Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут определение кислорода

    Для определения кислорода в железе, свинце, меди, серебре и висмуте можно нагревать металл в токе водорода и определять образующуюся воду [c.823]

    Этот метод был применен для определения кислорода в меди, боре, таллии, кремнии, германии, титане, мышьяке, сурьме, селене, теллуре, уране, иоде, висмуте, ванадии, хроме, ниобии, тантале, вольфраме и свинце. [c.823]

    Необходимым условием длительной непрерывной работы висмут-молибденовых катализаторов является наличие кислорода в продуктах выше определенной пороговой концентрации, которая в зависимости от температуры колеблется от 1 до 3% (мол.) (20] При работе в таких условиях катализатор в течение нескольких тысяч часов непрерывной работы без регенерации сохраняет высокую активность (табл. 2). [c.684]


    Характер взаимодействия между частицами внутри ядра не позволяет образоваться ядрам с любым количеством нейтронов и протонов. Устойчивые ядра состоят из определенных комбинаций протонов и нейтронов. Для устойчивых ядер легких элементов число протонов и нейтронов приблизительно одинаково. Например, устойчивые изотопы углерода С и содержат 6 протонов и б или 7 нейтронов, устойчивые изотопы азота Ы и — 7 протонов и 7 или 8 нейтронов, а устойчивые изотопы кислорода 0, О, 0 — 8 протонов и соответственно 8, 9, 10 нейтронов. По мере увеличения атомного номера оптимальное отношение числа нейтронов к числу протонов возрастает, достигая у тяжелых элементов величины 1,5. Изотопы с устойчивыми ядрами называют стабильными изотопами. Они имеются у всех элементов с атомными номерами от 1-го (водород) до 83-го (висмут), за исключением 43-го (технеция) и 61-го (прометия). Часто, особенно [c.25]

    С другой стороны, металлический висмут окисляется при определенных условиях растворами трехвалентного железа, двухвалентной меди, иодом, азотной кислотой и др. Мелкораздробленный металлический висмут сравнительно легко окисляется кислородом в присутствии влаги при хранении на воздухе, а также при высушивании при 100°. [c.259]

    Металлический висмут легко окисляется иодом, бромом, ионом трехвалентного железа. В мелкораздробленном состоянии висмут сравнительно легко окисляется кислородом в присутствии влаги при хранении на воздухе, а также — высушивании при 100°. Это обстоятельство может привести к искажению результатов ири весовом определении висмута в виде металла .  [c.291]

    Висмут восстанавливается на платиновом электроде, поэтому описанное титрование можно проводить и по току восстановления висмута без наложения внешнего напряжения. Однако анодный метод следует предпочесть, так как при этом исключаются токи восстановления элементов, могущих мешать определению (в том числе восстановление кислорода). [c.189]

    Среди этой группы веществ в качестве катализаторов окисления аммиака изучены только окислы бария [298], бинарный катализатор из окислов редкоземельных элементов (Рг, Nd) [299], а также окислы висмута [298, 30(3—303]. Требованиям сохранения стабильности в условиях реакции удовлетворяют также окислы главных подгрупп III, IV групп, а также окись сурьмы. Учитывая необходимость наличия определенной подвижности поверхностного кислорода, каталитической активности в рассматриваемой реакции среди этих веществ следует ожидать, прежде всего, у окислов олова, свинца и сурьмы. [c.248]


    При определении более высоких содержаний примесей к остатку после выпаривания кислот прибавляют от 10 до 100 мл фона. После удаления кислорода азотом (водородом) в течение 3—5 мин. проводят регистрацию полярограммы переменного тока при удобной чувствительности прибора и периоде капания ртути 2,8—3 сек. Для определения висмута, меди, свинца, кадмия и цинка применяют электролит, содержащий 0,05 М соляную кислоту и 0,5 М хлорид калия. [c.197]

    В ходе зонной плавки, наряду с переносом примеси к концам образца, могут протекать вторичные процессы, например такие, как избирательное испарение примесей и их окисление. Испарение может привести к нежелательной потере примеси, а окисление за счет кислорода, присутствующего в защитной атмосфере и в исходном металле, к образованию труднорастворимых окислов, которые не будут участвовать в процессе переноса при зонной плавке. Если последняя предназначена для получения чистых материалов, то указанные вторичные процессы должны способствовать очистке. Однако при использовании зонной плавки как способа количественного концентрирования примесей для дальнейшего их определения вторичные процессы могут влиять на ход анализа, приводя к потере примеси при получении концентрата. Поэтому целесообразно рассмотреть (на примере висмута) влияние вторичных процессов, сопровождающих зонную плавку, на эффективность концентрирования примесей. [c.381]

