Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональные группы, анализ

    Сдвигающие или уширяющие реагенты (для отнесения линий близких по свойствах атомов различных функциональных групп, анализа смеси изомеров, геометрического строения молекул). [c.732]

    Гумусовые вещества, как известно, представляют собой сложные высокомолекулярные соединения, содержащие наряду с бензольными кольцами различные функциональные группы. Анализ кинетических кривых окисления хлором органических веществ позволил в области pH 5—12 принять для водного гумуса следующий механизм окисления окисление фенольных гидроксилов до карбонильных соединений через стадию образования промежуточного эфира гипохлоритной кислоты по оксигруппам гумусовых веществ реакции хлорирования водного гумуса наблюдаются только при низких значениях pH и больших избытках хлора. [c.645]


    Элементный анализ Анализ функциональных групп Анализ НгО Расход Оз [c.194]

    В книгу включены описания макро-, полумикро- и микрометодов элементарного анализа методы качественного и количественного определения функциональных групп анализ отдельных представителей основных классов органических соединений газовый анализ. Описаны основные методы определения температур плавления, затвердевания, кипения и конденсации методы термического анализа органических соединений основы хроматографического анализа методы анализа органических растворителей и их смесей. Для анализа каждой группы соединений приводится ряд методов, что дает возможность читателю выбрать, из них наиболее подходящий для работы. [c.15]

    Определение единственной функциональной группы в однородном веш,естве можно провести с помош,ью одной или двух реакций, если химические свойства данной группы ие подвержены какому-либо постороннему влиянию. Когда в молекуле вещества присутствуют две функциональные группы, анализу нередко мешает взаимодействие этих групп между собой (например, взаимная нейтрализация карбоксильных и аминогрупп в с(-аминокарбоновых кислотах), поэтому бывает необходимо попеременно маскировать такие группы. Одна молекула редко содержит более трех различных функциональных групп. [c.149]

    Структура полученного полимера подтверждена химическим анализом функциональных групп и ИК-спектрами. Отмечена высокая реакционная способность полимера в реакции с изоцианатами. [c.431]

    Полный анализ этих смесей никогда не производился, но написанные выше реакции объясняют образование всех найденных функциональных групп. Количество тяжелых продуктов возрастает при увеличении температуры и времени реакций, в некоторых случаях достигая 20 вес.%, и выходы ожидаемых альдегидов и спиртов составляют больше 80% даже при очень высоких степенях превращения олефина. [c.195]

    Методы электронной и колебательной спектроскопии намного упростили групповую идентификацию различных соединений и дали возможность экспрессно определять в нефтяных фракциях некоторые специфические типы компонентов и функциональных групп. Структурно-групповой анализ сложных смесей стало возможным дополнительно детализировать с помощью спектроскопии ядерного магнитного резонанса. [c.4]


    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]

    До сих пор нет прямого подтверждения наличия кислородсодержащих функциональных групп в молекулах ископаемых порфиринов. В работе [824] масс-спектрометрически с использованием стеклянной обогреваемой системы напуска показано присутствие карбоксильных групп в молекулах порфиринов, выделенных из горючего сланца, сланцевой смолы и нефти. Тем не менее особенности поведения карбоксилированных порфиринов при масс-спектрометрическом анализе [825] не дают возможности получить достоверную информацию о карбоксилированных соединениях в смеси ископаемых порфиринов. Имеются указания на небольшие количества (до 2%) порфиринов с остатками карбоновых кислот и сложноэфирными группами [825—827] в битуминозных компонентах осадочных пород. Однако более поздние исследования [51, 319] не подтвердили этих данных, по крайней мере для порфиринов нефти и гилсонита. [c.147]

    Как показывает анализ имеющихся опытных данных, определяющее влияние на степень неидеальности бинарных систем, образованных каким-нибудь веществом и членами гомологического ряда, оказывает характер функциональных групп компонентов. Влияние же величины углеводородного радикала в молекулах членов гомологического ряда сильно сказывается только для начальных членов ряда. Основываясь на этих положениях, можно выбирать разделяющие агенты по данным о равновесии в системах, образованных гомологами как компонентов заданной смеси, так и разделяющего агента. Это положение иллюстрируется приведенными в табл. 1 значениями Ор/а для систем циклогексан — бензол и метилциклогексан—толуол в присутствии различных веществ. [c.47]

