рассчитать и геометрию молекулы, минимизируя потенциальную функцию. Наконец,, делаются уже попытки расчетов частот колебательных спектров молекул. В первом приближении термодинамические и термохимические свойства (например, теплоты образования, гидрирования, изомеризации, барьеры внутреннего вращения), зависят от абсолютных значений энергии, конформации — от первых производных по независимым координатам ядер и частоты колебательных спектров — от вторых производных. [c.25]

    Энергия потенциальных барьеров внутреннего вращения [c.54]

    Относительно малая высота потенциального барьера внутреннего вращения молекул кремнийорганических соединений, что связано со сравнительно низкой плотностью энергии связи. При измерении энергии набухания различных эластомеров получены следующие результаты (в ккал моль)  [c.360]


    Хотя точное значение потенциального барьера внутреннего вращения концевой СКК группы в ПММА неизвестно, можно предположить, что оно не превыщает 10 ккал/моль, и взаимное превращение двух конформаций происходит гораздо чаще, чем акты роста цепи (с частотой не меньщей 10 сек 1, т. е. на 1—2 порядка превышающей частоту элементарных актов роста). Поскольку само время преодоления потенциального барьера порядка сек., можно считать, что практически в каждый данный момент концевое звено пребывает в одной из двух стабильных конформаций. Если разность свободных энергий двух энергетических минимумов АР, то отношение концентраций стабильных конформаций может быть выражено уравнением Больцмана  [c.100]

    Во втором случае гибкость молекулы определяется разностью максимального и минимального значений энергии взаимодействия заместителей эта разность называется высотой потенциального барьера внутреннего вращения в молекулах. Для перехода от одного положения, соответствующего минимуму энергии взаимодействия, к другому требуется энергия, достаточная для преодоления потенциального барьера внутреннего вращения. Поскольку необходимый избыток энергии черпается из общего запаса тепловой энергии, получаемого молекулами путем флуктуаций, то ясно, что, чем выше барьер, тем реже происходят подобного рода вращательные переходы, т. е. тем жестче молекула. [c.223]

    Потенциальный барьер внутреннего вращения зависит от энер ГИИ внутри- и межмолекулярного взаимодействия и определяется химической природой атомов, входящих в цепь, а также ее строением. Очень небольшие внутримолекулярные взаимодействия и энергии конформационных переходов (4,2—25,1 кДж/моль) позволяют отнести неполярные полиэтилен, полипропилен, полиизобу-тилен к гибкоцепным полимерам, статистический сегмент которых составляет 10—40 элементарных звеньев. Введение в макромолекулы полярных заместителей приводит к увеличению внутри-и межмолекулярного взаимодействия, поэтому поливинилхлорид, н поливиниловый спирт являются жесткоцепными полимерами. [c.21]

    В этой теории наличие барьера внутреннего вращения учитывается тем, что гибкость цепи выводится из перераспределения расположений отдельных звеньев за счет их поворотов с переходом через потенциальный барьер внутреннего вращения при сохранении внутренней энергии всей цепной молекулы. [c.58]

    В работе Н. П. Борисовой и М. В. Волькенштейна на основе формулы (2.5) и потенциалов С. .. С Китайгородского и Н. .. Н Хилла [52] была вычислена потенциальная энергия внутреннего вращения в простейших углеводородных молекулах пропане и к-бутане. Эти расчеты показали, что в обеих молекулах минимуму потенциальной энергии соответствует транс-расположение связей С—С. Стерическое взаимодействие вносит сравнительно небольшой вклад в потенциальный барьер пропана ( 250 кал/моль), что согласуется с экспериментальным значением этого барьера 3300 кал/моль, всего на 300 кал/моль превышающем значение барьера в этане. Разность энергий между гош- и отренс-изомерами в я-бутане определяется стерическим взаимодействием атомов С метильных групп и особенно взаимодействием одной пары атомов Н указанных групп. Если принять, что го -изомеру соответствует угол внутреннего вращения ср=120°, то эта разность энергий Ш ж 900 кал/моль, что близко к экспериментальному значению. Если минимуму потенциальной энергии соответствует угол, несколько отличающийся от 120°, то в разность энергий между поворотными изомерами вносит, разумеется, свой вклад и эффект ориентации связей, но при разумных значениях /(,р (близких к Цд этана) величина Ш и в этом случае остается близкой к экспериментальному значению, равному 800 кал/моль. Наложение стерического взаимодействия и эффекта ориентации связей обусловливает довольно плоское дно потенциальных ям, соответствующих транс- и гош-изомерам н-бутана, что приводит к наличию крутильных колебаний с амплитудой 10—-15°. [c.65]

