Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали участие в связи

    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию ls-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла перекрывания или ортогональности Если значение велико, то и перекрывание орбиталей и велико. Особую важность имеет перекрывание в направлении связи, но следует сказать, что перекрывание вообще принадлежит к тем факторам, которые необходимо учитывать при выборе атомных орбиталей, участвующих в построении молекулярной орбитали. Необходимо учитывать и симметрию комбинируемых орбиталей. Известно, что р-орбиталь имеет положительную и отрицательную [c.153]


    На примере молекулы ЫОг рассмотрим более подробно строение трехатомных молекул угловой формы с л-связями. В образовании молекулы ЫОг принимают участие 25-, 2р -, 2ру- и 2р -орбитали атома азота, 2р -, 2ру- и 2р -ор-битали двух атомов кислорода. Из десяти атомных орбиталей образуются десять молекулярных орбиталей. Поскольку молекула N02, как и Н2О, имеет угловую форму, то о-орбитали N 2 аналогичны ст-орбиталям молекулы Н2О (с. 312). Это пять молекулярных орбиталей и и [c.362]

    Энергетические уровни молекулярных орбиталей располагаются симметрично относительно энергетических уровней атомных орбиталей (рис. 6). Если в химической связи принимают участие р-электроны, то для я-орбиталей нормированные волновые функции имеют вид  [c.12]

    В основу теоретического обоснования метода молекулярных орбиталей положено представление о том, что все электроны каждого атома молекулы являются общими для всей молекулы и каждый электрон принимает участие в связи. Подобно тому как каждому электрону в атоме соответствует своя атомная орбиталь, в молекуле ему соответствует молекулярная орбиталь. Из N атомных орбиталей образуется то же число молекулярных орбиталей. Заполнение электронами молекулярных орбиталей происходит в порядке возрастания их энергии и подчиняется принципу Паули и правилу Гунда. [c.234]

    Молекулярная орбиталь, описывающая связь Н—Р, должна быть линейной комбинацией атомной Н( 15)-орбитали и одной из атомных орбиталей Р. Однако спектроскопические данные показывают, что энергии 15 - и 2з - электронов фтора слишком низки, чтобы эти электроны вносили заметный вклад в образование связи иными словами можно сказать, что внутренние электроны глубоко Рис. 6.7. Возможные комбинации 15-посажены и не принимают орбитали водорода и 2р-орбиталей участия в связывании, а оста- Ф ра (перекрывание показано гори- [c.73]

    Молекула ВеР . Рассмотрим линейные трехатомные молекулы с л-связями на примере молекулы ВеРа. Валентными у атома фтора являются 2з-, 2рх, 2ру- и 2рг-орби-тали. Вследствие большого энергетического различия 25- и 2р- орбиталей участием 25-орбиталей атома фтора в образовании молекулярных орбиталей можно пренебречь. [c.97]

    Молекулярные орбитали описанного типа называют я-орбиталями. В их образовании могут участвовать только атомные орбитали с ненулевым азимутальным квантовым числом. Атомные -орбитали (/ = 0) не принимают участия в образовании я-орбиталей. Химическую связь, образованную при заполнении электронами л-орбитали, называют п-связью. [c.61]


    Строение молекулы азота рассмотрим с точки зрения метода молекулярных орбиталей. Атом азота имеет семь электронов, размещенных на пяти уровнях (орбиталях), а его молекула N2 располагает десятью орбиталями для четырнадцати электронов. Если на каждой молекулярной орбитали поместить пару электронов, то будет занято семь орбиталей. Расщепление уровней приводит к появлению связывающей и разрыхляющей орбитали. Поэтому те атомные орбитали, на которых у каждого атома по паре электронов, дадут две занятые молекулярные орбитали 15 и 25 электроны находятся и на связывающих и на разрыхляющих орбиталях. В итоге эти молекулярные орбитали компенсируют друг друга. Можно сказать, что электроны на орбиталях 15 и 25 не принимают участия в связях. [c.174]

    Атомные орбитали внутренних энергетических уровней, которые намного ниже внешних энергетических уровней, обычно в системе молекулярных орбиталей не указывают, так как практически эти орбитали не принимают участия в образовании химических связей. [c.69]

