Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография техника определений

    ТЕХНИКА ОПРЕДЕЛЕНИЙ В ХРОМАТОГРАФИИ [c.336]

    Новейшая техника хроматографирования — РТЛ — позволяет воспроизводить времена удерживания (1 ) в интервале сотых долей минуты — от хроматографа к хроматографу, от определения к определению, от хроматограммы к хроматограмме, от колонки к колонке. С помощью РТЛ можно намного проще, чем в случае традиционного хроматографического анализа, сравнить данные между различными хроматографическими системами (например, между ГХ и ГХ/МС) или измерения в интервале создать базу данных по для целей идентификации, быстро проверять и переходить от метода к методу. [c.558]


    В первом варианте техника определения более проста, требует меньше операций, удобна при использовании специализированных хроматографов непосредственно на месте проведения анализа. Современный уровень газовой хроматографии позволяет вводить пробы воздуха, не превышающие 0,1 л, а при работе с программированием температуры колонки — до 1 л. Ввод пробы в виде пара, разбавленного большим объемом воздуха, значительно ухудшает разделение близких компонентов, что является недостатком метода. Чувствительность существующих детектирующих устройств дает возможность анализировать таким способом принеси в концентрациях не ниже 10 ppm. Такой уровень чувствительности метода в целом является в минимальной степени удовлетворительным при анализе загрязнений в открытой атмосфере или в обитаемых помещениях. Например, при использовании аргонового, гелиевого и пламенно-ионизационного детекторов без концентрирования могут определяться концентрации не ниже 10" —10" %, по массе, что соответствует 1—0,01 мг/м . Темпе менее газохроматографическое определение органических примесей в воздухе без предварительного концентрирования находит применение для анализа загрязнений атмосферы в тех случаях, когда их концентрация достаточно высока. Примерами могут служить анализ смога [147], воздуха производственных помещений [148], выпускных газов двигателей внутреннего сгорания [149]. [c.109]

    Метод имеет следующие недостатки. Во-первых, как и при аналитическом применении, это ограничения системы труднолетучий растворитель (синоним — неподвижная фаза)—легколетучее растворенное вещество (синоним — вещество пробы). Во-вторых, при использовании метода, в частности для термодинамических измерений, всегда требуется тщательная проверка того, являются ли получаемые величины истинно термодинамическими или же зависящими от системы газохроматографическими величинами. Этот вопрос ниже рассматривается более подробно. В целом можно сказать, что применение газовой хроматографии Б качестве метода физико-химических измерений представляет собой сравнительно узкую специальную область. Несмотря на это, следует отметить, что развитие теории, а также усовершенствование экспериментальной техники газовой хроматографии постоянно создают предпосылки дальнейшего расширения этой области. В задачу данного раздела не входит полный обзор всех возможных применений газовой хроматографии в физико-химических исследованиях. Предметом изложения служат лишь те случаи, когда газовая хроматография нашла уже достаточно широкое применение. Приводимое в таблицах сопоставление данных, полученных хроматографическими и статическими методами, позволит оценить эффективность газовой хроматографии для определения физико-химических параметров. [c.328]


    Второй, более существенной причиной, осложняющей анализ, является постоянное наличие в сырых недистиллированных кислотах смолистых нелетучих веществ. Их содержание зависит от состава исходного сырья, катализатора и режима окисления, условий проведения всех предшествующих технологических операций и может колебаться от 3—5 до 25—30%. При современной технике определения состава смеси кислот методом газо-жидкост-ной хроматографии наличие такого неперегоняющегося остатка не учитывается, и результаты искажаются. [c.117]

    Рефрактометрия находит применение также в количественной тонкослойной хроматографии пятна разделенных компонентов экстрагируют подходящим растворителем, и концентрацию полученных растворов определяют по показателю преломления [39, 40]. В специальных методах разделения —электрофорезе, диффузии, ультрацентрифугировании — используется более сложная техника определения градиентов показателей преломления, рассматриваемая в гл. XV. [c.53]

