Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обрыв цепи в ионной полимеризации

    Поскольку обрыв при ионной полимеризации, как правило, мономолекулярен, то в отсутствие реакций передачи цепи [c.128]

    На поверхности твердых катализаторов имеется набор активных центров различной активности или стереоспецифичности. Для многих гетерогенных катализаторов, представляющих собой ионные кристаллы, обрыв цепей при полимеризации эпоксидов отсутствует, и поэтому стереоспецифичность может реализоваться лишь на стадии роста или инициирования. [c.264]


    Обрыв цепей. Ограничение роста цепей в анионной полимеризации возможно по следующим реакциям 1) перенос гидрид-иона с конца растущей цепи на противоион или мономер, например  [c.278]

    Обрыв цепи при катионной полимеризации — явление редкое. В отличие от радикальной полимеризации реакция обрыва цепи при катионной полимеризации имеет первый порядок относительно концентрации активных центров. Для некоторых систем гибель активных центров может наступать в результате взаимодействия макрокатиона с противоионом либо за счет перехода ионной связи в ковалентную, что наблюдается, например, при полимеризации стирола, катализируемой СРзСООН  [c.19]

    В ионной полимеризации отсутствует бимолекулярный обрыв цепи. [c.29]

    Ионная полимеризация характеризуется также полным отсутствием или очень малыми разветвлениями основной цепи полимера, а также более высоким значением средней молекулярной массы и узким молекулярно массовым распределением полимеров по сравнению с радикальной. Этому способствует невозможность обрыва цепи путем соударения двух растущих частиц, имеющих одинаковый но знаку заряд. Обрыв цепи в ионной полимеризации происходит либо в результате реакции растущей цепи с низкомолекуляр-иыми добавками н примесями, либо путем передачи реакционной цепи на мономер или растворитель. [c.37]

    Ионная полимеризация является также цепной реакцией, но осуществляется с помош.ью катализаторов — веществ, которые активируют мономер, переводя его в ионное состояние. Процесс ионной полимеризации также складывается из нескольких элементарных актов 1) инициирование — образование ионов 2) рост цепи 3) обрыв цепи. В первой стадии образуются ионы, содержащие либо положительно заряженный (катионная полимеризация), либо отрицательно заряженный (анионная полимеризация) атом углерода с последующей передачей по цепи положительного или отрицательного заряда. [c.450]

    Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора. Обрыв цепи при анионной полимеризации происходит путем передачи цепи на растворитель и присоединения протона или другой положительно заряженной частицы. В данном случае обрыв происходит при взаимодействии карбаниона с аммиаком в результате присоединения протона аммиака с регенерацией иона амида МНг. Таким образом, амид калия не расходуется в процессе реакций. [c.85]


    Реакция обрыва при радикальной полимеризации протекает с большой скоростью при взаимодействии двух радикалов с последующей рекомбинацией или диспропорционированием. При катионной полимеризации обрыв цепи происходит в результате передачи на мономер или в результате взаимодействия растущего иона с противоионом. [c.88]

    Полимеризация по ионному механизму начинается с образования в реакционной системе инициатора — катиона или аниона (в зависимости от этого различают катионную и анионную полимеризацию). В качестве источников ионов в систему вводят специальные вещества АВ (например, неорганические и органические соли). Ионная полимеризация протекает через те же стадии, что и радикальная инициирование, рост и обрыв цепи. Так, анионную полимеризацию (с участием аниона B ) этилена можно представить следующими реакциями  [c.324]

    Опубликованы [132] аналогичные исследования кинетики полимеризации бутадиена. Весьма вероятно, что полимеризация изопрена в присутствии катализаторов типа циглеровского протекает по анионному механизму [109, 126]. Рост цепи полимера можно представить себе как результат включения поляризованных ориентированных молекул мономера между растущей цепью и поверхностью катализатора. Сильно ненасыщенные мономеры в большей степени ориентированы и сильнее адсорбируются на поверхности катализатора, чем молекулы полимера. Обрыв цепи происходит в результате передачи гидридного иона катализатору или передачи цепи молекуле мономера. [c.199]

