Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции термодинамическая возможность

    Термодинамический расчет дает возможность установить связь между концентрациями исходных веществ и продуктов реакции (а следовательно, определить достигаемый в данных условиях максимально возможный выход реакции) с помощью вычисления значения константы равновесия химической реакции. Для этого нужно рассчитать изменение энергии Гиббса во время реакции и из уравнения (У1-48) найти константу равновесия. [c.152]


    Стандартные потенциалы дают представления о возможном направлении окислительно-восстановительных химических реакций, однако в реальных условиях это направление может быть иным по следующим причинам. Окислительно-восстановительные системы, в зависимости от скорости реакций, протекающих на электродах, подразделяются на обратимые и необратимые. Стандартные потенциалы обратимых систем измерены непосредственно описанным выше способом, тогда как стандартные потенциалы необратимых систем в большинстве случаев находят путем термодинамических расчетов. Вследствие этого на практике их величины оказываются иными, так как на них оказывают большое влияние многие факторы. Например, для необратимых систем не наблюдается закономерного изменения потенциала в соответствии с изменением концентрации компонентов системы, и расчеты, проведенные с использованием стандартных окислительных потенциалов и концентраций компонентов, носят скорее иллюстративный характер, чем отвечают действительным данным. Поэтому гораздо большее практическое значение имеют формальные (реальные) потенциалы окислительно-восстановительных систем. Формальные потенциалы ( ф) находят, измерением э. д. с. гальванического элемента, в котором начальные концентрации компонентов окисли- [c.350]

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]

Рис. 2. Области термодинамической возможности химических реакций. Рис. 2. Области термодинамической возможности химических реакций.

    На основании законов термодинамики возможно не только количественно охарактеризовать превращение химической энергии в электрическую, но и установить связь между химическими и электрическими величинами. Направление химической реакции термодинамически выражается изменением изобарно-изотермического потенциала. В случае электрохимических реакций константа равновесия окислительно-восстановительной системы (К) определяется уравнением  [c.80]

    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]

    Накопление большого экспериментального материала дало возможность создать справочные таблицы значений основных термодинамических функций при разных температурах для большого числа химических соединений и почти для всех элементов. Тепловой эффект химической реакции при высоких температурах можно рассчитывать илн на основе табличных значений Нобр.. г. или п у- [c.202]

    Из сказанного следует, что возможность термодинамического вычисления отдельного значения химического потенциала компонента по любому из уравнений (1.23) исключается. Термодинамические вычисления, связанные с химическими потенциалами, можно производить только для закрытых систем, в которых либо происходит переход вещества из одной части системы в другую, либо в какой-нибудь части системы протекает химическая реакция. Термодинамические возможности, таким образом, ограничиваются либо вычислением разности значений химического потенциала компонента, либо вычислением разности значений линейной комбинации химических потенциалов типа уравнения (1.19). [c.15]

    Уравнение дает возможность вычислить величины AG и Ка по экспериментальным значениям Е и, наоборот, рассчитывать Е, зная термодинамические характеристики химической реакции. Примеры использования уравнения (XIX, 4) будут рассмотрены при описании электрохимических элементов различных типов. В суммарной реакции образования хлористого серебра в электрохимическом элементе участвуют только твердые вещества и газообразный хлор. Термодинамическое состояние их однозначно определяется давлением и температурой. Очень часто в суммарной реакции участвуют растворенные тела (например, в элементе Даниэля — Якоби). Изобарный потенциал реакции в таких случаях зависит не только от р и Т, но и от активностей растворенных веществ, т. е. от концентрации раствора, и величины , найденные экспериментально, можно ис-.  [c.529]

    Количественная оценка состояния равновесия позволяет узнать, является ли химическая реакция принципиально возможной, однако такая оценка ничего не говорит о скорости, с которой устанавливается это равновесие. Невозможно также решить в этом случае, какие из термодинамических процессов будут иметь место. Несмотря иа то что связь между химической термодинамикой и кинетикой учитывается константой равновесия, которую можно выразить как отношение констант скоростей прямой (к) [c.45]

    Для приближенной оценки направления протекания реакции и для предсказания термодинамической возможности ее протекания в данном направлении можно воспользоваться значениями стандартной энергии Гиббса (AG ), для большинства веществ приводимыми в справочниках. Для органических реакций и нефтехимических процессов можно считать, что при AG < < -40 кДж/моль реакция термодинамически возможна, а если AGt > 40 кДж/моль - реакция термодинамически запрещена. Если AG находится в промежутке между указанными значениями, необходимо сделать точный расчет по уравнению изотермы химической реакции. [c.84]