    Физическое взаимодействие не изменяет или очень слабо сказывается на строении взаимодействующих молекул. Но, кроме физического взаимодействия, молекулы очень часто образуют друг с другом молекулярные комплексы с участием определенных атомов и молекулярных орбиталей. Молекулярные комплексы делятся на два больших класса комплексы с водородной связью и комплексы с переносом заряда (КПЗ). Молекулярные комплексы занимают промежуточное положение между ассоциатами молекул, возникающими за счет физического взаимодействия, например диполь-дипольного притяжения, и молекулами. Физическое взаимодействие возникает в результате электростатического притяжения молекул, обладающих постоянным или наведенным диполем, Число взаимодействующих молекул, образующих ассоциат, может быть достаточно велико и меняться в зависимости от условий. Молекулярный комплекс имеет постоянный состав (чаще всего 1 1 или 1 2) если он меняется, то меняется и структура комплекса. Водородная связь в спиртах возникает путем взаимодействия группы О—Н с парой электронов атома кислорода другой молекулы. В отличие от молекул, которые образуются из других молекул в реакциях, протекающих с энергией активации, молекулярные комплексы образуются в процессах ассоциации, происходящих без энергии активации. Поэтому молекулярные комплексы находятся в равновесии с исходными молекулами. [c.337]

    Проблема электронной структуры переходных металлов далека от полного решения и в настоящее время при описании свойств-металлов нельзя обойтись без применения как метода молекулярных орбиталей МО, так и метода валентных связей ВС, способствующих выяснению строения металлов в нескольких разных аспектах. Прочность связи в металлах и межатомные расстояния в них более удобно описываются методом ВС. Однако при этом утрачивается возможность описать явление электропроводности, изящная трактовка которого дается в методе МО. Наряду с этим величина энергии сублимации свидетельствует о том, что в связывании активное участие принимает большее число электронов, чем следует пз простого метода МО. В этом отношении метод ВС облада ет определенным (хотя и небольшим) преимуществом. [c.147]

    Распределите все электроны, принимающие участие в образовании связей уксусного альдегида (СНз—СН = 0), по их атомным или молекулярным орбиталям. С помощью диаграмм оцените пространственный вклад электронов, находящихся во владении более чем одного ядра. [c.23]

    Как видно, в отличие от рассматривавшегося выше метода валентных связей, квантово-химический метод молекулярных орбиталей дает ясное и четкое представление о физической сущности явления ароматичности. Взамен весьма нечетких использовавшихся ранее химических критериев ароматичности из него вытекает следующее определение ароматическими являются такие ненасыщенные циклические соединения, у которых все атомы цикла принимают участие в образовании единой сопряженной системы, а я-электроны этой системы образуют замкнутую электронную оболочку, полностью заполняя связывающие молекулярные орбитали. [c.22]

    АО должны быть достаточно протяженными в пространстве, чтобы перекрываться в заметной степени. Поэтому АО внутренних слоев, практически не принимающие участия в образовании химических связей, в системе молекулярных орбиталей обычно не учитываются  [c.68]

    У элементов второго периода появляются еще четыре атомных орбитали 2в, 2р , 2ру, 2р , которые будут принимать участие в образовании молекулярных орбиталей. Различие в энергиях 7. - и 2р-орбиталей велико, и они не будут взаимодействовать между собой с образованием молекулярных орбиталей. Эта разница в энергиях при переходе от первого элемента к последнему будет увеличиваться. В связи с этим обстоятельством электронное строение двухатомных гомоядерных молекул элементов второго периода будет описываться двумя энергетическими диаграммами, отличающимися порядком расположения на них 5 " 2рх и 2ру 2. При относительной энергетической близости 2 - и 2р-орбиталей, наблюдаемой в начале периода, включая атом азота, электроны, находящиеся на 2 - и 2рх-орбиталях, взаимно отталкиваются. Поэтому 2ру- и 2р2-орбитали оказываются энергетически более выгодными, чем 2рх-орбиталь. На рис.20 представлены обе диаграммы. Так как участие Ь-электронов в образовании химической связи незначительно, их можно не учитывать при электронном описании строения молекул, образованных элементами второго периода. [c.57]