    Ионная полимеризация, как любая цепная реакция, протекает в три стадии инициирование - образование ионов или ионных пар рост макроионов прекращение роста макроионов. Активные центры при ионной полимеризации состоят из растущего иона (К или К ) и противоиона (А или А ). Ионная полимеризация приводит к получению полимеров, не имеющих или имеющих очень мало боковых ответвлений, с высокой средней молекулярной массой и узким молекулярно-массовым распределением полимера. Это объясняется невозможностью обрыва цепи соударением двух растущих частиц, имеющих одинаковый по знаку заряд. Обрыв цепи в ионных процессах происходит обычно за счет передачи реакционной цепи на мономер или растворитель, или какие-то добавки и примеси. [c.31]

    При ионной полимеризации бимолекулярный обрыв цепей невозможен, поскольку активные концы растущих цепей взаимно [c.138]

    Пэ катионному механизму под действием гамма-облучения протекает раздельная и совместная полимеризация изобутилена и стирола в хлористом этиле при —78° С. Инициирование реакций состоит, вероятно, в том, что сначала в результате облучения отщепляется протон (преимущественно от молекул растворителя), который затем присоединяется к молекуле мономера образующийся при этом ион карбония возбуждает дальнейшую полимеризацию. Обрыв цепи осуществляется, по-видимому, за счет отрыва протона от концевого звена макроиона. Отщепившаяся частица взаимодействует с противоионом А , возникшим в результате захвата электрона молекулой мономера или растворителя при действии радиации  [c.163]

    Из предыдущей части ясно, что ионную димеризацию можно представить как ограниченную (вырожденную) полимеризацию, в которой можно выделить следующие три стадии инициирование (т. е, образование активированной группы), внедрение молекулы мономера и перенос (обрыв цепи). На первый взгляд тип миграции водорода и стерический результат внедрения сравнительно легко объяснить и классифицировать с точки зрения природы и стабильности заряженных частиц и степени ион-ности связей. Селективность димеризации олефинов достигается выбором особых условий полимеризации (температура, концентрация, растворитель. ..). Строение образующихся димеров хорошо согласуется со стабильностью карбанионов и карбониевых ионов и с основными данными об их реакционной способности. [c.168]

    Характерной чертой ионной полимеризации является также высокая чувствительность процесса к природе среды, изменение которой влияет не только на скорость элементарных стадий, но и на их механизм. Другая важная особенность касается актов обрыва цепи, которые при ионной полимеризации носят своеобразный характер и во многих случаях вообще отсутствуют. ЧаЩе всего реакции ограничения роста цепи в ионных системах должны рассматриваться как акты передачи, а не как кинетический обрыв. [c.89]

    Полимеризация алкена при действии кислых агентов должна протекать по механизму, сходному с механизмом присоединения галогеноводородов по двойной связи. На первой стадии протон кислоты присоединяется к алкену, образуя карбониевый ион. Далее, в отсутствие какого-либо другого достаточно сильного нуклеофильного агента следующая молекула алкена вступает в реакцию за счет электронной пары двойной связи, и образуется катион с более длинной цепью. Многократное повторение этого процесса может привести к катиону высокого молекулярного веса. Обрыв цепи происходит в результате потери протона. [c.184]


    Получение. Для получения П. п. используют гл. обр. ионную полимеризацию и поликонденсацию. Исходные иономеры — альдегиды, кетоны, циклич. эфиры, фор-мали, ацетали, спирты, гликоли и др. Для синтеза высокомолекулярных продуктов наибольшее распространение получил метод катионной полимеризации. По анионному механизму полимеризуются только эпоксиды (см. Окисей органических полимеризация) и альдегиды (см. Альдегидов полимеризация). Полимеризация по радикальному механизму крайне затруднена из-за относительно высокой энергии гомолитического разрыва связи С—О. Известны лишь немногочисленные работы по синтезу полимеров и сополимеров путем прививки карбоцепных блоков к готовым полиэфирным цепям. [c.65]