    Объем сведений, приведенных по определению отдельных элементов, зависит от двух основных факторов. Во-первых, учитывалась степень интереса, проявляемого к данному элементу нефтяниками и потребителями нефтепродуктов. По этому признаку, например, определению свинца, железа, ванадия и некоторых других элементов уделялось больше внимания, а определению серебра, висмута, вольфрама — значительно меньше. Во-вторых, значительную роль сыграло наличие в распоряжении автора достаточной информации по определению данного элемента. Так, из-за отсутствия публикаций по определению в нефтепродуктах углерода, водорода, кислорода и азота методами атомной спектроскопии определение этих элементов рассмотрено лишь в гл. 7. [c.277]

    Зависимость, существующая между максимальным током электрохимического растворения металла, осажденного на индифферентном электроде, и концентрацией его ионов в растворе, дает возможность использовать метод инверсионной вольтамперометрии твердых фаз в аналитических целях. Возможность определения элементов методом инверсионной вольтамперометрии металлов определяется рабочей областью потенциалов применяемого индифферентного электрода. Лучшими с этой точки зрения являются специально подготовленные графитовые электроды. Они электрохимически устойчивы, реакции разряда — ионизации водорода и кислорода протекают на этих электродах с большим перенапряжением. Так, в нейтральной среде практически свободен интервал потенциалов (-f0,9) — (—1,2) в относительно насыщенного каломельного электрода, в кислой среде он смещается в положительную, в щелочной— в отрицательную сторону. Таким образом, возможно определять и благородные металлы, и металлы сдвинутые в ряду напряжений в сторону отрицательных потенциалов. Разработаны методики определения золота, серебра, ртути, меди, висмута, сурьмы, свинца, олова, никеля, кобальта, таллия, индия, кадмия и железа. [c.41]

    Определение сурьмы и висмута в свинце. Растворяют 0,2— 0,5 г свинца в 15—20 мл азотной кислоты (1 1), упаривают раствор досуха и растворяют сухой остаток в 20 мл соляной кислоты (1 1). Снова упаривают раствор досуха и растворяют остаток в 20 мл соляной кислоты. Упаривание с соляной кислотой повторяют еще 3 раза. Сухой остаток растворяют в 20 мл 8 и. соляной кислоты, добавляют 1,5—2 г лимонной кислоты и 100 мкг ртути (И). Раствор переносят в электролизер и удаляют кислород током инертного газа 10—-12 мин. Проводят электролиз перемешиваемого раствора в течение 2—5 мин при потенциале —0,5 в. Прекращают перемешивание, дают раствору успокоиться 30 сек и регистрируют анодную поляризационную кривую. [c.55]

    Применение хрома (И) в качестве восстановителя очень подробно рассмотрено в монографии [1]. Можно отметить определение хлорида олова (IV) в присутствии катализаторов, например Sb или Bi" [91], Sb в 20%-ной НС при нагревании [91, 92], меди-(II) [93, 94], серебра, золота, ртути, висмута, железа, кобальта, молибдена, вольфрама, урана, бихроматов, ванадатов, титана, таллия, пероксида водорода, кислорода в воде и газах, а также органических соединений, например, азо-, нитро- и нитрозосоединений и хинонов. [c.412]

    Скорость восстановления — окисления катализатора. Исследование скорости этого процесса позволяет установить роль кислорода и тем самым подойти к выяснению механизма реакции. Впервые начальная скорость восстановления висмут-молибденового катализатора определена в работе [324]. Установлено, что она равна скорости основной реакции. В работе [367] скорость восстановления и окисления окисного железо-сурьмяного катализатора, определенная тремя независимыми способами, оценивается при температуре 425° С величиной 1 нлО м - сек. [c.207]


    Представляет интерес метод вакуумной экстракции для определения кислорода в ниобии [27], основанный на результатах исследований, утверждающих, что кислород можно экстрагировать из ниобия при нагревании до 2000° в вакууме 10торр. Водородный метод применяется для определения кислорода в висмуте [28] и сурьме [29]. Образцы висмута весом 1—10 г в зависимости от содержания кислорода в металле нагреваются при 850—900° в течение 30 мин. Примесь углерода приводит к завышенному содержанию кислорода. Восстановление окислов сурьмы водородом происходит в токе сухого водорода при 700°. Полное время восстановления равно около 4,5 час. Метод вакуум-плавления с железной ванной применяется для определения газов в хроме [30], молибдене, вольфраме [26] из элементов седьмой группы в марганце [1] в элементах восьмой группы в кобальте, никеле [31]. Газы в железе и платине также определяются методом вакуум-плавления. Из рассмотрения свойств других платиновых металлов можно ожидать, что методом вакуум-плавления могут определяться газы в родии и палладии. [c.87]