    В металлокомплексном Г. к. р-ции ускоряются в присут. комплексных соед. 11, Ре, Си, Р1 и др. переходных металлов, к-рые способны к образованию комплексов с молекулами субстратов. Каталитич. активность м.б. обусловлена след, факторами 1) пространств, близостью молекул субстратов, входящих как лиганды в координац. сферу металла, 2) ослаблением хим. связей в молекулах субстратов и снижением энергии активации при их разрыве 3) усилением вследствие электронных эффектов донорных или акцепторных св-в молекул субстратов, входящих в металло-комплекс 4) снятием запретов по симметрии молекулярных орбиталей благодаря участию ( -орбиталей метал- [c.592]

    Теория валентных связей и теория молекулярных орбиталей используются и для описания химической связи в молекулах более тяжелых элементов. В таких молекулах в образование связи вовлекаются не только s-орбитали, но также р-, d- и даже /-орбитали. Но так же как и при образовании ионов, энергией, подходящей для возникновения ковалентных связей, обладают только орбитали валентной оболочки. Остовные орбитали, с более низкой энергией, продолжают испытывать существенное влияние только одного ядра и не дают значительного вклада в образование молекулярной связи. Орбитали с более высокой энергией, чем в валентной оболочке, могут заселяться электронами в возбужденных состояниях молекул, однако их энергия слишком велика, чтобы они смогли принимать заметное участие в образовании связи у невозбужденных молекул, в их основном состоянии. [c.117]

    С точки зрения квантовомеханических представлений о молекулярных орбиталях вопрос о характере и степени участия -орбитали атома серы в образовании связей остается дискуссионным. [c.20]

    Указанные выше тенденции можно легко объяснить, если рассмотреть электростатическое отталкивание между неподеленными парами электронов лигандов, расположенных вокруг центрального катиона металла, и d-электронами этого катиона. Приближенное рассмотрение природы связей по методу молекулярных орбиталей позволяет объяснить величину координационного числа зависимостью между числом связывающих молекулярных орбиталей и числом находящихся на них электронов. Характерное значение координационного числа для того или иного центрального катиона важно не только для понимания природы стабильных комплексов, но и для выяснения характера переходного состояния и промежуточных продуктов при проведении реакции с участием комплексных соединений. [c.221]

    В молекулах, состоящих из атомов типичных элементов, каждый атом имеет четыре валентные орбитали. В плоских я-электронных системах каждый атом вносит в общую я-си-стему вклад в виде только одной р-орбитали. Остальные его валентные орбитали принимают участие в образовании а-си-стемы связей. Следовательно, базисный набор для молекулярных я-орбиталей оказывается намного меньше полного валентного набора. Отдельное рассмотрение я-электронной системы обосновано тем, что молекулярные я-орбитали являются высшими (по энергии) занятыми и низшими вакантными молекулярными орбиталями. Кроме того, по законам симметрии, одноэлектронные интегралы между базисными функциями а- и я-типов равны нулю. Спектральные переходы с минимальными энергиями, первые потенциалы ионизации, а также сродство к электрону я-систем связаны с энергиями именно я-орбиталей. Химические реакции, в которых участвуют такие системы, обычно сопровождаются значительно большими изменениями в я-си-стеме, 1ем в а-системе. Простая теория Хюккеля позволяет получить много полезных сведений о химических свойствах я-электронных систем. [c.240]