    Дальнейший прогресс техники исследования равновесия между жидкостью и паром в системах, образованных компонентами с ограниченной взаимной растворимостью, связан с применением для анализа смесей газо-жидкостной хроматографии или других методов анализа, для которых требуется незначительная проба. В связи с незначительным количеством смеси, нужной для анализа, появляется возможность непосредственно анализировать паровую фазу. Приборы для исследования равновесия между жидкостью и паром, основанные на использовании газожидкостной хроматографии для определения состава смесей, описаны ниже. Они в равной мере применимы для систем с одной или двумя жидкими фазами. В последнем случае важно обеспечить хорошее перемешивание жидких фаз для достижения равновесия между ними и паром. Эти методы позволяют резко сократить расход веществ и затрату времени на исследование по сравнению с другими методами. [c.30]

    Новая техника определения химического строения методом газовой хроматографии. [c.96]

    Описание техники определения состава парафинового воска методом масс-спектрометрии и газо-жидкостной хроматографии. [c.23]

    В профилактике производственного травматизма большое значение имеет своевременное и точное определение причин отравления химическими веществами, особенно при попадании их внутрь с пищей. Подобные случаи чаще всего происходят в тех цехах, где пренебрегают правилами пользования химической посудой и используют ее для разогрева пищи, хранения и питья воды. Для правильного установления курса лечения при отравлении решающее значение имеет точное определение химического состава принятого внутрь вещества. Поэтому отдел техники безопасности должен заранее позаботиться о том, чтобы специалисты по хроматографии умели проводить анализы рвотной массы и. промывных вод желудка. С этой целью в центральной лаборатории завода необходимо иметь набор методик для быстрого определения качественного и количественного состава химических веществ. Такие анализы лучше всего выполнять с помощью хроматографов. Для оперативности списки и адреса химиков-аналитиков, подготовленных к проведению таких анализов, должны находиться у диспетчера. [c.18]

    Оценка разделения. Для определения состава пигмента листьев растений Цвет применил метод разделения на колонке, заполненной СаСОд. Он получил окрашенные зоны на сухом наполнителе, которые разделил механически, удалив наполнитель из колонки и разрезав его. Такой способ получения внутренней хроматограммы не типичен для современной техники проведения колоночной хроматографии. Его применяют лишь в особых случаях. Для удобного выделения вещества работу проводят с разъемными колонками или с колонками, снабженными пластмассовыми шлангами, отделяемыми после окончания процесса разделения. В случае разделения окрашенных веществ в самой колонке можно провести качественную оценку разделения (по значению определить ширину зоны и провести полу количественное определение концентраций растворов (применяя эталоны). Для количественного определения необходимо проэкстрагировать вещество из механически выделенных из колонны фракций и затем определить его содержание при помощи какого-либо метода. [c.353]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]


    Наиболее перспективным методом для определения состава продуктов горения оказалась газовая хроматография, которая в настоящее время является основным методом анализа сложных газовых смесей и широко применяется во многих отраслях науки и техники. [c.75]

    Значительно большими возможностями обладают современные интеграторы с элементами вычислительной техники. Они имеют память и набор различных программ для обработки данных. Тип обработки выбирает оператор. Эти устройства регистрируют хроматограмму и по окончании разделения немедленно печатают результаты расчета состава смеси, что особенно важно для серийного количественного анализа. Точностные характеристики данных систем, как правило, выше, чем у хроматографов, поэтому ошибки определения минимальны. [c.160]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Ничтожное количество смеси, требующееся для определения ее состава при использовании метода газовой хроматографии, простота и надежность этого метода анализа открывают новые возможности перед техникой экспериментального исследования равновесия между жидкостью и паром. По-видимому, впервые метод исследовапия, основанный на использовании газовой хроматографии, был предложен Л. С. Кофманом с сотрудниками [c.36]

    Количественный анализ. Новейшая техника разделения, такая, как газовая и тонкослойная хроматографии, позволила решать аналитические задачи, которые до недавнего времени решались методом количественной инфракрасной спектроскопии. Однако ИК-метод все еще широко используется полные сведения по этому вопросу можно найти в более обширных руководствах [1—11]. Для построения калибровочных кривых на график зависимости от состава смеси обычно наносят коэффициенты экстинкции, а не площади под кривыми. В химии полимеров [4, 7, 8, 10] можно встретить некоторые довольно интересные примеры, такие, как определение концевых групп, степени разветвлен ности цепи и степени кристалличности полимера. [c.174]