    Такой сегмент, отражающий механические свойства полимера, называется механическим, еще применяют термин кинетичесний сегмент, так как величина его зависит от энергии активации (высоты барьера) внутреннего вращения. Величину термодинамического сегмента вычисляют по закрнам Рауля или Вант-Гоффа. предполагая, что эти законы приложимы к растворам полимеров (см. с 523). Аналогично различают термодинамическую гибкость, определяемую различием в потенциальной энергии конформаций, которые переходят др>г в друга в результате теплового движения, и кинетическую, зависящую от высоты преодолеваемого при этом энергетического барьера. [c.382]

    Авторы работы 13218] показали также, что плоские цис-ъ транс-) конфигурации молекулы Н2О2 должны быть нестабильными, причем высоты цис- и /ярамс-барьеров ]/с и Vt на кривой потенциальной энергии внутреннего вращения (см. рис. 8, кривая 1) неодинаковы (Ус > У/)- Поэтому существуют две изомерные гош-конфигурации Н2О2, переход между которыми может быть осуществлен благодаря туннельному эффекту через транс-барьер 1 . Этот эффект обусловливает удвоение линий в спектре Н2О2, аналогичное инверсионному удвоению в спектре МНз. В дальнейшем результаты спектроскопических [616, 4392, 1729, [c.207]

    Плоские (цис- и транс-) конфигурации молекулы Н2О2 должны быть нестабильными. На кривой потенциальной энергии внутреннего вращения существует два барьера V (цис) и v, [транс), причем г с-барьер более высокий. Соответственно этому существуют две изомерные гош-конфигурации Н2О2, переход между которыми может быть осуществлен благодаря туннельному эффекту через гранс-барьер Vj [1]. [c.150]

    При дальнейшем моделировании реальной цепи цепочкой из жестких элементов следует учесть силовое взаимодействие между элементами. Это взаимодействие может быть введено через потенциальную энергию внутреннего вращения 1 , ((0 ,). В этом случае различные взаимные ориентации звеньев перестанут быть ра В-новероятными, возникнут преимущественные конформации цепи [13, 14, 16], цепочка может стать термодинамически более жесткой. С другой стороны, кинетическая жесткость цепи возрастает из-за необходимости преодоления барьеров внутреннего враще- [c.272]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    Второй тип конформационных эффектов связан с изменением конформации макромолекулы в процессе химического превращения, поскольку при этом изменяются химический состав, энергия внутри- и межмолекулярного взаимодействия, потенциальные барьеры внутреннего вращения звеньев в полимерной цепи и т. д. Конформация макромолекулы, обеспечивающая доступность реагента ко всем звеньям в начале процесса, например, может не реализоваться на более поздних стадиях, что приведет к замедлению реакции. Возможны и обратные случаи, когда реакция ускоряется за счет разворачивания цепи в данной среде по ходу превращения. Так, гидролиз поливинилацетата протекает с ускорением в отличие от его низкомолекулярных аналогов — этилацетата и 1,3-диацетооксибутана  [c.56]

    Сегодня квантовая химия позволяет с высокой точностью вычислять равновесные межъядерные расстояния и валентные углы, барьеры внутреннего вращения, энергии образования и энергии диссоциации, частоты и вероятности переходов под влиянием электромагнитного излучения в весьма широком диапазоне длин волн (от рентгеноэлектронных спектров до спектров ЯМР), энергии активации, сечения и константы скорости простейших химических реакций. В ходе квантовохимических расчетов для многих молекул было обнаружено, с одной стороны, существование значительного числа минимумов на потенциальных поверхностях, разделенных часто невысокими барьерами (нежесткие молекулы), была установлена высокая чувствительность электронного распределения к изменениям ядерной конфигурации, а с другой стороны, были подтверждены и постулируемые классической теорией возможности переноса локальных характеристик отдельных фрагментов молекул в рядах родственных соединений и т.п. Квантовая химия значительно облегчает интерпретацию различных экспериментальных спектров. [c.5]

    Потенциальный барьер внутреннего вращения в молекуле аро-пилена, равный около 8 кДж/моль [55], значительно больше изменения потенциальной энергии Фо взаимодействия молекулы с поверхностью при внутреннем вращении молекулы. Поэтому при расчетах молекула пропилена рассматривалась квазижесткой и имеющей конформацию, в которой связь С=С заслонена связью С—Н [c.334]

    Подобные конформации, соответствующие минимуму потенциальной энергии, называются поворотными изомерами. Внутрен нее вращение для этих конформаций носит характер крутильных колебаний с перескоками через барьер от одного изомера к другому. Разность минимальных значений потенциальной энергии между поворотными изомерами в большинстве случаев составляет 0,5— 1,5 ккал1молъ [3, 9—11]. Частота перескоков через барьер 10 сек (С/о — 3 ккалЫолъ). Характеристики молекул, проявляющиеся за время, меньшее времени жизни поворотных изо- [c.16]

    Вращение вокруг связей предполагалось независимым и описывалось потенциалом (V.14) с параметрами бутана. Для этого потенциала левый и правый гош-изомеры отделены очень высоким потенциальным барьером (рис. V.21) и переходы происходят только между транс- и гош-изомерами. Рассматривалась цепь из 200 звеньев с циклическими граничными условиями. Константа скорости трднстгош-перехода kt g определялась с помощью метода времен первого перехода. И для этой модели с разными энергиями транс- и гош-изомерова энергия активации для Kt g была равна высоте одного барьера. Таким образом, во всех рассмотренных трехмерных моделях при поворотно-изомерных переходах преодолевается один потенциальный барьер внутреннего вращения. [c.130]

    Определение геометрии равновесной конфигурации молекулы N3114 выполнили на базисе ЗТО-ЗС путем оптимизации полной энергии по всем геометрическим параметрам [24, 25]. Найденные в расчетах значения углов и длин связей практически совпадают с экспериментальными. Для барьера внутреннего вращения по связи N—N все расчеты качественно дают одну и ту же картину, хорошо согласующуюся с экспериментом энергетическая кривая имеет минимум для торсионного угла ср= 90 - 100° и два максимума -цис-барьер при 0° и транс- около 180° (рис. 1Г1). Однако количественные оценки весьма различаются. Наиболее надежны здесь, по-видимому, последние данные Джарви и Раука [25]. Дело в том, что это пока единственные расчеты с включением в базисный набор функций связи, что во многом эквивалентно введению в базис функций поляризации, существенно необходимых для удовлетворительного описания поляризованных связей N—Н- Кроме того, здесь рассчитана потенциальная поверхность гидразина с учетом возможного изменения при вращении валентных углов, а не одно ее сече— [c.13]

    Расчеты потенциала врашения по связи N—N в метил-и фгоргидразине[22] дают картину, качественно сходную с самим гидразином - минимум потенциальной энергии соответствует юш-конформациям (рис. 1.2). Однако в моноза-мешенных гидразинах две гош-формы уже неэквивалентны и устойчивость их вообще говоря различна. По данным расчетов для фторгидразина более выгодна так называемая "внутренняя" гош-форма ( У = 2 80о), а для метилгидразина -"внешняя" ( = 95°), хотя в последнем случае разность энергий двух минимумов составляет всего 0,3 8 кДж/моль (0,09 ккал/моль). Рассчитанный для метилгидразина барьер вращения качественно хорошо согласуется с кривой, найденной при анализе микроволнового спектра (рис. 1.3). Количественного же совпадения, особенно в величинах барьеров, здесь ждать трудно - грубыми являются как приближение жесткого врашения в расчетах [22], так и пренебрежение возможной инверсией при анализе спектров [30]. К тому же отметим, что другими авторами [31] на основании колеба- [c.15]

    Большой интерес для химиков представляет, как уже отмечалось в гл. V, явление заторможенного внутреннего вращения молекул вокруг одинарных связей. Это движение, приводящее к изменению конформации молекул и переходу от одной устойчивой, т. е. отвечающей минимуму энергии, конформации к другой, сопровождается преодолением потенциального барьера. Потенциальная функция внутреннего вращения (ПФВВ) может иметь несколько разных по высоте максимумов и разных по глубине минимумов. [c.238]


Смотреть страницы где упоминается термин Потенциальная энергия внутреннего вращения Барьер внутреннего вращения : [c.194]    [c.242]    [c.96]    [c.165]    [c.193]    [c.20]    [c.209]    [c.393]    [c.806]    [c.95]    [c.54]    [c.56]    [c.251]    [c.95]    [c.20]    [c.168]   
Физические методы исследования в химии 1987 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Барьер потенциальной энергии

Потенциальная яма

Потенциальные барьер

Энергия внутреннего вращения

Энергия внутренняя

Энергия вращения

Энергия потенциальная



© 2025 chem21.info Реклама на сайте