    И 5р-орбиталями не учитывалось) и нашли, что взаимодействие осуш е-ствляется главным образом с участием связываюш,ей и несвязываюш,ей орбиталей аллила, а разрыхляюш,ая орбиталь участвует и очень малой степени, В этом проявляется различие между аллильным и олефиновым лигандами, так как для последних обычно имеет место значительная обратная подача на разрыхляющую молекулярную орбиталь. Энергия связи аллил —палладий максимальна при двугранном угле, равном 102—114°, что находится в превосходном соответствии с рентгеноструктурными данными. На рис. 28 представлена схема этого взаимодействия, основанная на потенциалах ионизации палладия и энергиях молекулярных орбиталей аллила. Качественное квантово-химическое рассмотрение той же молекулы см. в работе [253]. [c.232]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Отсюда следует, что в молекуле L1F электронный заряд на связывающей орбитали будет сосредоточен в основном вокруг ядра фтора. Вместо того чтобы измерять ЭО в электрон-вольтах, можно принять 30(Li) за условную единицу и в ней выражать ЭО остальных элементов. Так можно получить условную шкалу электроотрицательностей. Она очень близка к шкале Полинга (табл. 11), построенной им на основе термохимических расчетов. С распространением метода МО в 60-годах появились работы, в которых уточняется шкала Малликена, вводятся электроотрицательности отдельных атомных орбиталей, образующих молекулярную орбиталь. Считают 5-орбиталь более электроотрицательной, чем / -орбиталь того же слоя, поскольку на i-орбитали электрон связан с ядром более прочно и МО с ее участием более устойчива. Очевидно, что, образуя связи в различных соединениях разными орбиталями, атом имеет в этих соединениях р 1зную электроотрицательность. Однако большинство химиков пользунэтся шкалой Полинга. [c.137]

    Электроны Не переходят на эту орбиталь, более близкую по энергии к АО (Не), чем к АО (Н ). Атом Не —донор, ион Н — акцептор. По своей природе связь здесь ничем не отличается от ковалентной связи молекулярная орбиталь охватывает ядра Не и Н. Но в отличие от молекулы 2, где ковалентную связь осуществляют два электрона, но одному от каждого атома, в ионе НеН два электрона связи предоставлены одним атомом. Таким образом, правильнее говорить о донорно-акцепторном механизме образования ковалентной связи, а не о донорно-акцеп-торной связи, как принято обычно. Связь эта всегда имеет известную полярность, так как на доноре возникает положительный, а на акцепторе — отрицательный заряд из-за сдвига электронов от донора к акцептору. Донорно-акцепторный механизм широко распространен в реакциях комплексообразования с участием двухатомных и многоатомных молекул. Из рассмотренных молекул донором может быть, например, молекула СО. У многоатомных молекул донорами могут быть молекулы ННз,Н20 и др., у которых имеются несвязывающие МО, заполненные парой электронов. [c.140]

    Второй период. Для элементов второго периода перекрывания 15-АО практически нет, а следовательно, отсутствует расщепление 15-уровней на связывающие и антисвязывающие. Для указанных элементов внутренние 15-АО в образовании химической связи участия не принимают и поэтому при образовании молекулярных орбиталей не учитываются. [c.98]

    С точки зрения метода МО при образовании многоатомной частицы электроны попадают в зону притяжения нескольких атомных ядер, т. е. становятся общими для всей частицы. В результате атомные орбитали трансформируются в молекулярные. Молекулярной орбиталью (МО) называют волновую функцию, которая описывает состояние электрона в поле двух или нескольких атомов. Число МО многоатомной частицы равно числу АО атомов, входящих в ее состав. При этом принимают, что атомные орбитали одного атома, сильно отличающиеся от атомных орбиталей других атомов соответствующими энергетическими уровнями, становясь молекулярными орбиталями, сохраняют свою форму. Такие молекулярные орбитали не принимают участия в химической связи и называются несвязывающими (МО " ). Электроны, находящиеся в них, обладают тем же запасом энергии, что и в исходных атомных о рбиталях. [c.66]

    В реакциях типа (111.86), идущих через трехцентровый активированный комплекс, принимают, как правило, участие одна атомная и одна молекулярная орбиталь исходных частиц. В активированном комплексе образуются трехцентровые орбитали. Атомная орбиталь атома С и связывающая и разрыхляющая орбитали, соответствующие связи А—Б, образуют связывающую, несвязывающую и разрыхляющую орбитали активированного комплекса. Три электрона в случае гомолитических реакций и четыре в случае гетеролитических могут разместиться на двух низших по энергии орбиталях и реакция не вызывает существенных затруднений. [c.140]

    В этом методе л-электроны сопряженной системы рассматриваются как общие для всех углеродных атомов и находящиеся на общих молекулярных орбиталях. Число таких молекулярных орбиталей равно числу атомов, принимающих участие в образовании сопряженной системы. Молекулярные орбитали бывают связы-в-ающие — энергия электронов на этих орбиталях меньше, чем на атомных, и, следовательно, нахождение электронов на них делает систему более устойчивой несвязывающие — энергия электронов на этих орбиталях равна энергии электронов на атомных орбиталях разрыхляющие — энергия электронов на этих орбиталях больше, чем на атомных, и поэтому переход электронов на них энергетически невыгоден. Энергия л-электронов обычно выражается в резонансных интегралах р, численное значение которых определяется опытным путем. [c.20]