    Важное значение для анализа химических соединений приобрели так называемые характеристические частоты. Большой экспериментальный материал показывает, что определенным функциональным группам, таким, как ОН, СН, С = О, С = С и т. п., неизменно сопутствуют определенные полосы поглощения или комбинационного рассеяния. Исторически сложилась традиция, что соответствующие частоты, названные характеристическими, приписываются колебаниям определенной функциональной группы (табл. 17). [c.177]

    Анализ мировой литературы за последние 30 лет показывает, что в процессе создания эффективных присадок к смазочным маслам исследовалась возможность использования для этой цели многочисленных органических соединений. Без преувеличения можно сказать, что в качестве присадок исследованы почти все классы органических соединений, содержащих различные функциональные группы и элементы. Однако, анализируя состав внедренных в промышленность присадок, можно отметить, что в качестве присадок используют лишь немногие органические соединения, которые содержат небольшое количество элементов и функциональных групп. [c.8]

    Задачи планирования маршрутов химического синтеза молекул известных химических соединений. На основе анализа структуры целевой молеку лы распознают функциональные группы, цепи, кольца, избыточность или симметрию скелета молекулы. Затем определяют реакции, позволяющие получать требуемые фрагменты структуры молекул (функциональные группы атомов), в отношении их корректности, однозначности и простоты. Задачу решают с использованием обратной стратегии, т. е. в направлении от структуры целевой молекулы к молекулам исходного сырья. [c.35]

    В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов 1) сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования 2) применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, температурой кипения, числом углеродных атомов или функциональных групп и т. д.) 3) сочетание газовой хроматографии с другими инструментальными методами 4) применение селективных детекторов. [c.190]


    Аналогичным образом, определяя групповые коэффициенты поглощения для двойных связей с различным характером замещения - которые имеют различные деформационные частоты), был произведен анализ по тинам олефиновых групп синтетических смесей и бензинов [137—142]. В последней работе определялось содержание не только олефинов различных типов, но и кислородных функциональных групп (ОН, ОНО, СООП, СОО, СО). [c.243]

    Идентификация кислородсодержащих функциональных групп проводится функциональным анализом и по ИК-спектрам. Ниже приведена схема определения функциональных групп в процессе химической и термической обработки [373]  [c.171]

    Качественный анализ по хроматограммам не вызывает затруднений, если определяемые вещества сами образуют характерно окрашенное пятно на хроматограмме или же окрашивание появляется в результате взаимодействия с каким-либо реагентом. Однако такими свойствами обладает весьма ограниченное число соединений, особенно органических. Если и удается получить характерную окраску для органических соединений в результате опрыскивания пластинки соответствующим реагентом, то только для того или иного класса соединений в целом, тогда как разные соединения, относящиеся к одному классу, дают одинаковое окрашивание, обусловленное наличием определенной функциональной группы. [c.147]

    Методы количественного функционального анализа позволяют установить содержание функциональной группы в данном веществе или, что чаще применяется, эквивалентный вес соединения Э, т. е. ту часть молекулярного веса, которая приходится на одну функциональную группу. По результатам количественного функционального анализа можно также сделать заключение о чистоте вещества или рассчитать содержание соединения в смеси. Подбирая реакции для количественного функционального анализа, стремятся к тому, чтобы один из компонентов смеси легко определялся, т. е. чтобы это была кислота, основание, окислитель, восстановитель, газообразный продукт или осадок. [c.227]

    В настоящее время наиболее широко в ГХ используют методы защиты функциональных групп. Анализ аминокислот газохроматографическим методом стал возможным, в основном, благодаря химической защите их функциональных групп, что привело к повышению стабильности и увеличению летучести. Защита (трансформация) функциональных групп в более устойчивые является традиционным способом, широко используемым в методах ХОП. Естественно, что защита направлена, прежде всего, на те функциональные группы, присутствие которых в молекуле анализируемых соединений обуславливает их повышенную реакционную способность, термическую нестабильность и образование ассоциатов. Аналогичные проблемы давно решаются в препаративной органической химии, в которой часто прибегают к временной блокировке или защите тех функциональных групп, участие которых в реакциях, проводимых по другим функциональным группам молекулы, возможно, но нежелательно. Обширный, хорошо систематизированный материал по известным до настоящего времени методам защиты групп приведен в монографии, написанной под редакцией Дж. Мак Оми [12]. [c.14]

    С помощью реактива Фишера стало возможно определять та кие вещества, для которых ранее не существовало методов анализа (например, нитрилы), а также вещества , содержагйие различные функциональные группы, анализ которых был ранее труден, а часто практически невыполним (например, сложные смеси, содержащие спиртовые и карбоксильные группы). Метод Фишера удобно сочетать с другими аналитическими методами. Так, например, полный анализ с.месей аминов возможен при сочетании метода Фишера, позволяющего определить суммарное содержание первичных и вторичных аминов, с ацидиметрическим методом для определения третичных аминов и для определения суммарного содержания вторичных и третичных аминов (см. стр. 337 и 345). [c.392]

    Наиболее полно функционально-групповой анализ азотистых соединений разработан Н. Н. Безингер и Г. Д. Гальиерном [35,51]. Авторы предлагают схему функционально-группового анализа, которая позволяет дифференцировать азотистые соединения на три группы 1) свободные основания, 2) нейтральные соединения, восстанавливаемые алюмогидридом лития до оснований (условно обозначенные как амиды кислот), 3) нейтральные соединения, не восстанавливающиеся алюмогидридом лития (остаточный азот). [c.43]

    В исследопапии гетероорганических соединений реактивных топлив метод инфракрасной спектрометрии молсет быть использован для 1) идентификации индивидуальных соединений, 2) количественного анализа простых смесей известного состава, 3) определения особенностей химической структуры (наличие и расположение функциональных групп, отдельных связей, изомерных структур), 4) исследования кинетики окисления различных соединений и изменения структуры соединений под действием различных факторов. [c.117]

    Как установлено выше, методы структурно-группового анализа не позволяют установить тип молекул, так как одинаковые функциональные группы не зависят от типа молекул, к которым они пренадлежат. Тем не менее во многих случаях может быть сделано правильное заключение [c.387]

    Простейший метод определения структуры химических молекул сводится к непосредственной проверке структуры с помощью рентгенолучевой кристаллографии. Однако это не всегда удается осуществить, поэтому приходится прибегать к другим методам, включающим анализ с помощью инфракрасного и ультрафиолетового излучений, хроматографии, ядерного магнитного резонанса и масс-спектрометрии. Обычно структурный анализ включает следующие этапы 1) после получения образца используется один из перечисленных выше методов для проверки структуры 2) данные проверки интерпретируются с целью выработки ряда гипотез, касающихся структуры функциональных групп или более слож- [c.49]

    Обеспечение функционировапия системы. В основе построения системы используется модульный принцип. Обработка различных данных, например свойств компонентов, свойств смеси и т. д., производится самостоятельными программами, объединенными в функциональные группы. Совокупность всевозможных групп программ составляет библиотеку функциональных модулей системы. Для управления работой системы во всех режимах служит группа программ Диспетчер , основу которой составляет блок анализа запроса, компилирующий соответствующий пакет функциональных модулей для реализации запроса [29]. [c.109]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    О групповом составе гетероатомных соединений в нефтях и их фракциях судят по функциональным группам, определяемым с помощью химических реакций с применением электрохимических методов титрования. Для проведения функционального анализа зачастую не требуется выделения, разделения и тщательной очистки от прн.месей анализируемых соединений, эти методы незаменимы для оперативного контроля состава и качества изучаемых в лаборатории или получаемых на производстве нефтепродуктов. [c.144]

    Для денсиметрического анализа смолисто-асфальтеновых веществ по Ван-Кревелену, по-видимому, нужно сделать предположение о том, ЧТО значения / /С и /аг определяются не для всей молекулы, а для ее полициклической части, исключая алифатические заместители или функциональные группы, введенные при химических превращениях [380]. Исходя из этого денсиметрическим анализом можно пользоваться для получения предварительной информации о структуре исследуемого объекта, так как метод весьма прост, достаточно распространен. Однако поскольку расчет производится только исходя из значений плотности, элементного состава и молекулярной массы, то полученные при этом значения параметров весьма условны. [c.173]

    В настоящее время разработан ряд методов структурного анализа, которые используют помимо молекулярной массы, плотности и элементного анализа, данные, полученные ЯМР и ИК-спектроскопией. Так, Хирш и Альтгельт [385] предложили метод расчета большого числа средних структурных параметров-нефтяных остатков, названный интегральным структурным анализом. Для проведения расчета по этому методу требуются следующие исходные экспериментальные данные среднечисловая молекулярная масса, плотность продукта при 20°С, элементный состав, информация о распределении гетероатомов 5, N и О по функциональным группам, получаемая из инфракрасных спектров. Кроме того, с помощью спектров ЯМР определяется распределение атомов водорода между ареновыми кольцами, бензильными группами —СН и —СНг, —СНз, алифатическими группами —СНз и 11 [c.174]

    Анализ адсорбционных смол. Адсорбционные смолы и выделенные из них к1 слородные соединения анализируют известными физико-химическими, хроматографическими и спектральными методами. Определяют плотность, показатель преломления, йодное число, элементарный состав средний молекулярный вес, функциональные группы фенольные — бромид-броматным методом [27] карбоксильные и сложноэфирные — титрованием по фенолфталеину карбонильные — с помощью солянокислого гидроксиламина [28] гидроксильные — методом гидрохлорирования или ацетилирования в пиридине [29]. Поскольку адсорбционные смолы имеют темный цвет, для их анализа предпочтительнее пользоваться потенциометрическим титрованием. На основании полученных данных можно с достаточной для дальнейшей работы точностью рассчитать групповой состав кислородных соединений. [c.230]

    Итак, после отсечения боковых цепей и удаления и/или трансформации лишних функциональных групп ретросиитетический анализ приводит к некоему ядру целевой молекулы, сборка которого составляет центральную проблему планируемого синтеза ( стратегическое ядро ). [c.233]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    Определение м о л е к у л я р и о г о вес а п о количеству концевых груп п, Концевые звенья некоторых полимеров имеют функциональные группы, отсутствующие в промежуточных звеньях макромолекул. Средний молекулярный вес отдельных фракций таких полимеров можно определить по количеству содержащихся в них концевых звеньев. Применение этого метода возможно только в тех случаях, когда известна химическая структура полимера и исключена возможность каких-либо изменений химической структуры звеньев при анализе. Для точного определения молекулярного веса требуется особенно тщательное фракциоииропание полимера, поскольку молекулярный вес по данному методу определяется количеством частиц полимера во фракциях. С увеличением молекулярного в са точность определения его по концевым группам снижается, так как уменьшается отношение количества концевых звеньев к общему количеству макромолекул. [c.84]

    Впервые синтез К,0-бис(триметилсилил)ацетамида (БСА), являющегося одним из самых эффективных силилирующих агентов, описан Биркофером [1]. Он может быть использован для силилирования практически всех видов функциональных групп [2]. Этим вызвано широкое применение БСА в хроматографических исследованиях нелетучих соединений, а также в различных синтезах. У подавляющего большинства тяжелых структур, имеющих гидроксильные, карбонильные, карбоксильные и многие другие функциональные группы в результате силилирования увеличивается летучесть, и тем самым существенно ускоряется хроматографический и хромато-масс-спектральный анализ [3]. [c.11]

    Структурно-групповой анализ — качественное и количественное определение некоторых связей и групп атомов (функциональных групп) в молекулах неизвестного строения и сложных продуктах — важнейшее применение инфракрасной спектроскопии в химии. Его основой является наличие примерно постоянных характеристических полос у опредГеленных групп атомов — спектральных функциональных групп . Методы структурно-г])уппового анализа широко используются в хпмии и быстро совершенствуются повышаются надежность и точность получаемых сведений и, главное, степень подробности этих сведений. В частности, исследование полимеров (попиэтены, каучуки и др.) дало под])обные сведения о количественном ooтнoшe ши и взаимной ориентации различных структурных элементов их молекул, о кристалличности полимеров, об изменениях при старении, окислении, действии ионизирующего излучения и т. д. [c.499]

    Для исследования органических соединений используются различные области электромагнитного спектра. Излучение, соответствующее ультрафиолетовой и видимой областям спектра (1000—8000 А), вызывает переходы внешних, валентных, электронов на более высокие энергетические уровни, а также изменение колебательной и вращательной энергии молекул. Поэтому ультрафиолетовые и видимые спектры молекул состоят из широких полос поглощения. Положение полос поглощения, их форма и интенсивность определяются строением молекулы (наличие кратных связей, функциональных групп). В ряде случаев УФ и видимые спектры бырают настолько характерны, что могут служить для идентификации соединений. Многие полосы поглощения в УФ и видимых спектрах имеют очень высокую интенсивность, что позволяет работать с очень малыми количествами веществ. Количественная зависимость между интенсивностью поглощения и концентрацией веществ позволяет применять УФ и видимые спектры в количественном анализе. [c.228]


Смотреть страницы где упоминается термин Функциональные группы, анализ: [c.303]    [c.41]    [c.117]    [c.6]    [c.36]    [c.180]    [c.126]    [c.247]    [c.271]    [c.35]    [c.60]    [c.69]   
Газовая хроматография в биохимии (1964) -- [ c.203 , c.234 , c.240 , c.317 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ функциональный

Функциональные группы



© 2025 chem21.info Реклама на сайте