    Термодинамика химических реакций базируется главным образом на опытных данных. Результаты экспериментальных исследований служат большей частью основой как новых теоретических выводов и обобщений, так и обширного фактического материала, используемого при изучении различных конкретных реакций. Эти экспериментальные данные или непосредственно выражают термодинамические параметры реакции, или характеризуют свойства веществ— компонентов реакции, — дающие возможность рассчитать параметры реакций. [c.28]

    Резюмируя, можно сказать, что, если при химическом превращении происходит переход от состояния с высоким уровнем изобарного потенциала к состоянию с более низким его уровнем, то реакция термодинамически возможна и происходит самопроизвольно. Однако, если при превращении происходит переход, наоборот, от состояния с низким уровнем изобарного потенциала к состоянию с более высоким его уровнем, то такое превращение возможно только при затрате той или иной формы работы (посредством сжатия, электролиза или ионизации и т. п.) точно так же, как и в рассмотренной аналогии с водой, где для того, чтобы увеличить гравитационный потенциал, необходимо использовать насос. [c.18]

    С термодинамической точки зрения возможность всякой химической реакции и возможность промежуточных состояний, через которые должны пройти молекулы, чтобы быть способными реагировать, определяется двумя факторами, а именно энергией и энтропией. Эффективность катализатора в химической реакции или в достижении промежуточного состояния, через которое она проходит, следовательно, также ограничена изменением их величин. [c.49]

    Основой содержания курсового и дипломного проектирования по технологии неорганических веществ является выполнение расчетов по составлению материальных и тепловых балансов, расчетов по определению размеров аппаратуры и ее конструированию. В основе этих расчетов лежат уравнения химических реакций, термодинамические подсчеты возможных выходов или скорость протекания самих реакций. Особенно важной частью дипломного проекта является определение на основе физико-химических расчетов скорости протекания процесса, размеров аппаратов или производительности проектируемых аппаратов и установок. Выбор оптимальных условий проведения реакции, обеспечивающих наилучшие техно-эконо-мические показатели, требует глубоких знаний физической химии, химической технологии, процессов и аппаратов и других сопряженных отраслей науки и правильного использования их при проектных исследованиях. [c.4]

    Конкретные возможности использования термодинамических методов для исследования разных химических реакций непрерывно развиваются, особенно интенсивно в последнее время, В основе этого лежат  [c.13]

    Термодинамические методы исследований и расчеты дают возможность установить, может или не может система самопроизвольно реагировать при заданных условиях, предвидеть направление процесса, указывая в какую сторону при заданных условиях будет развиваться та или иная химическая реакция, дают возможность косвенным путем исследовать и те химические реакции, экспериментальное изучение которых представляет значительные трудности или в данное время невозможно. [c.219]

    Ясно поэтому, что изучение химических систем с одной лишь термодинамической точки зрения недостаточно. Не менее важно их изучение с точки зрения скоростей процессов, с точки зрения кинетики, которая имеет, таким образом, громадное практическое значение, определяя реальность осуш,ествления различных химических реакций, принципиальная возможность которых установлена термодинамически. [c.7]

    Следовательно, в зависимости от того, отрицательно или положительно значение АО, соответствующая химическая реакция может или не может быть самопроизвольной. Но хотя мы говорим, что данная реакция может быть самопроизвольной, это не значит, конечно, что она будет осуществляться на са.мом деле. Для того чтобы химическое равновесие было достигнуто, пришлось бы ждать бесконечно долгое время. Часто для протекания биохимической реакции, термодинамически возможной, необходимо каталитическое действие определенного фермента. Роль фермента в том и состоит, чтобы увеличивать скорость данной реакции, уменьшая время, требуемое для достижения равновесия этой реакции. [c.151]

    Необычное сочетание параметров газа при импульсном сжатии (давление порядка 3000 атм, температура около 2000 К) открывает для химии повую область исследований, для которой, как правило, отсутствуют не только кинетические, ио и термодинамические данные. Сочетание высоких телтератур и дав.лепий газа, приводящее к резкой интенсификации химических реакций, принципиально возможно только в условиях коротких ( 10" с) импульсов. [c.43]