    Проведен анализ литературных и патентных источников по окислению D-глюкозы и этиленгликоля. Разработаны методики гетерогенно-каталитического окисления D-глюкозы и этиленгликоля молекулярным кислородом, приготовления новых катализаторов и их модификации разработаны методы анализа реакционной массы. Изучена каталитическая активность синтезированных катализаторов (Pd-Bi/Сибунит) в реакции селективного окисления D-глюкозы. Определены оптимальные условия проведения процессов окисления D-глюкозы и этиленгликоля при варьировании следующих параметров интенсивности перемешивания, температуры, количества субстрата, катализатора и подщелачивающего реагента, скорости подачи кислорода. Показано, что скорость и селективность процесса существенно зависят от pH среды и температуры. Получены результаты по определению характеристик катализатора, реакционной смеси субстрата и продукта физико-химическими методами ИК-, РФЭ-спектроскопией, рентгенофлюоресцентным анализом, электронной микроскопией дериватографическим анализом. Данные РФЭ-спектроскопии показали что в биметаллическом катализаторе Pd-Bi/Сибунит (в окислении D-глюкозы) - содержится как Pd (0) так и Pd (2+), а висмут в состоянии Bi(3+). Данные дериватографического анализа показали, что катализатор Pd-Bi/Сибунит устойчив при температурах до 400 С, что удовлетворяет условиям эксперимента. Методом ИК-спектроскопии, по анализу смещения характеристических полос субстрата до и после координации с катализатором, установлено, что имеет место существенное взаимодействие катализатора с субстратом. В каталитическом окислении этиленгликоля оптимизирован реакционный узел и условия процесса окисления этиленгликоля в стационарном слое катализатора. [c.67]

    Бауман [294] разработал газоволюметрический метод определения -висмута, основанный нд осаждении висмута в виде бихромата висмутила по Леве и определении количества хромовой кис 1оты в осадке или али-кватной части фильтрата по объему кислорода, выделившегося при действии на нее серной кислоты и перекиси водорода  [c.103]

    Основные соли многочисленны и имеют определенное практическое значение. Основные соли образуют такие элементы, как бериллий, магний, алюминий, многие из переходных металлов А-подгрупп (например, титан, цирконий), Зс -элементы, такие, как железо, кобальт, никель, 4/- и 5/-элементы (церий, торий, уран) и большинство элементов Б-подгрупп, в частности медь(П), цинк, индий, олово, свинец н висмут. Образующиеся при действии кислорода и влаги иа сульфидные и другие руды, они входят в обширный класс вторичных минералов, а некоторые из них являются продуктами коррозии металлов. Минералы брошантит Си4(0Н)б504 и атакамит Си2(ОН)зС1 образуются в виде налета на меди под воздействием окружающей среды лепидокрокит 7-Ре0(0Н) образуется при ржавлении железа, а гидроцинкит 2п5(0Н)б(С0з)г является обычным продуктом коррозии цинка во влажном воздухе. Белый свинец РЬз(0Н)г(С0з)2 является представителем большого числа основных солей, используемых в качестве пигментов, в то время как М 2(ОН)зС1-4Н20 образуется при схватывании цемента Сореля. [c.373]

    Висмут (III). Потенциометрическое титрование висмута (П1) раствором rS04 или СгС1г проводят в растворе НС1 при комнатной [49, 50] или при повышенной температуре [51. Концентрация соляной кислоты должна быть не выше 6 н., так как при ее более высокой концентрации наблюдается неотчетливый скачок потенциала [49, 50]. Перед титрованием из раствора удаляют кислород продуванием СО2 в течение 15—20 лик (можно также проводить предвосстано-вление, как при определении меди). [c.173]