    К таким особенностям относится прежде всего возможность определения летучих компонентов в объектах, 11р мой ввод которых в газовый хроматограф невозможен или нецелесообразен из-за недостаточной чувствительности детектирующих устройств, присутствия легко разлагающихся веществ, нежелательности загрязнения колонки нелетучим остатком или опасности нарушения существующего в системе химического равновесия. Примером могут служить широко известные в настоящее время методы анализа крови на содержание алкоголя и ядовитых летучих веществ, эффективность и официальное признание которых способствовали развитию техники АРП. Сюда же относятся методы определения остаточных мономеров и растворителей в полимерных материалах, также принятые в качестве стандартных. Проблема санитарно-гигиенического контроля полимерных материалов методом газовой экстракции стала объектом пристального внимания и получила особую актуальность в связи с обнаружением канцерогенных свойств винилхлорида и необходимостью жесткого контроля его содержания в многочисленных изделиях широкого потребления. [c.9]

    Одно из новейших и весьма перспективных применений парофазного анализа — исследование летучих метаболитов микроорганизмов (жирных кислот, спиртов, аминов, простейших карбонильных и сернистых соединений). Ценность информации о составе летучих метаболитов для целей химической таксономии бактерий, вирусов и грибов, а также для диагностики вызываемых ими заболеваний выяснилась уже к началу 1970-х годов. Газохроматографический анализ жидких экстрактов, культуральных сред и клинического материала получил достаточно широкое распространение в микробиологических лабораториях [53—56]. Однако более целесообразным способом определения следов летучих компонентов в такого рода объектах следует считать парофазный анализ. При использовании техники парофазного анализа не только отпадает обременительная в условиях микробиологических и клинических лабораторий необходимость работы с огнеопасными экстрагентами и устраняются осложнения, вызываемые вводом в хроматограф нелетучих и легко разлагающихся веществ, но открывается возможность определения компонентов, маскируемых на хроматограммах экстрактов широким пиком растворителя. Флаконы для парофазного анализа, в которых производится распределение летучих веществ между исследуемым объектом и газом, могут быть использованы для транспортировки [c.265]

    По технике получения хроматограммы делят на нисходящие и восходящие. При получении нисходящей хроматограммы растворитель перемещается по бумаге сверху вниз, восходящей — снизу вверх. При нисходящей хроматограмме достигается больший коэффициент скорости перемещения вещества / /, но пятна получаются более размытые, чем при восходящей хроматограмме, где пятна меньше и более компактны. Поэтому первую хроматограмму обычно применяют для качественной оценки состава смеси, а вторую —для количественного определения ее компонентов. Кроме того, применяют круглую (радиальную) хроматограмму, при которой бумага находится в горизонтальном положении, а растворитель перемещается от центра к периферии. Для такой хроматограммы вырезают круг из фильтровальной бумаги диаметром 250—300 мм. В центре круга простым карандашом вычерчивают дополнительный круг диаметром 20 мм и на маленький круг наносят 8—10 капель (по 2—3 мкг) испытуемой смеси. Бумагу высушивают на воздухе, а затем зажимают между крышками эксикатора или крышками чашки Петри, которые служат хроматографическими камерами. Растворитель непрерывно подают в центр круга, обычно опуская в растворитель нарезанные полоски бумаги, соединенные с центром этого круга. Для хроматографии используют специально приготовленную фильтровальную бумагу, которая должна удовлетворять следующим требованиям не адсорбировать хроматографируемых веществ быть однородной по плотности и содержать минимум зольных, а также других примесей, растворимых в данных растворителях. [c.22]

    Определение функциональных групп, такпх, как свободные алифатические и фенольные гидроксильные, бензилспиртовые и бензилэфирные, карбонильные н метоксильные, осуществляют с помощью разнообразных химических и физических методов или их комбинаций. К недеструктивным физическим методам относятся УФ- и ИК-спектроскопия, спектроскопия ядерно-магнитного резонанса ЯМР (ПМР и -ЯMP), спектроскопия электронно-спинового резонанса ЭПР и масс-спектроскопия, частично в комбинации с газовой хроматографией. Техника и результаты эксперимента широко освещены в литературе [51, 102, 115, 156, 161, 212, 214, 233]. Наряду с изучением строения большинство вышеупомянутых методов использовали для общей характеристики и сравнения препаратов выделенных лигнинов, а также для установления изменений в лигнинах при химических и физических обработках, например в ходе варочных процессов (см. 6.4.1, 6.4.2, 10 и 11). [c.114]