    Каталитические превращения в системе газ — твердое тело (контактные процессы). Условие промышленного использования химической реакции — достижение большого выхода продукта за возможно меньшее время проведения этой реакции. Однако можно привести много примеров реакций, которые с термодинамической точки зрения должны в определенных условиях проходить с большим выходом продукта, но в действительности протекают очень медленно. Это связано с большим значением энергии активации таких реакций. [c.271]

    Изучением энергетических эффектов химических реакций, химических и физико-химических явлений занимается наука, называемая химической термодинамикой. Собственно термодинамика — это наука о температуре, теплоте и работе (от греч. терме — теплота и динамис — сила, работа). С появлением и развитием энергетического подхода к химическим реакциям стало возможным предсказывать их направление, математически оценивать различия в химических свойствах веществ. Знание термодинамических закономерностей позволяет избежать постановки химических экспериментов, заранее обреченных на неудачу. [c.114]

    Одной из основных задач химической термодинамики является. расчет изменения термодинамических функций при химических реакциях. Этот расчет выполняется по значениям термодинамических функций реагирующих веществ, приводимым в термодинамических таблицах. Нельзя составить такие таблицы для всех возможных состояний вещества. Поэтому возникает задача выбора такого состояния вещества, чтобы термодинамические функции его в этом состоянии можно было легко определить и использовать для последующих термодинамических расчетов. [c.44]

    Если в данных условиях термодинамически возможны два или три направления химической реакции, то преобладание того или другого из них и относительные количества получаемых продуктов реакции определяются всецело соотношением скоростей этих реакций, а не соотношением термодинамической устойчивости конечных продуктов. [c.472]

    В настоящее время происходит интенсивное накопление экспериментальных данных о термодинамических свойствах различных веществ и термодинамических параметрах химических реакций. Это приводит к качественно новым возможностям — на основе справочных данных расчетным путем определять положение равновесия, тепловые эффекты и другие термодинамические параметры для большого числа реакций, не прибегая к непосредственному экспериментальному определению этих величин, которое обычно бывает гораздо более трудоемким, более длительным и даже не всегда доступным. Особенно важно, что такие расчеты позволяют дать сравнительную оценку и найти оптимальные условия проведения реакции. [c.6]

    Применение термодинамических методов для исследования химических реакций в настоящее время дает возможность установить, какие из реакций в рассматриваемой системе при заданных температуре, давлении и концентрациях могут протекать самопроизвольно (т.е. без затраты работы извне), каков предел самопроизвольного их протекания (т. е. каково положение равновесия) и как следует изменить эти условия, чтобы процесс мог совершаться в нужном направлении в требуемой степени. На основе термодинамических методов можно определить также максимальное количество работы, которая может быть получена от системы, или минимальное количество работы, которое необходимо затратить извне для осуществления процесса. Вместе с тем термодинамические методы дают возможность определить тепловые эффекты различных процессов (химического взаимодействия и фазовых переходов). Все это имеет большое значение и для теоретического исследования, и для решения задач прикладного характера [c.13]

    Огромный фонд данных об основных термодинамических свойствах веществ в различных условиях их существования и о параметрах химических реакций разбросан в бесчисленных статьях периодических и других изданий. Для облегчения практического использования имеющиеся данные- объединены как по виду веществ или по другим признакам, так и по характеру величин или процессов в различные общие и специализированные справочные издания. Раньше в таких справочниках стремились приводить все имеющиеся в литературе данные о рассматриваемом свойстве, что давало возможность обнаружить противоречия. [c.73]

    В связи с этими трудностями общий объем данных о равновесии и связанных с ним термодинамических параметрах химических реакций первоначально был сравнительно ограниченным. Открытие третьего закона термодинамики дало возможность определять химические равновесия на основе расчета абсолютных значений энтропии путем измерения низкотемпературных теплоемкостей и теплот фазовых переходов. В настоящее время этот путь часто оказывается более доступным, чем путь прямого определения равновесия, в особенности, если имеется возможность использовать для тех или иных составляющих величин готовые справочные данные. [c.32]