    Для ионной Р. п. характерно возрастание скорости процесса и мол. массы образующихся полимеров при понижении темп-ры [кажущаяся энергия активации от —4,2 до —12,6 кдж/моль (от —1 до —3 ккал/моль)]. Поэтому с уменьшением темп-ры (в интервале от 25 до —130°С) скорость Р. п. стирола в хлорированных углеводородах, а также акрилонитрила в триэтиламине и диметилформамиде проходит через минимум, что обусловлено изменением механизма от радикального к ионному. Скорость ионной полимеризации в р-ре пропорциональна интенсивности излучения в первой степени, а мол. масса полимеров не зависит от этого параметра, что указывает на мономолекулярный обрыв растущих цепей. Реакция ингибируется бензохиноном и кислородом (но не дифенилпикрилгидразилом). Составы сополимеров отвечают составам, найденным при каталитич. ионной полимеризации. Определяющую роль в развитии нонной Р. п. в р-ре при низких температурах, как и при каталитич. полимеризации, играет явление сольватации. [c.126]

    В настоящее время можно подчеркнуть одну особенность, которая отличает радикальный процесс от ионного и, очевидно, определяет возможность стереоспецифической полимеризации. В радикальной полимеризации после инициирования течение процесса полимеризации не зависит ог природы инициатора, в то время как в ионной полимеризации, благодаря тому, что катион и анион всегда ассоциированы в ионную пару, все этапы процесса (т. е. инициирование, рост, передача и обрыв цепи) находятся под контролем ионной нары и поэтому природа катализатора влияет на каждый из этих этапов процесса. [c.50]

    Обрыв цепи при полимеризации бутадиена под влиянием каталитических систем на основе л-аллильных комплексов переходных металлов может, в принципе, осуществляться так же, как и в других процессах ионно-координационной полимеризации. Однако изучение процесса полимеризации бутадиена под влиянием бис(л-кротилникельгалогенидов), содержащих радиоактивный углерод С, показало, что каждая полимерная цепь содержит две радиоактивные концевые кротильные группы . Это можно объяснить димеризацией макромолекулярных л-аллильных лигандов в результате термического распада комплекса [известно, что исходный бис(л-кротилникельгалогенид) способен разлагаться при 50° С с образованием дикротила], а также протеканием реакции пере- [c.214]

    Цепь начинается [уравнение (33)] с окислительной атаки серной кислоты по третичному водороду, что ведет к выделению двуокиси серы (при разложении иона бисульфата), которое сопровождает изомеризацию углеводородов при помощи этого катализатора [8]. Изомеризация [уравнение (34)] включает перемещение метильной группы вдоль углеродной цепи, что осуществляется весьма легко. Некоторые исследователи [75] считают возможным образование на этой стадии промежуточного циклического иона. При этом может наблюдаться также некоторое увеличение разветвленности в результате образования диметилпентанов, но в гораздо меньшей степени. Цепь развивается за счет перехода третичного атома водорода от молекулы углеводорода к одному из ионов карбония (35). На этой стадии образуется другой ион карбония, который также чувствителен к реакциям изомеризации и развития цепи. Обрыв цепи, по-видимому, сопряжен с реакцией полимеризации носителя цепи с обра-аованием сильно непредельных органических комплексов, которые накапливаются в кислотном слое [33]. [c.38]

    При этом регенерируется активный центр, который может вызвать полимеризацию новой порции мономера. Аналогичный механизм полимеризации изобутилена предлагает Топчиев [12], с той лишь разницей, что растущий ион карбония отделен от аниона, возможно, вследствие диссоциации. Обрыв цепи происходит в результате взаимодействия полимерного карбониевого иона с анионом после израсходования всего изобутилена. [c.330]