    Выбор того или иного электрода и потенциала для титрования зависит от состава титруемого раствора анодный метод с платиновым электродом особенно пригоден в присутствии различных примесей, так как при указанном выше потенциале обычные элементы (железо трехвалентное, ионы водорода, кислород и др.) не будут давать диффузионного тока. При всех вариантах титрования мешают вещества, осаждающиеся оксихинолином в данных условиях (в кислой среде в присутствии иодида), в первую очередь кадмий и медь. Свинец, который также может мешать, осаждают в виде сульфата в сильнокислом растворе (азотная кислота 2,5 М) осадок отфильтровывать нет надобности, титрование проводят непосредственно в присутствии осадка сульфата свинца. При титровании следует избегать присутствия больше чем 0,1 н. хлорид-ионов, так как хлорид увеличивает растворимость осадка иодокси-хинолята висмута. Описанный метод позволяет определять 15 мг (и больше) висмута в 30 мл раствора, причем средняя ошибка не превышает 1% (судя по таблицам, приведенным в статье ). Определение меньших количеств висмута ограничено растворимостью осадка. [c.187]

    Для выяснения отдельных стадий окисления олефина на типичном катализаторе окисления — молибдате висмута — было исследовано поведение дейтеркрованной в метильной группе молекулы пропилена [200]. Определяли кинетический изотопный эффект, который является отношением вероятностей разрыва связей С—О и С—Н. На основании этих данных была предложена схема отрыва первого, второго и третьего атомов Н от молекулы пропилена с образованием промежуточных форм, например аллила (при удалении одного атома Н ), который при действии кислорода превращается в акролеин. Определение количества дейтерия в продуктах окисления пропилена, содержащего атом О у первого или третьего атома С, показало, что внедрение атома кислорода происходит после отрыва второго атома Н от аллильной промежуточной формы, т. е. образование акролеина является следствием стадии (2)  [c.89]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Мы использовали описанный метод обогащения для осцил-лополярографического определения свинца в висмуте. Специальными опытами было установлено, что нет необходимости проводить удаление кислорода и добавлять желатину в полярографи-руемый раствор, как это делается в методах классической полярографии. Из раствора после обработки амальгамы отбирали аликвотную долю и проводили полярографирование на фоне соляной кислоты (1 1). При малых количествах свинца для попя-рографирования использовали весь объем раствора. Результаты ряда определений приведены в табл. 5. Описанный метод определения свинца в висмуте отличается простотой и быстротой исполнения. [c.222]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    В первом томе учебника Г. Реми Курс неорганической химии (1972 г.) отмечается, что уже в процессе синтеза происходит отщепление кислорода, и полученный продукт представляет собой не чистое соединение, а смесь BijOj и ВЮ2. Еще более определенно высказываются Ф. Коттон и Дж. Уилкинсон, авторы учебника Современная неорганическая химия (1969 г.) вот что они пишут Единственным хорошо изученным окислом висмута является В120з. .. По-видимому, пятиокись висмута существует, но она крайне неустойчива и никогда не была получена в совершенно чистом состоянии . [c.69]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Как показал наш опыт, описанные в литературе методы не всегда целесообразно применять на практике. В качестве примера можно привести метод определения железа в минералах и горных породах, для которого оказались непригодными общепринятые способы титрования перманганатом калия вследствие нерезкого конца титрования и несовершенства методов восстановления титрование же сульфатом церия (IV) или ванадатом аммония с применением в качестве индикатЬра фенилантраниловой кислоты после восстановления железа в редукторе, заполненном металлическим висмутом, дало возможность получать точные и надежные результаты. Определение железа (II) по Гехту приводит к сильно пониженным и неустойчивым данным вследствие окисления железа (II) кислородом воздуха при разложении и неточности титрования 0,01 н. раствором перманганата. Применение же специальной крышки из плексигласа и ванадатометрического или колориметрического метода (реакция с а,а -дипиридилом) дало возможность точно определять РеО в различных объектах. [c.66]

    Вообще для определения олова(II) можно применить многие из реактивов, предложенных для титрования мышьяка(III) и сурьмы(III) бромат [3], иодат [4], хлорамин [5], иодхлорид [6], бихромат [7], разумеется в отсутствие растворенного кислорода воздуха. За последние годы было предложено несколько новых реактивов для определения олова в сложных смесях. Эти методы описаны в разделах Марганец и Висмут . Для определения олова(II) в присутствии титана(III) предложена метиленовая синяя, восстанавливающаяся на платиновом электроде [8, 9]. [c.227]


Смотреть страницы где упоминается термин Висмут определение кислорода: [c.367]    [c.181]    [c.373]    [c.10]    [c.56]    [c.267]    [c.289]    [c.56]    [c.302]    [c.56]    [c.172]    [c.140]    [c.356]    [c.538]    [c.171]    [c.356]   
Методы разложения в аналитической химии (1984) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород определение



© 2025 chem21.info Реклама на сайте