    По мере накопления данных о термодинамических свойствах различных веществ и о параметрах химических реакций стали выявляться закономерные связи между свойствами веществ, с одной стороны, и их составом и строением — с другой. Эти закономерности дают возможность во многих случаях при отсутствии прямых данных определять свойства вещества на основе данных для других веществ, близких ему по составу и строению. В основу методов сравнительного расчета положено химическое подобие таких веществ. В настоящее время эти методы основываются больщей частью на эмпирически установленных закономерностях. Первоначально значения, получаемые при помощи сравнительных методов. [c.88]

    Особенности состояния атомов и связей при такой группировке атомов отражаются и на реакционной способности ее, что в органической химии принято обозначать термином экранирование . Термодинамический метод дает возможность количественно характеризовать влияние этого эффекта на константы равновесия и другие параметры химических реакций. [c.231]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    Что же использовано в рассмотренном способе Что здесь позволяет проводить химическую реакцию термодинамически обратимо Использована электрическая природа химических сил. Но по одному из фундаментальных законов физики, по теореме о вириале сил, потенциальной энергии взаимодействия частиц всегда соответствует определенная энергия их движения. А энергия движения частиц проявляется прежде всего в давлении, которое частицы оказывают на любую непроницаемую для них перегородку. Представим себе полупроницаемую перегородку, через которую свободно проходят молекулы всех реагирующих веществ, кроме одного ( -го) вещества. Давление на непроницаемую стенку, помещенную за полупроницаемой перегородкой, будет рйвно парциальному давлению -го вещества в реакционной смеси. Изменение числа частиц этого вещества, вызванное ходом реакции, немедленно скажется на величине парциального давления Р/. И наоборот, если ш>1 уравновесим извне давление р., но с небольшим избытком или же с недостатком (и таким образом вызовем парциальное сжатие или расширение), то получим возможность регулировать массу -го вещества, т. е. влиять на ход реакции (вблизи состояний равновесия системы). Сказанное послужило основой замечательной идее Вант-Гоффа о равновесном проведении химических реакций в газах и растворах посредством рабочих цилиндров, сообщающихся с реакционным сосудом через полупроницаемые перегородки (рис. 31). [c.312]

    Можно сказать, что если при химическом равновесии происходит переход высокого уровня свободной энергии к более низкому уровню, то реакция термодинамически возможна и происходит самопроизвольно. Однако бывает, что при превращении происходит переход от низкого уровня свободной энергии к более высокому уровню. Такое превращение возможно только прп затрате той или иной формы работы (посредством сжатия, электролиза или ионизации и т. п.), точно так же, как и в рассмотренной аналогии с резервуарами, где для того чтобы увеличить гравитационны потенц ал, необходи-мо использовать насос, который не может совершать работу без затраты энерп и. [c.81]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    Совместное проведение химических реакций с некоторым разделением реакционной смеси в одном и том же аппарате составляет предмет довольно много-числепны.ч исследований, а также является одним из технологических вариантов проведения процессов на практике. В качестве предмета исследования совмещенный процесс рассматривается в основном с позиций взаимного влияния массопереноса и химической реакции. Эти вопросы изучает макрокинетика и теория процессов массопередачи. Как технологический вариант проведения процессов в практике совмещенный процесс используется потому, что часто оказывается наиболее выгодным и сравнительно простым. Рациональное использование явлений переноса массы в момент проведения химической реакции обеспечивает до-Аолнительные возможности процессу как в кинетическом, так и в термодинамическом аспектах. Условия равновесия в системе с химическим взаимодействием компонентов могут быть рассмотрены в рамках термодинамики гетерогенных систем. [c.186]

    Катализ — мкЕ010Стадийиый физико-химический процесс избирательного изменения механизма и скорости термодинамически возможных химических реакций веществом — катали за го ром, образующим с участниками реакций промежуточные химические соединения. [c.79]

    Из этого отнюдь не следует, что катализатор может вызвать термодинамически невозможный процесс. Поскольку катализатор Е1Х0ДИТ в состав лишь промежуточного соединения, термодинамическая возможность процесса определяется разностью уровней свободной энергии конечного и начального состояний. Таким образом, химический процесс и в присутствии катализатора идет в направлении минимума свободной энергии в системе, а катализатор лишь ускоряет (или замедляет) этот процесс, т. е. не способен смещать положения равновесия. Это же заключение можно сделать и на оснонании рассмотрения следующей модели представим себе изотермическую систему, состоящую из газообразных компонентов, в которой термодинамически аошожна реакция с изменением числа молей. Предположим, что существует катализатор, смещающий положение равновесия. Тогда, попеременно вводя в систему и выводя из нее катализатор, можно будет при отсутствии разности температур неограниченно получать работу расширения и сжатия газов. Следовательно, сделанное предположение о возможности смещения равновесия в присутствии катализатора приводит к возможности построения вечного двигателя второго рода, т. е. к нарушению второго закона термодинамики. [c.273]