    ИоЕгнал полимеризация, как и радикальная, является цепным процессом. От радикальной ионная полимеризации отличается тем, что полимерная цепь, образующаяся в присутствии ионных катализаторов, не содержит свободных радикалов, а активные центры в ней образуются в результате присоединения катализатора к молекуле мономера, вследствие чего образуется малоустойчивый ион, к которому последовательно присоединяются молекулы мономера с одновременным перемещением заряда на крайнее звено растущей цепи. Таким образом, в этом случае рост цепи осуществляется под действием макроиона, а не макрорадикала, как это имеет место в радикальной полимеризации. Обрыв цепи макромолекулы при ионной полимеризации происходит в результате отщепления от макромолекулы катализатора, который, таким образом, не расходуется на образование макромолекулы. [c.373]

    При алкилировании изобутана обрыв цепи ведет к образованию преимущественно (хотя и не единственно) 2,2,4-триметилпентана продукт, получаемый при обрыве цепи, близок по составу к продукту алкилирования изобутана изобутиленом. Сходство составов алкилатов (особенно фракций Се), получаемых при алкилировании разными олефинами, и существенное их отличие от равновесного (рассчитанного на основании термодинамических данных) показывают, что углеводородные молекулы в алкилате относительно стабильны в условиях алкилирования и изомеризуются лишь-незначительно. Нежелательные побочные продукты, например ди-метилгексаны и тяжелый остаток, вероятно, образуются при изо-, меризации и полимеризации бутиленов (а не при изомеризации алкилата или изооктилкарбоний-ионов). [c.35]

    Методькинтеза ВМС. Строение мономера функциональность мономера. Полимеризация цепная и радикальная.,. Элементарные акты радикальной полимеризации инициирование, рост цепи и ее обрыв. Ионная полимеризация (катионная и анионная). Анионно-координационная полимериз ация. Поликонденсация. Отличительные особенности реакции поликонденсации. [c.172]

    Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона нозрасгает с увеличением электроотрицательиости заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальпой полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов ( живые полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров. [c.47]

    Такие олефиновые концевые группы были обнаружены при полимеризации пропилена [69]. Их присутствие полностью согласуется со всеми рассмотренными выше механизмами, так как все они предполагают участие металлорганических соединений. При радикальном и ионно-радикальном вариантах механизма обрыв цепи может происходить в результате диспропорционирова-ния или димеризацпи растущих радикалов, что также ведет к появлению ненасыщенных и насыщенных концевых групп. [c.298]

    Обрыв цепи при ионно координационнон полимеризации происходит различными способами  [c.142]

    Обрыв цепи при катионной полимеризации обычно осуществляется путем переноса протона к мономеру или рекомбинации карбениевого иона с анионом. Такие соединения, как амины, простые эфиры и сульфиды, которые реагируют с карбениевыми ионами, образуя более устойчивые ионы, ингибируют реакцию. По катионному механизму полимеризуются не только виниловые мономеры известны и другие примеры (уравнения 14, 15). В реакциях полимеризации, проходящих с разрывом цикла в мономере, движущей силой процесса в значительной мере является напряженность цикла. [c.305]

    При ионной полимеризации можно выделить те же элементарные стадии, что и при радикальной инициирование, рост, обрыв и передачу цепи. Полимеризация под влиянием ионных катализаторов обычно происходит с большими, чем при радикальной, скоростями и приводит к получению полимера большей молекулярной м ссы. Реакционная система в случае ионной полимеризации часто является гетерогенной (неорганический или металлоргани-ческий твердый катализатор и жидкий органический мономер). [c.49]

    Этот ВИД полимеризации, связанный с возникновением ион-радикалов, интересен тем, что дает возможность получать живые полимерные цепи, т. е. растущий макробианион длительное время способен возбуждать полимеризацию при добавлении новых порций мономера. Обрыв цепи даже способами передачи на растворитель или мономер исключен полностью. Полимеризация прекращается только после исчерпания всего мономера. Полимеры, получаемые этим способом, характеризуются высоким значением молекулярной массы и малой полидисперсностью. [c.52]