    Следующий этап развития газовой хроматографии связан с разработкой в 1958—1959 гг. новых детекторов, с дальнейшим усовершенствованием техники определения, с разработкой капиллярной хроматографии. Стал возможным анализ очень малых количеств вещества — определение микропримесей в газах и жидкостях. Была достигнута высокая разделительная способность хроматографических колонн. Высокотемпературная хроматография дала возможность анализировать углеводородные смеси С — Сд,,, а также смеси других органических веществ. [c.3]

    Редкие газы можно разделить на две группы легкие (Не, N6, Аг) и тяжелые (Кг, Хе и Кп). Легкие газы применяют в науке и технике значительно чаще, чем тяжелые, поэтому анализу их уделяется больше внимания. Применение газовой хроматографии. для определения криптона и ксенона описано в немногих работах. Единственная известная нам работа по газовой хроматографии радона посвящена его препаративной очистке и будет рассмотрена в гл. УП. [c.22]

    Как и при изучении самодиффузии, в наших экспериментах требовалось определить профиль активности в различные интервалы времени. Детали диффузионной ячейки, термостат, экран и техника определения удельной активности описаны ранее [2]. В данной работе н-гептан последовательно обрабатывали концентрированной серной кислотой, раствором щелочи, водным раствором перманганата калия и затем подвергали перегонке. Примеси в дистилляте полностью отсутствовали, что было установлено с помощью газовой хроматографии. Способы очистки растворов метилдиоктил-амина в хлороформе и три-н-бутилфосфата описаны в работах [5, 6]. [c.312]

    Бурно развивающаяся новая техника потребовала быстрого совершенствования методов анализа. Однако классические методы анализа вследствие их малой чувствительности часто оказываются совершенно непригодными для определения малых количеств примесей. Возникшая проблема разработки методов определения ультрамалых количеств примесей оказалась практически разрешенной широким использованием разнообразных физических и физнко-хнмическнх методов анализа хроматографии, ионного обмена, экстракции, спектроскопии, люминесцентного анализа, полярографии, рентгеноскоги и, масс-спектро.метрии, радиометрических, кинетических и других методов анализа, основанных на применении прецизионных физических и ([ изико-химнческнх приборов. [c.20]

    Понятие хроматография охватывает большое число методов разделения веществ, на первый взгляд довольно различных. Под хроматографией понимают распределение разделяемых веществ в двух фазах, из которых одна относительно неподвижная (стационарная), другая продвигается мимо первой (подвижная). Стационарная фаза представляет собой высокодисперсное вещество с большой поверхностью. Хроматографические методы находят очень широкое применение в науке и технике. Это объясняется тем, что в итоге хроматографического разделения веществ можно провести качественное и количественное определение их без особых дополнительных операций. Поэтому часто под хроматографией подразумевают и метод определения веществ. Преимуществами хроматографических методов являются такж сравнительно небольшие затраты времени и возможность работы с небольшими количествами веществ. [c.341]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Во всех случаях мы постарались использовать наиболее надежные и современные из известных нам данных. В книгу не включены сведения о технике и методах химического синтеза эта широкая, самостоятельная область является предметом обсуждения во многих других книгах. Выбор и характер изложения материала отражает отчасти нант собственные интересы, связанные с нсследова1П1ямн в области органической химии. Однако большая часть помещенных здесь сведений применима почти ко всем разделам химии кроме того, в книге имеется материал, представляющий специальный интерес для физико-хнмиков, неоргаников и биохимиков. Предметом обсуждения в книге являются свойства атомов и молекул, сиектроскония, фотохимия, хроматография, кинетика и термодинамика, различные вопросы техники эксперимента, некоторые сведения из математики и методы обработки численных данных, а также множество трудно классифицируемых, но часто необходимых сведений. Помимо этих основных данных, в книге можно найти важные указания, определения и другие вопросы, связанные [c.9]