    Любая гальваническая цйяь в целом никогда не находится 1) равновесии. В необратимом элементе обычно возможно протекание химической реакции и при разомкнутой внешней цепи (реакция 2п + Н2504 в элементе Вольта). Но и обратимая (в указанном выше смысле) цепь в целом далека от термодинамического равновесия. Если такую цепь замкнуть на конечное сопротивление и предоставить самой себе, то во внешней цепи возникает электрический ток измеримой силы, т. е. цепь совершает работу, необратимо приближаясь к равновесию. Разомкнутая цепь только временно сохраняется почти неизменной. Например, в разомкнутом элементе Даниэля — Якоби происходит диффузия ионов Си2+ через раствор к цинковому электроду при соприкосновении цинкового электрода с ионами меди происходит необратимая (без совершения работы) реакция вытеснения ионов Сц2+ из раствора металлическим цинком, т. е. та же реакция, которая служит источником тока при работе с лемента. [c.519]

    Обратимый термодинамический процесс определяют как процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения. В противном случае процесс является необратимым. Следует подчеркнуть, что эта обратимость или необратимость процесса в термодинамическом смысле не qвпaдaeт с понятием об обратимости или необратимости химических реакций в химии, где термин обратимый нередко применяется к любым реакциям, которые могут осуществляться как в прямом, так и в обратном направлениях, хотя бы возвращение системы в исходное состояние было связано с теми или иными изменениями в окружающей среде. [c.180]

    То же относится и к химическим процессам. Взаимодействие водорода и кислорода с образованием воды может происходить самопроизвольно, и осуществление этой реакции дает возможность получать соответствующее количессво работы. Но, затрачивая работу, можно осуществить и обратную реакцию — разложения воды на водород и кислород, — например, путем электролиза. И другие химические реакции, которые по своим термодинамическим параметрам не могут в данных условиях совершаться самопроизвольно, можно проводить, затрачивая работу извне. Большей частью это осуществляют или путем электролиза, или при электрическом разряде в газах, или действием света, или же путем повышения давления (причем одновременно изменяются и условия проведения реакции). Из хорошо известных процессов такого рода можно назвать фотосинтез в растениях, получение натрия и хлора путем электролиза расплавленного хлористого натрия, получение металлического алюминия из бокситов путем электролиза, синтез аммиака при высоком давлении и др. [c.209]

    Не следует думать, что если возможны разные направления изменений данного вещества и образование продуктов, различных по устойчивости, преобладающим всегда будет то направление, которое ведет к наиболее устойчивому состоянию. То или другое направление процесса определяется в первую очередь соотношением скоростей параллельных процессов, а в большинстве случаев скорость зависит не столько от термодинамических параметров процесса, сколько от кинетических факторов. Поэтому очень часто процесс ведет к образованию продукта, который по термодинамической устойчивости занимает промежуточное место между исходными веществами и возможными продуктами взаимодействия, обладающими наибольщей устойчивостью в данных условиях. чЭто наблюдается и в химических реакциях и при фазовых переходах, например когда при кристаллизации из раствора (при достаточной степени пересыщения его) вещество выделяется в кристаллической форме, являющейся метастабильной для данных условий. [c.228]

    В результате применения термодинамического метода к исследованию этого вопроса в работах Горстмана (1873), Гиббса (1874), Л. А. Потылицына (1874), Вант-Гоффа (1885) и ряда других ученых было показано, что возможность самопроизвольного течения химической реакции зависит как от ее теплового эффекта, так и от изменения энтропии и соответственно от концентраций реагирующих веществ. Эта возможность характеризуется общими условиями самопроизвольного течения процессов ( 82) и уравнением изотермы химической реакции. [c.266]


Смотреть страницы где упоминается термин Химические реакции термодинамическая возможность: [c.552]    [c.38]    [c.46]    [c.13]    [c.7]   
Справочник по общей и неорганической химии (1997) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Возможные реакции



© 2025 chem21.info Реклама на сайте