    Влияние ионизации, природы растворителя, противоиона и т. д. на катионную полимеризацию может проявляться различно. В случае системы стирол — Sn l -НаО— I4 повышающее диэлектрическую постоянную добавление полярного нитробензола приводит к значительному возрастанию скорости полимеризации, но мало отражается на молекулярной массе. Это можно объяснить тем, что увеличение полярности среды ускоряет инициирование и тормозит обрыв цепи, так как оно благоприятствует переходу каталитического комплекса в ионное состояние, одновременно ослабляя взаимное притяжение макроиона карбония и [Sn I OH]". Хотя ускорение инициирования и замедление обрыва цепи приводят [с возрастанию общей скорости полимеризации, эти факторы оказывают противоположное влияние на молекулярную массу полимера (первый фактор снижает, а второй — увеличивает его), в значительной степени компенсируя друг друга поэтому молекулярная масса мало зависит от диэлектрической постоянной. [c.155]

    Можно также инициировать катионную полимеризацию и сополимеризацию при ПОМОШ.И радиационных методов [8], применяя очень низкие температуры и электроноакцепторные полярные растворители (например, хлористый этил), способствующие увеличению времени жизни катионов. Стабилизирующая роль растворителей состоит, по-вндимому, в том, что они захватывают вторичные электроны, отрывающиеся от молекул системы при ее облучении, и тем самым затрудняют их взаимодействие с катионами. В этих условиях свободные радикалы, возникшие вместе с ионами в результате облучения, проявляют незначительную активность и практически не в состоянии возбуждать полимеризацию. Ионный характер реакции подтверждается тем, что радикальные ингибиторы не тормозят ее, и тем, что сополимеры, полученные такими методами, не отличаются по составу от сополимеров, синтезированных из тех же мономерных смесей в условиях обычной катионной полимеризации (см. с. 199 и след.). В гомогенной среде скорость полимеризации пропорциональна первой степени интенсивности облучения (мономолекулярный обрыв цепи), в то время как прн радикальной полимеризации она пропорциональна квадратному корню из интенсивности. В соответствии с этим повышение мощндсти дозы облучения ускоряет ионный процесс в большей степени, чем радикальный, и поэтому благоприятствует катионной полимеризации. [c.163]

    Наиболее распространенные методы полимеризации соединений в кристаллическом состоянии — радиохимический (в объеме кристалла) и фотохимический (на поверхности кристалла). В случае кристаллических мономеров, обладающих палочкообразной формой молекулы и имеющих некоторые вращательные степени свободы, возможно термическое инициирование, например -ацета-мидо- и м-бензамидостнролы мгновенно полимеризуются при 50—70°С, т. е. при температурах, которые значительно ниже их температур плавления. Механизм реакцни в зависимости от условий может быть радикальным или ионным. Часто реакция продолжается после прекращения облучения — пост-полимеризация, что связано с низкой подвижностью реагирующих частиц, затрудняющих обрыв цепи. [c.257]

    При радикальной полимеризации обрыв цепи достигается либо образова< кием а конце цепи двойной связи С—С с одновременной миграцией атома водорода в начало цепи (как показано выше), либо форыироваииеи цикяов. При ионной полимеризации обрыв цепи происходит в результате присоедиие имя противоиона. [c.446]


Смотреть страницы где упоминается термин Обрыв цепи в ионной полимеризации: [c.242]    [c.604]    [c.604]    [c.231]    [c.108]    [c.139]    [c.357]    [c.290]    [c.21]    [c.126]    [c.21]    [c.266]    [c.38]   
Кинетика полимеризационных процессов (1978) -- [ c.56 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная полимеризация

Ионная полимеризация Полимеризация

Обрыв цепи



© 2025 chem21.info Реклама на сайте