    Для разделения микропримесей Сг, N1, Со, Си, Мп, Сс1, Мо, Ге, Ка, Кр и Аи при их определении в уране используют метод хроматографии на бумаге [8861. Растворителем является смесь этанол — НС1 — вода (75 20 5), уран отделяют на бумаге, используя в качестве растворителя смесь диэтилового эфира с НКОд (95 5),-при этом все микрокомпоненты остаются на старте. Активационный анализ сочетают с хроматографией на бумаге при определении золота в трихлорсилане [886]. Предложена [1086] схема разделения примесей при анализе НС1, НКОд и Н2О2, используемых в полупроводниковой технике. Чувствительность составляет 10- 3 Аи. [c.187]

    Анализ равновесного пара успешно применяется для определения не только спиртов, но и других токсичных веществ в биологических материалах [54,55]—ацетона, ацетальдегида, анестетиков (эфира, хлороформа, гало-тана), основания амфетамина, галогенированных [56— 58] и ароматических [59] углеводородов, метилмеркап-тана [60] и метилметакрилата [61]. В большинстве случаев при определении летучих веществ в жидких биологических объектах техника и приемы количественного анализа аналогичны рассмотренным выше для этилового спирта. Различия в основном касаются условий газохроматографического разделения, выбора стандарта, температуры установления равновесия и способов дозирования в хроматограф газовой фазы. [c.134]

    В элементном анализе существует тенденция к уменьшению ручного труда и увеличению точности определений. Развитие приборной техники позволило в самые последние годы разработать прибор для автоматического элементного анг(лиза, в котором образующиеся при сжигании образца диоксид углерода, вода и азот током гелия наира з-ляются в присоединенный к прибору газовый хроматограф, с помощью которого осущест]зляется их одновременное количественное определение. С другой стороны, исиользованне масс-сиектрометра. высокого разрешения (см. раздел 1.1.9.3) позволяет простым способом определить брутто-формулу вещества без проведения количествейного элементного анализа. [c.34]

    Заслуженный хроматографист Герберт Халпаап, который, находясь на покое, не оставил тонкослойную хроматографию, довел эту славную технику до вида искусства хром-арта . Хроматографические знания (пластинку с красителем следует перегрузить ) и воплощение идеи (слой нужно определенным образом нарушить) дают здесь в прямом смысле слова фантастическое соединение. Я очень хотел бы, чтобы М.С.Цвет мог бы еще увидеть, на что способна его техника даже в искусстве. [c.13]

    Для установления количественного состава входящих в гликопротеин моносахаридов и аминокислот биополимер подвергают полному кислотному гидролизу, и состав гидролизата определяют обычными методами количественного анализа. Пептидные связи устойчивее гликозидных по отношению к кислотам, поэтому для полного расщепления на мономеры гликопротеины приходится гидролизовать в более жестких условиях, чем обычные полисахариды (6 н. НС1, 100—ПО °С, 24 ч) . Нужно иметь в виду, что как сахара, так и аминокислоты могут частично распадаться в условиях кислотного гидролиза, причем в ряде случаев можно с помощью ХОЛОСТЫХ опытов внести соответствующие поправки при анализе. Специфической для гликопептидов побочной реакцией в условиях кислотного гидролиза является возможная конденсация сахаров с аминокислотами, приводящая к окрашенной сложной смеси различных веществ, в том числе простейших карбонильных соединений (так называемая реакция Майяоа). Например, по данным Готшалка , потеря аминокислот при кислотном гидролизе богатых сахарами гликопротеинов может составлять до 30 %. Количественное определение моносахаридов проводят с использованием хроматографии, спектрофотометрической и колориметрической техники (см. гл. 14). Для анализа аминокислот применяют обычно методы, хорошо известные из химии белка. Так, количественный анализ аминокислотного состава проводят в автоматических анализаторах или с помощью газо-жидкостной хроматографии . [c.567]


Смотреть страницы где упоминается термин Хроматография техника определений: [c.444]    [c.444]    [c.295]    [c.174]    [c.5]    [c.53]    [c.226]    [c.253]    [c.197]    [c.138]    [c.39]   
Аналитическая химия (1980) -- [ c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматография определение



© 2025 chem21.info Реклама на сайте