    Тетраэдрические мятлексы с тг-связыванием. В тетраэдрических комплексах и молекулах - элементов типа МпО , Сг0 , Т1С14 и им подобных в образовании связей принимают участие пять (7 —1) -, одна пл - и три пр - орбитали центрального атома и по три р - орбитали от каждого из четырех лигандов. Из 21 исходной атомной орбитали центрального атома и четырех лигандов образуется 21 молекулярная орбиталь (рис. 222). [c.563]

    И именно эти электроны принимают участие в образовании химической связи. Химическая связь осуществляется парой электронов, для образования которой каждый из участвующих атомов дает по одному электрону. Эта электронная пара называется связывающей. В валентной оболочке атома могут быть также другие электронные пары, не участвующие в образовании химической связи и целиком принадлежащие только этому атому такие пары электронов называются неподеленными. Вышеприведенный постулат обращает внимание на то, что для геометрии молекулы одинаково важны обе электронные пары - связывающие и неподеленные. В согласии со сказанным, эта модель называется отталкиванием электронньЕХ пар валентной оболочки или моделью ОЭПВО . Ее основное положение формулируется следующим образом координация связей атома А в молекулах АХ , а следовательно, и геометрия этой молекулы таковЫт-что валентные электронные пары располагаются на максимальном расстоянии друг от друга, т. е. так, если бы они взаимно отталкивались. Таким образом, получается, что электронные пары занимают в пространстве вокруг атома вполне определенные места в соответствии с концепцией локализованных молекулярных орбиталей. [c.144]

    Электронные пары изображены так, будто они переносятся от атомов на связи таким образом, что сохраняется стабильный октет электронов (ср, с теорией Льюиса) вокруг всех атомов, принимающих участие в этом процессе. К донорным группам отно-сятся любые заместители с несвязывающими или заполненными молекулярными орбиталями, имеющими правильную симметрию, допускающую взаимодействие с подходящей системой я- [c.342]

    Каталнзаторы-металлы. Металлы обычно значительно активнее оксидов и обладают более универсальным каталитич. действием, хотя, как правило, менее селективны. Наиб, универсальны металлы VIII гр. периодич. системы, особенно Pt и Pd, катализирующие разл. р-ции окисления, гидрирования, дегидрирования и т.д. при низких т-рах (комнатной и более низких). Каталитич. активность определяется электронной конфигурацией и симметрией d-орбиталей поверхностных атомов. В хим. взаимод. с молекулами реагирующих на пов-сти в-в участвуют только те d-орбитали, к-рые направлены от пов-сти наружу и имеют одинаковую группу симметрии с молекулярными орбиталями реагентов. Участие d-электронов в хим. связи металла с адсорбиров. молекулами подтверждено методами фотоэлектронной и УФ-спектроскопии для Pt-катализатора. [c.540]

    В первом разделе Теоретические основы изложены представления о структуре и типах химической связи в органических, металлоорганических и комплексных соединениях, о молекулярных орбиталях и взаимном влиянии атомов в этих молекулах. На уровне механизмов и типов переходных состояний обсуждается реакционная способность органических соединений. Рассмотрены особенности кинетики и термодинамики органических реакций, типы элёктро- и фотохимических реакций с участием органических молекул. Изложены современные методы исследования структуры органических соединений. [c.3]

    В образовании связи между кислотой и основанием принимает участие наиболее высокая в энергетическом отношекии занятая молекулярная орбиталь основания и наиболее низкая свободная орбиталь кислоты. [c.417]


Смотреть страницы где упоминается термин Молекулярные орбитали участие в связи: [c.51]    [c.54]    [c.362]    [c.209]    [c.198]    [c.150]    [c.46]    [c.90]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.239 , c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали а- и я-связи

Молекулярные орбитали орбитали

Орбитали Орбитали, участие в связях

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте