Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффекты термические определение но методу

    Метод классической молекулярной механики, основанный на минимизации эмпирически полученных потенциальных функций, также недостаточно развит, чтобы обеспечить точность, необходимую для предсказания влияния заместителей и структурных эффектов на скорость реакции. Например, вычисленные энергии активации перегруппировки Коупа отличаются от экспериментальных значений от 4 до 13 ккал/моль [22, 23]. Кроме того, недостатком этого метода также является необходимость строить поверхность потенциальной энергии реакции, откладывая точку за точкой. Схемы групповых аддитивностей более пригодны для определения теплот и энтропий образования переходных состояний, в силу чего они были использованы почти для всех известных примеров термических перегруппировок и реакций циклоприсоединения [14—18]. Недостатки заключаются в произвольном выборе между синхронным и бирадикальным двустадийным механизмами, который должен быть сделан до проведения расчетов, а также в трудности применения этой теории к фотохимическим процессам. [c.284]


    Другие методы. Первое практическое использование пре-эффекта для определения констант скоростей было осуществлено Барнетом [2] в 1950 г. В ряде более ранних работ, посвященных исследованию виниловой полимеризации, авторы сообщали о кажущихся пре-эффектах или индукционных периодах, но это, по-видимому, было связано с недостаточной очисткой реагентов. Барнет исследовал фотополимеризацию чистого стирола, используя чувствительный дилатометр. При выбранных условиях термическая темповая реакция была незначительна. Оказалось, что, как и следовало ожидать, реакция в начальной стадии протекает с возрастающей скоростью, но ее ход во время этого периода не удалось исследовать достаточно точно, чтобы иметь возможность провести количественный анализ. Вместо этого для определения полного пре-эффекта был использован экстраполяционный метод. Обработка, которая дается здесь, значительно проще обработки, предложенной Барнетом, который ввел в уравнения значения средней продолжительности жизни цепей. [c.47]

    Для количественного определения тепловых эффектов был использован метод дифференциального термического анализа смесей исследуемого полимера с эталонным веществом [4]. В качестве эталонного вещества применялся сульфат натрия с известной температурой полиморфного превращения нри 248,5° С и теплотой перехода = 1630 кал/г-моль [5]. Тепловые эффекты рассчитывали по формуле  [c.207]

    В 1953 г. появились труды А. Ф. Капустинского и Ю. П. Барского 11У-41] по количественному определению тепловых величин путем измерения поступающего количества тепла вне исследуемого вещества. Сущность метода заключается в измерении потока тепла по градиенту температуры в оболочке из малотеплопроводного материала, окружающего со всех сторон исследуемое вещество. В отличие от метода Смита, где в оболочке поддерживается постоянная разность температур, здесь вводится запись теплового потока в оболочке с применением термографии. Таким образом, можно сказать, что метод А. Ф. Капустинского и Ю. П. Барского в области термографии явился первым методом определения тепловых величин путем измерения поступающего количества тепла вне исследуемого вещества. Этот способ также впервые был применен этими же исследователями для определения тепловых эффектов. Точность определений, согласно литературным данным, составляет 1—3%. Полнота учета поступающего тепла достигается применением термобатареи, спаи которой попеременно находятся на наружной и внутренней поверхностях оболочки, включая и крышку. Принцип метода имеет, следовательно, своеобразный калориметрический характер. Авторы предлагают свой метод также и для одновременного определения всех термических характеристик. Некоторым недостатком его является зависимость градиента температуры в оболочке от теплоемкости и теплопроводности самой изоляции, которые, в свою очередь, и сами могут зависеть от внешних условий. [c.234]


    Тепловой эффект реакции часто зависит от температуры, и для расчета интеграла в выражениях (78.1) и (78.2) необходимо знать эту зависимость (см. 64). Постоянные интегрирования / и / не могут быть определены на основании первого и второго законов термодинамики. Задача определения их из термических данных для реагирующих веществ была решена Нернстом (1906). В настоящее время уравнения (78.1) и (78.2) в развернутом виде не используются для расчета А (Т) и 1п/< , так как существуют более простые и точные методы их определения. [c.257]

    Большинство известных методов оценки стабильности нефтепродуктов основано на определении эффекта действия кислорода или воздуха на испытуемый нефтепродукт при повышенных температурах в присутствии катализаторов или без них. Этот эффект обычно выражается в смоло- и осадкообразовании и образовании коррозионных продуктов, растворимых в испытуемом продукте. Фиксация указанных продуктов термической и окислительной обработки составляет сущность большинства предложенных методов определения стабильности. [c.563]

    Определение характеристик термических эффектов. В зависимости от формы пика существуют различные методы определения температуры его начала и конца. При резких перегибах кривой температура находится по точке перегиба / (рис. 6), при плавном перегибе кривой ДТА начало или конец эффекта устанавливаются пересечением прямой ветви пика с базисной линией "(в точке 2 или по точке касания прямой, проведенной к базисной линии под углом 45° (точка <3), [c.16]

    Дифференциальный термический анализ (ДТА) — один из основных методов физико-химического исследования. Он позволяет изучать характер фазовых превращений и осуществлять построение диаграммы состояния (ДС). Этот метод широко используется при исследовании металлических, солевых, силикатных и прочих систем. Большую роль метод ДТА сыграл в развитии современной химии полупроводников. Область применимости этого метода не ограничивается построением ДС, Он с успехом может быть применен при исследовании тепловых эффектов химических реакций, при изучении процессов диссоциации, для качественного и количественного определения фазового состава смесей и определения теплот фазовых переходов.-Метод ДТА является наиболее универсальным из известных методов термического анализа. Так, метод визуального политермического анализа применим для исследования прозрачных объектов (главным образом, некоторых солевых систем). Метод кривых температура — время не обладает достаточной чувствительностью. Метод ДТА свободен от этих недостатков. [c.7]

    М (0Н)2 0,5 2п(ОН)2 0,4 Си(0Н)2 9,4 органические соединения. В основу технологии изготовления образцов гексаферрита бария из шламов очистки сточных вод положен существующий промышленный метод получения ферритов. Для определения основных технологических параметров процесса исходный шлам исследовали методом дифференциально-термического анализа (ДТА). По его данным установлен эндотермический эффект в области температур 473-723 К, связанный с выделением химически [c.116]

    Физические методы, так же как и химические, делят на качественные и количественные. Количественные методы основаны на различных эффектах поведения воды в нефтепродуктах при воздействии внешних факторов. В термическом методе при нагревании нефтепродукта до 130—150 °С присутствие воды определяют по характерному потрескиванию. Для качественного определения воды используют свойства некоторых материалов изменять геометрические размеры, люминесцировать в ультрафиолете в присутствии воды и др. [c.306]

    Для исследования стабильности и определения температуры взаимодействия с металлами присадок к маслам целесообразно использовать метод термографического анализа, сущность которого заключается в выявлении термических эффектов, возникающих в процессе химических и физических превращений. Этот метод позволяет обнаружить химические реакции или изменение [c.180]

    В значительной степени преодолеть перечисленные ограничения позволяет комплексный подход [5], основанный на совместном использовании калориметрического метода исследования процессов, протекающих в растворах порфиринов, с термогравиметрическим изучением физико-химических свойств (состава, энергетической и термической устойчивости) молекулярных комплексов порфиринов и металлопорфиринов путем анализа соответствующих кристаллических сольватов. Существенным преимуществом такого подхода, разработанного коллективом авторов под руководством члена-корреспондента РАН Г.А. Крестова в Институте химии неводных растворов РАН, является использование прямых методов определения термодинамических характеристик процессов специфических взаимодействий и физико-химических свойств молекулярных комплексов макроциклов. Современное развитие измерительной техники, используемой в калориметрическом эксперименте, несмотря на низкую растворимость порфиринов, делает возможным с достаточной точностью регистрировать небольшие тепловые эффекты. Это позволило авторам [6] получить обширную [c.299]


    Термические методы. Из всех экспериментальных методов определения энергии связи наиболее широкое применение имеют термические методы. Одна группа термических методов основана на измерениях констант равновесия химических реакций, причем расчет теплового эффекта реакции может проводиться либо с использованием уравнения Вант-Гоффа [c.9]

    Для контроля скорости отверждения, сопровождающегося заметным экзотермическим эффектом, применяют методы определения выделенного тепла — дифференциальный термический анализ, дифференциальную сканирующую калориметрию. [c.115]

    Для определения Сг, Си, РЬ наиболее эффективным оказался последний метод. Метод атомно-абсорбционной спектрометрии с графитовой кюветой используют также при определении хрома в проточных индустриальных водах [908], воздухе [600], полимерах [775], смазочных маслах [639], геологических образцах [865, 1035]. Экспериментально изучалась роль химических и физических помех, возникающих при определении в породах рассеянных элементов — Сг, Мн, Со, N1, Си — атомно-абсорбционным методом с использованием беспламенной атомизации в цилиндрической графитовой кювете при 2700° С. В качестве инертного газа применялся аргон. Анализировались растворы, полученные кислотным разложением силикатных проб. Найдено, что влияние матричного эффекта может быть несколько снижено термической обработкой сухого остатка перед атомизацией с учетом температур кипения и разложения присутствующих соединений [865]. [c.95]

    Для исследования процессов физико-химических взаимодействий между конденсированными фазами наряду с методами ДТА применяют метод определения электрической проводимости (кон-дуктометрия), рентгенофазовый анализ и др. Простейшая схема установки, которая позволяет одновременно измерять термические эффекты и электрическую проводимость х сред, приведена на рис. [c.73]

    Данные, приведенные в предыдущем разделе, показывают, что октановые числа различных крекинг-бензинов колеблются в среднем между 60 и 85. Термин крекинг-бензин обозначает все бензины, полученные любым методом крекинга, гидрогенизацией, полимеризацией и термической конверсией газов. Бензины с более высокими октановыми числами (90—100) могут быть получены лишь в результате или синтеза определенных изопарафинов или ароматизации нефтяных продуктов и газов. Оба метода довольно дорогие и применяются для получения специальных премиальных топлив. Высокооктановые бензины готовятся в практике путем добавления небольшого процента тетраэтилсвинца к бензинам прямой гонки и крекинг-бензинам. Даже производство стандартного моторного бензина с октановым числом 70—72 из обыкновенного бензина прямой гонки и бензина смешаннофазного крекинга требует обычно некоторой добавки тетраэтилсвинца. Восприимчивость или отзывчивость к тетраэтилсвинцу, т. е. эффект, вызываемый, например, 1 см тетраэтилсвинца (ТЭС) на 1 л бензина, очень важное свойство крекинг-бензинов, применяемых как моторное топливо. [c.340]

    Помимо того что пиролиз сам по себе представляет определенные аналитические возможности, следует учесть, что для газо-жидкостной хроматографии, инфракрасной и ультрафиолетовой спектроскопии и других современных методов анализа часто необходимым или благоприятным условием является термическое разложение исследуемого вещества до проведения или во время анализа. При спектроскопических исследованиях предпочитают пользоваться жидким образцом, так как в случае твердого вещества изменения степени кристалличности и непрозрачности дают эффекты, не связанные непосредственно с молекулярной структурой. При масс-спектрометрии исследуемое вещество необходимо переводить в парообразное состояние для высокомолекулярных образцов это можно сделать только путем пиролитического разложения [15, 47] см. главу VI. [c.152]

    Другим аналитическим методом является измерение повышения температуры растворов реагентов путем помещения термопары в движущуюся жидкость в определенной точке трубки для наблюдения. Измеренное повышение температуры является непосредственной мерой степени прохождения реакции в этой точке. Подробно описана термическая установка [1981 для измерения реакции с половинным временем 2 мсек. Это, по-видимому, достижимый предел для реакций с теплотами около 10 ккал моль, но если реакция имеет большой тепловой эффект, то, вероятно, можно изучать и более быстрые реакции. [c.91]

    Основные научные работы посвящены применению масс-спект-рометрии для решения широкого круга химических, физических и геохимических задач. Одним из первых начал определять содержание различных изотопов в природных продуктах и указал, что с помощью этих данных можно установить происхождение соответствующих материалов. Показал, что данные, полученные при изучении кинетических изотопных эффектов, являются мощным средством при установлении механизма реакций, особеиио нри определении структуры активированного комплекса. Изучал содержание изотопов серы в различных природных продук-тах. Один из пионеров применения масс-снектрометрии для изучения содержания продуктов ядерного распада определил выход таких продуктов для многих реакций. Внес существенный вклад в изучение функции щитовидной железы с помощью радиоактивного иода. Разрабатывал методы разделения стабильных изотопов (изотопный обмен, термическая диф- [c.493]

    Одним из методов определения термических превращений вещества является дифференциально-термический анализ, который позволяет определить температурные границы превращений вещества по тепловым эффектам наблюдаемым на термограмме. [c.188]

    Это явление характеризуется коэффициентом вторичной эмиссии з, который представляет отношение электронов эмиссии к электронам падающим и поглощенным. Однако вторичная эмиссия является только одним из многих процессов, имеющих место при облучении электронами. Другими следствиями бомбардировки могут быть флуоресценция, изменения в эффективности флуоресценции, электропроводности, химических связях, действии ферментов, термическом расширении и поглощении видимого света, инфракрасного и ультрафиолетового излучения, а также ионизации и образование распределения зарядов в самом кристалле. Облучающие электроны могут отражаться, рассеиваться и терять энергию ( разброс ). Ни один из этих эффектов в данной главе не рассматривается, но в разделе П,2 можно найти сведения об определении сродства к электрону методами торможения электронного луча. [c.692]

    Чтобы обнаружить весьма слабые тепловые эффекты при полиморфных превращениях, предпочтительно применять дифференциальный метод. При этом используют две термопары, из которых одна погружается в навеску, другая в инертное вещество, служащее эталоном для сравнения. Обе термопары соединяются в схему (см. 100, настоящей главы В. I). Температура, отвечающая термическому эффекту, точно определяется по прерывности на кривой и может быть записана с помощью особого дифференциального гальванометра. Строго определенное распределение температуры во время превращения имеет весьма важное значение, на что указывал Смит 24. [c.397]

    При расчете опытных установок облагораживания нефтяных коксов важно знать тепловые эффекты процесса. Специальными исследованиями (методом количественной термографии) по разности между общими затратами тепла и расходом тепла иа нагрев кокса и удаление лет -чих определен тепловой эффект процесса термического разложения кокса замедленного коксования [34]. Результаты расчета показывают, что при температурах до 680 °С преобладают реакции, идущие с поглощением тепла (распад, испарение), а выше 680 °С тепло выделяется (уплотиеиие структуры кокса), Одиако суммарный тепловой эффект невелик, так что в практических расчетах им можно пренебречь. Тепловой эффект процесса обессериваиня составляет около 20 ккал/кг, поэтому он ие может оказать существенного влияиия иа результаты тепловых расчетов. [c.251]

    В атомноабсорбционном анализе (в противоположность эмиссионному) роль газового пламени сводится лишь к испарению и термическому разложению пробы. Поэтому чувствительность атомноабсорбционного анализа при определении легко-и трудновозбуждаемых элементов достаточно высока. Кроме того, отпадает проявляющийся при термическом возбуждении матричный эффект. Заметным становится только влияние некоторых факторов, затрагивающих испарение пробы и процесс диссоциации (следовательно, в основном влияние анионов). Рассмотрение заселенности уровней Л/ /Л/о возбужденного и основного состояний [уравнение (5.1.12)1 показывает, что при температуре пламени по-прежнему остается меньше Л о. Так как выводы в атомноабсорбционной спектрофотометрии делают, учитывая свойства атомов, находящихся в основном состоянии, чувствительность ее при определении большого числа элементов выше, чем методов эмиссионной спектроскопии. Температура пламени пе оказывает существенного влияния на чувствительность, но она должна обеспечить получение достаточно большого числа свободных атомов металлов [20].  [c.198]

    Влияние анионов на эмиссию и абсорбцию натрия (анионный эффект). Этот вопрос имеет большое практическое значение для правильной подготовки пробы к анализу [32—34, 72, 74—76, 99, 149, 403, 453, 486, 488, 497, 545, 584, 620, 713, 728, 872, 875, 1031, 1208, 1284J. Механизм взаимного влияния при определении элементов атомно-эмиссионным и атомно-абсорбционным методами в пламенах трактуется по-разному с точки зрения физических свойств раствора, особенно при введении органических кислот с позиций изменения условий атомизации за счет образования новых термически более устойчивых соединений натрия при десольватации частиц аэрозоля смещения равновесия атомизации в пламени за счет ионизационных процессов с участием анионов. [c.123]

    Как правило, наблюдается, что кремнезем осаждается внутри тканей растения в аморфной форме. Тем не менее было сообщено, что в ряде случаев происходит осаждение и кристаллического кремнезема, хотя, правда, не существует способа определения того, не является ли такое осаждение следствием механических пылевидных включений кристаллического кремнезема. Умемото [77] утверждает, что при получении золы растений методом низкотемпературной плазмы фактически удается избежать термических эффектов. (Это позволяет устранить возможную опасность, появляющуюся при использовании сильных окислителей.) Умемото сообщил, что, хотя вначале кремнезем был [c.1020]

    При постоянном нагревании любое превращение ипи реакция, вызываемая повышением температуры, приводит к появлению пиков или впадин на кривых зависимости температуры от времени нагревания. Если превращения вещества при нагревании не происходит, то наблюдается линейная зависимость Г от времени натревания /. Линейные участки на кривой 1 (рис. 14.4) указывают на отсутствие каких-либо превращений, и поступающая теплота тратится только на нагревание. Если же в пробе происходит реакция, то поглощение (эндотермическая реакция) или выделение (экзотермическая реакция) теплоты вызывают значительное отклонение прямой от линейности. Другими словами, температура пробы изменяется в первом случае медленнее, а во втором — быстрее, чем наблюдалось бы при такой же скорости нагрева в отсутствие реакции. В случае эндотермической реакции 1фивая изгибается вниз, для экзотермической реакции картина обратная. Если перепад температур при химическом превращении велик, приходится пользоваться малочувствительными приборами и при этом небольшие термические эффекты могут не найти отражения на кривой 1. Более чувствительной будет регистрация Т через определенные небольшие интервалы времени, в пределах которых температура меняется не более чем на 1—2 С (кривая 2). Этот метод называют деривационным анализом. Экспериментально легче осуществим дифференциальный термический анализ, когда регистрируют [c.390]

    Методы термического анализа нащли широкое применение при детальном исследовании термической устойчивости кристаллогидратов неорганических соединений, количественном описании процессов дегидратации и разложения. В настоящей работе для определения стадии, лимитирующей скорость реакции термического разложения, был использован метод изотопного звмещения, который часто применяется с целью выяснения механизмов органических реакций [1, 2]. В литературе отсутствуют сведения об использовании изотопного замещения при изучении термических превращений неорганических гидратов методами неизотермической кинетики. Мы полагали, что с помощью изотопного эффекта можно установить различия в кинетических характеристиках термиче ского разложения исследуемых кремве,-12-водьфрамовой л фосфор-12-вольфрамовой кислот (КВК и ФВК) на тех стади- [c.32]

    Бемфорд и Дьюар [9] нашли все четыре константы скорости (fe , kp, kj, k ), определяющие термическую полимеризацию стирола, вискозиметрическим методом (стр. 50). При инициированной или фотополимеризации стирола не играет роли и поэтому можно определять только значения kp, kf vi kt. Константы для реакций этого типа определял также Барнет [17] (из данных о пре-эффекте при несенсибилизированной фотополимеризации), который из добавочных измерений молекулярных весов полимеров, полученных путем термической полимеризации, рассчитал, кроме того, значение ki аналогичные определения провели Мелвил и Валентайн [16] и Матезон [57], применяя метод вращающегося сектора и используя перекись бензоила или динитрил азодиизомасляной кислоты в качестве фотосенсибилизатора. Значения и k были получены также Барбом [58] из данных о сополимеризации стирола и двуокиси серы (методом вращающегося сектора) в этой работе не проводились измерения молекулярных весов и, следовательно, kf не было определено. Смит [59] и Мортон [60] определяли kp эмульсионным методом. [c.94]

    Ягфаров т. Ш. Новый метод определения термических характеристик и тепловых эффектов иа основе термографии. — ДАН СССР, 1959, т. 127, № 3, с. 615—617. [c.276]

    II (111)р и направление [1120] , 1[110]р. Возникает в процессе термической обработки (закалки, старения металлов) сплавов титана с переходными элементами, сплавов на основе циркония, гафния и сплавов урана с цирконием и ниобием, а иногда при эксплуатации этих сплавов в условиях повышенных т-р. Образуется в результате резкого охлаждения (когда происходит без-диффузионпое превращение) или изотермического распада (связанного с расслоением на участки различной концентрации легирующего элемента) метастабильной бета-фазы. Устойчива в критической области определенных электронных концентраций при т-ре ниже 400—500° С. В отличие от обычных мартенситных превращений, присущих сталям и сплавам на основе цветных металлов, образование О.-ф. не сопровождается появлением характерного рельефа на поверхности полированного образца. О.-ф. резко снижает пластичность сплавов, что часто исключает возможность их использования, значительно повышает прочность и упругие св-ва. Образование О.-ф. сопровождается отрицательным объемным эффектом. Кроме того, О.-ф. отличается положительным коэфф. электрического сопротивления. Выявляют ее в основном с помощью электронномикроскопического анализа, рентгеновского анализа, методом электросопротивления и дилатометрического анализа. Лит. Носова Г. И. Фазовые превращения в сплавах титана. М., 1968 Г р а -б и н В. Ф. Основы металловедения и термической обработки сварных соединений из титановых сплавов. К., 1975 М а к-квиллэн А. Д., Макквил-л э.н М. К. Титан. Пер. с англ. М., 1958. [c.115]

    Полнота испарения твердьЛх частиц, вводимых непосредственно в дуговой разряд, за[висит от ряда факторов химического состава и термических свойств компонентов пробы, скорости введения и Времени пребывания частиц в разряде, момента введения частиц относительно фазы разряда, длительности разрядного импульса, размеров частиц и попадания их в ту или иную зону разряда [708, 525, 810],. Хотя скорость испарения частиц в высокотемпературной дуговой плазме значительно выше, чем из раскаленных угольных электродбв, кратковременность пребывания частиц в разряде не позволяет полностью реализовать это преимущество. Так, за время пребывания в плазме (7 = 6000—6500° К) свободно падающих частиц аэрозоля диаметром 100 ж/сл (сотые-тысячные доли секунды) успевают полностью испариться лишь частицы легколетучих металлов (Sn РЬ и т. п.) [662, стр. 126]. Испарение же труднолетучих составляющих будет в той или иной степени неполным. При наличии в пробе компонентов разной летучести может наблюдаться эффект фракционного испарения. Это обстоятельство ограничивает возможности использования метода просыпки-вдувания для определения следов элементов, присутствующих в пробе в виде тугоплавких соединений. Высказывается мнение [357], что, используя [c.151]

    Результаты Зальманга и др. подтверждены измерениями электропроводности в области превращения, произведенными Хенлейном и Томасом . Они показали, что при статическом методе определения явлений превращения на температурных кривых электропроводности не наблюдается, но что эти эффекты появляются В измерениях динамическим методом при постоянном изменении температуры (см. А. II, 157). Точно так же Литтл, гон и Уэтмор демонстрировали отсутствие явления превращения у термически стдбилизированного стекла. Все сказанное ясно иллюстрируется фиг. 247, на которой видно, что проводимость стабилизированного стекла подчиняется непрерывному линейному соотношению между lg и 1/Г, тогда как в стеклах различной термической [c.212]

    Хюттиг и Херман о использовали соотношение между давлением пара и диаметром капилляров, выведенное Кубелькой при изучении процесса дегидрации псевдоморфоз метакаолина (см. D. II, 14 и ниже). Таким образом, они объяснили явление адсорбции пара метанола на этих высоко дисперсных системах кремнезема и глинозема зависимостью от температуры во время предшествующей термической обработки. Кубелька и Прошка использовали аналогичный эффект переохлаждения расплавов в капиллярах геля кремнекислоты определенных диаметров и в качестве метода измерения поверхностного натяжения кристаллической фазы на ее границе с расплавом. На основе уравнения Томсона и снижения точки плавления благодаря влиянию капиллярного натяжения можно оценить степень переохлаждения, которая определяется тепловыми или, более точно, калориметрическими опытами. Величину osf можно вычислить, например, для воды и бензина. [c.289]

    Ф и г. 423. Определение малых термических эффектов дифференциальным методом в образцах под давлением (Оо-гапзоп, Кгасек). [c.399]

    Для определения реакций дегидратации цеолитов > Кодзу и его сотрудники применяли метод термического анализа (см. В. I, 97 и ниже). Термические эффекты определялись с помощью дифференциального метода прокаленные диаспор, и кремнезем и полевой шпат служили материалом для сравнения. Длй гейландита отчетливые эффекты наблюдались при 200 и 325°С они отвечали гидратам с тремя и двумя молекулами воды. Эти результаты хорошо согласуются с результатами Вейгеля и Шёймана (см. С. II, 40). Разница между динамическими и статическими методами заключается в различии установленных температур для точек равновесия. Те же отчетливые ступени, которые были отмечены на кривых нагревания, соответствующие отдельным гидратам, фиксированы на кривых зависимости потери веса от температуры. У гейландита, однако, никаких дополнительных перерывов на термических кривых замечено не было вплоть до температуры 1350°С. В апофиллите, который, впрочем, не относится к типичным цеолитам, при повышенных температурах обнаружен, кроме эндотермических эффектов выделения воды, экзотермический эффект, что объясняется образованием новых безводных силикатов. [c.663]


Смотреть страницы где упоминается термин Эффекты термические определение но методу: [c.550]    [c.217]    [c.48]    [c.103]    [c.79]    [c.193]    [c.144]    [c.48]    [c.9]    [c.243]    [c.342]    [c.37]    [c.370]   
Введение в термографию Издание 2 (1969) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте