Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид титана III определение

    Аналогичный метод разделения был применен при определении 0,002—0,1% Мо и в металлическом титане 1334]. При получении соединения молибдена с толуол-3,4-дитиолом в качестве восстановителя применяли хлорид двухвалентного олова. [c.147]

    Определение кобальта в титане и титановых сплавах. Сводка методик определения примеси кобальта и примесей других элементов (всего 28 элементов) приведена в работе [1420]. Для полярографического определения кобальта (также меди, никеля, марганца и хрома) в титановых сплавах [1071] навеску материала разлагают смесью растворов фтористоводородной и хлорной кислот и удаляют основную массу титана гидролитически, выпаривая раствор почти досуха. Оставшийся в растворе титан удаляют осаждением пиридином, а хромат — осаждением раствором хлорида бария. Далее полярографируют ко- [c.206]


    Определение молибдена. На поверхность металла наносят одну каплю смеси растворов тиоцианата аммония и хлорида олова. В присутствии молибдена появляется ярко-красная окраска. Через 30 сек окраска исчезает. Титан и его сплавы дают желтую окраску. [c.117]

    Наиболее распространены методы определения фторид-ионов, основанные на реакциях разрушения окрашенных комплексов металлов. Фторид-ионы образуют комплексы с рядом катионов (железо, титан, цирконий и др.). С другой стороны, эти катионы образуют окрашенные комплексы со многими реактивами. Некоторые из окрашенных соединений разлагаются при действии ионов фтора. Фторидные комплексы металлов не очень прочны, поэтому для определения фтора можно применять только сравнительно малопрочные окрашенные комплексы металлов или необходимо создать такие условия реакции (например, повышая кислотность), при которых уменьшается их прочность. Это еще в большей степени относится к определению хлорид- и сульфат-ионов. [c.29]

    Этот метод применим в присутствии меди, кобальта, никеля, марганца, цинка, магния и ртути. Хорошие результаты получаются также в присутствии щелочноземельных металлов, алюминия, урана и кадмия, если осаждение проводить медленным добавлением ацетата аммония к горячему солянокислому раствору молибдена, содержащему небольшой избыток свинца. Соли щелочных металлов не препятствуют определению, за исключением сульфатов, которые должны быть удалены в случае наличия в растворе щелочноземельных металлов. В отсутствие последних небольшие количества сульфатов, такие, какие могут образоваться при растворении сульфида молибдена, не оказывают влияния на осаждение. При наличии в растворе сульфатов и хлоридов следует избегать введения в раствор большого избытка свинца. Свободные минеральные кислоты и винная кислота препятствуют количественному осаждению молибдена, а железо, хром (П1), алюминий, ванадий, вольфрам и кремний, если присутствуют в значительных количествах, загрязняют осадок. Фосфор, хроматы и арсенаты должны отсутствовать. К элементам, мешающим определению, относятся также олово, титан и другие элементы, соли которых легко гидролизуются. [c.366]

    Объемное определение хлорида в титане и цирконии методом поляризационной конечной точки. [c.69]


    Мешающие ионы. При восстановлении железа (III) раствором хлорида олова (II) титан не восстанавливается. Ванадий (V), хром (VI) и уран (VI) восстанавливаются соответственно до ванадия (IV), хрома (III) и урана (IV). Первые два не титруются бихроматом, а уран (IV) титруется до урана (VI). Сурьма (III) и мышьяк (III) мешают определению. [c.767]

    Ванадий (IV), уран (VI), сурьма (III), висмут и олово (IV) осаждаются. Алюминий, медь, кобальт, хром (III), ртуть (I), таллий (I), марганец, цинк, железо, кадмий, титан, молибден, железо (II), вольфрам, ванадий (V), мышьяк (III) и мышьяк (V) не мешают определению не мешают также сульфат-, хлорид-, нитрат- и фосфат-ионы. [c.802]

    Определение в присутствии железа (III). Проводя определение, как описано выше, находят суммарное содержание железа и титана. В другой порции анализируемого раствора после проведения восстановления титруют только титан (III) титрованным раствором соли железа (III) или перманганатом в присутствии метиленовой синей в качестве индикатора Ч Можно также окислить титан (III), пропуская через раствор воздух в течение 5 мин в присутствии катализатора 2 хлорида ртути (II), а затем титровать железо (II). [c.1031]

    IV), ниобий, тантал, титан, цирконий, а в больших количествах — вольфрам и даже ванадий (V) осадки увлекают с собой некоторое количество фосфат-ионов. Висмут, торий, мышьяк (V), хлорид-и фторнд-ионы замедляют образование окрашенного соединения. Если присутствуют фторид-ионы, прибавляют в избытке борную кислоту. Медь и никель мешают окраской своих ионов, если измерение проводят при К — 460 ммк. Восстановители должны быть предварительно окисленными. Хром (VI) мешает определению. Мышьяк (V) образует окрашенное соединение, окраска которого в 100 раз слабее окраски соединения фосфора (V). Пирофосфат-ионы не мешают анализу, что дает возможность определять этим способом фосфаты в присутствии пирофосфатов, надо только прибавить реактив в достаточном избытке. Цитрат-ионы мешают определению. [c.1091]

    Наиболее широко определение хлора проводят по С1, образующемуся при облучении нейтронами стабильного изотопа С1 [131, 251, 261, 312, 522, 537, 547]. Описаны методы недеструктивного анализа с помощью изотопа С1 металлов (висмут [16], титан [481], циркониевые и титановые концентраты [112]), силико-алюминия [490], неметаллов (бор [172, 398], графит [357, 783]), соединений бора [398], хлорида аммония [852], азотной кислоты [312, 349], карбонатных горных пород [831], геологических объектов [205], каменного угля [572, 977], нефтяных продуктов [555,> [c.127]

    Метод противоточной кристаллизации из расплава может быть использован для глубокой очистки некоторых летучих хлоридов (бор, титан, германий и галлий). Эффективность процесса разделения характеризуется определенными значениями коэффициентов распределения для равновесия твердое тело — жидкость, имеющими интервал значений от 1,5 до 10 для различных систем. Установлено, что коэффициент распределения в тех же системах для случая равновесия жидкость — пар не превышает значения 2,5. [c.110]

    В присутствии тяжелых металлов фильтрат I после выделения кремневой кислоты выпаривают досуха, переводят в хлориды трехкратной обработкой соляной кислотой (пл. 1,12) и пропускают сероводород (см. стр. 216). Осадок сульфидов (осадок II) используют для определения свинца, меди и др., а фильтрат II нагревают на водяной бане для удаления H S, упаривая при этом до небольшого объема. Затем для удаления остатка H S и окисления железа прибавляют бромную Еоду, стакан накрывают часовым стеклом и кипятят. Прибавляют несколько капель соляной кислоты (пл. 1,12), разбавляют раствор до 5—10 мл и алюминий, железо, титан и др. осаждают аммиаком (не содержащим карбонатов). Осадок III переосаждают, отфильтровывают, промывают, прокаливают и взвешивают сумму окислов (см. стр. 100). Окислы сплавляют с пиросульфатом калия, сплав растворяют в 5%-ной серной кислоте, переводят в мерную колбу емкостью 25 мл и проводят определение отдельных элементов, как описано в соответствующих разделах. [c.370]

    В условиях определения цинка флуоресцируют лишь кадмий и индий [49], но многие элементы, в том числе такие постоянные компоненты минерального сырья, как железо, титан и магний, в значительной степени тушат свечение цинкового комплекса. Поэтому для определения цинка в рудах и минералах необходимо предварительно отделять его от большинства посторонних элементов. С этой целью применяют экстракцию рода-нидного комплекса цинка изо-амиловым спиртом из фторидно-сернокислой среды. При этом вместе с цинком извлекаются медь и частично кадмий, кобальт и никель эти четыре элемента отделяют путем промывки экстракта подкисленным раствором роданида, после чего цинк реэкстрагируют аммиачным раствором хлорида аммония [1]. Однако следует учитывать, что при таком способе выделения малых количеств цинка во всех стадиях процесса возможна его общая потеря в размере до 25% от исходного содержания [8]. [c.246]


    Препятствующие анализу вещества. Молибден и вольфрам мешают определению, так как в присутствии хлорида олова (II) образуют с роданидом окрашенные комплексы. Титан дает с ионом родана слабо окрашенное соединение, поэтому наличие большого количества титана мешает определению, однако небольшие количества его могут присутствовать. Так как в раствор вводится хлорид олова, который восстанавливает Ре+++ до Ре++, то малое количество железа также не мешает. Остальные обычно встречающиеся катионы не мешают определению даже в том случае, если их количество в 1 ООО раз больше количества ниобия. [c.201]

    В ряде случаев используется восстановление нитратов и нитритов до аммиака и определение последнего по Несслеру. В качестве восстановителя нитратов и нитритов до аммиака предложен титан (III) [157] и хлорид хрома (И) [158, 159]. По-видимому, проще и надежнее восстановление сплавом Деварда в щелочной среде [160]. [c.39]

    Выделивщийся роданид определяют в виде роданидного комплекса железа [24—33]. Этот метод применен для определения хлоридов в металлическом титане [26], металлических бериллии, тории, уране и их окислах [25]. [c.316]

    Например, Zr U практически совершенно нерастворим в четыреххлористом титане, а в присутствии хлористого алюминия (легкоплавкий сплав, содержащий 17 вес.% Zr U и 83% Al lg) растворяется в значительных количествах. Это свойство представляет известный интерес для получения сплавов титана с другими металлами восстановлением натрием или магнием растворов хлоридов в четыреххлористом титане определенной концентрации. [c.166]

    Таким образом, в концентрированных растворах хлоридов имеется определенная область потенциалов вблизи Екор, где титан подвергается питтинговой коррозии. [c.134]

    Линейный полиэтилен на таких катализаторах может образовываться как в гомогенной, так и в гетерогенной фазе, поскольку он не имеет пространственных изомеров Для получения ж изотактического полипропилена предпочитают применять твердые хлориды титана (прежде всего Т1С1з) в сочетании с алюмпнпйор-ганическим компонентом. О роли твердой фазы говорит тот факт, что в присутствии каталитического комплекса металлорганического соединения с переходным металлом, адсорбированного на аморфном носителе, при полимеризации пропилена образуется атактический аморфный продукт. Тот же комплекс, адсорбированный на кристаллическом носителе (треххлористый титан), позволяет получить изотактический полимер [27]. Следует отметить, что самой по себе регулярности решетки носителя еще недостаточно для того, чтобы катализатор приобрел высокую стереоспецифичность носитель должен также удовлетворять определенным стезе [c.38]

    Все солянокислые фильтраты после выделения кремниевой кислоты собирают вместе и используют для определения титана, алюминия и общего содержания железа в пробе. Так как при выпаривании солянокислых растворов для отделения кремниевой кислоты обычно используют платиновые сосуды. Ре(III) может частично восстанавливаться платиной до Ре(II). Поэтому к фильтрату прибавляют несколько капель бромной воды и кипятят его, чтобы удалить излишний бром. Горячий раствор тщательно нейтрализуют аммиаком с индикатором метиловым красным (pH < <7), причем железо, алюминий и титан осаладаются в виде гидроксидов, а фосфор — в виде нерастворимых фосфатов этих элементов. Если количество образовавшегося хлорида aMMjDHHH ниже [c.464]

    Специфические свойства четыреххлористого титана создают определенные трудности при конструировании и изготовлении аппаратуры, используемой в этом производстве. Кроме того, ввиду наличия пульпы, образованной, как указывалось выше, вследствие содержания в четыреххлористом титане твердых хлоридов других металлов и жидкого четыреххлористого кремния, необходимо отделить последний от твердых примесей с помощью отстаивания, центрифугирования, фильтрации или ректификации. Удаление же из четырехх го-ристого титана таких примесей, как хлориды ванадия или оставшиеся в жидкости хлориды алюминия, вынуждает применять методы физико-химической очистки путем образования комплексных соединений за счет введения в жидкость медного порошка, влажного активированного угля с последующим отстаиванием и фильтрацией твердой фазы. [c.67]

    При наличии в электролите активирующих агентов, например хлорид-ионов, при определенном значении потенциала фпит пассивное состояние нарушается, процесс анодного растворения ускоряется. Объясняется это тем, что по мере смещения потенциала в положительную сторону усиливается адсорбция хлорид-ионов. Поскольку степень покрытия поверхности кислородом неодинакова, в местах, где имеются дефекты в структуре окисной пленки, начинают преимущественно адсорбироваться хлорид-ионы, и вместо пассивирующего окисла образуется галогенид, обладающий хорошей растворимостью. Начинается питтинговая коррозия. Этому виду коррозии особенно подвержены нержавеющие стали и другие пассивирующиеся сплавы алюминий, титан, цирконий. [c.14]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]

    Был предложен метод отделения циркония от железа и алюминия, подобный методу отделения титана от этих элементов, предложенному тем же автором. Метод основан на способности циркония осаждаться из нейтрализованного раствора хлоридов при двухмипутном кипячении в присутствии сернистой кислоты. По-видимому, это — очень хороший метод. Так как титан постоянно присутствует вместе с цирконием и также полностью осаждается, то в дальнейшем эти два элемента следует отделить друг от друга добавлением перекиси водоропа и растворимого фосфата. Еще не выяснено, пригоден ли этот способ для определения таких малых ко.п ичеств циркония, какие обычно встречаются в анализе горных пород, но для определения больших количеств этот метод был успешно использован в измененном виде. [c.973]

    К анализируемому раствору, содержащему титан, уран, цирконий и другие элементы, прибавляют 10 мл 10%-ного раствора комплексона III, подкисленного соляной кислотой, разбавляют водой до 400 мл, вводят 50 мл раствора таннина, нагревают почти до кипения, добавляют по каплям при энергичном перемешивании разбавленный аммиак до полного осаждения и выдерживают 10 мин. в тепле. По охлаждении осадок отфильтровывают, промывают 2%-ным раствором хлорида аммония, прокаливают до UsOs или, при определении титана, до TiOa и взвешивают. Если необходимо переосаждение, то осадок до прокаливания растворяют в горячей 6 JV НС1, прибавляют 5 г NH4 I, 5 мл раствора комплексона III и 50 мл раствора таннина. Далее поступают, как описано выше. [c.55]

    Преддожен [59] косв 1Ный метод определения циркония, основанный на том, что цирконий, аналогично титану, ниобию, ванадию и другим элементам, образует с фосфатом и молибдатом фосфорно-молибдено-циркониевую гетерополикислоту, которую восстанавливают хлоридом олова (в присутствии цитрата калия и комплексона III). Гетерополисоединение образуется в сернокислой и уксуснокислой средах при pH 3. Концентрация фосфата должна быть порядка 0,004 М. Избыток молибдата не должен превышать 5 10 М Определению циркония мешают Ti, Nb и большие количества Fe " . [c.159]

    Из табл. 3 видно, что чувствительность метода определения железа роданидами повышается, если реакцию проводить в присутствии ацетона чувствительность метода еще больше повышается, если определение железа проводить смесью трибутиламмоаия и амилового спирта. Проведению реакции мешает ряд веществ. Прежде всего должны отсутствовать анионы ряда кислот, которые дают более прочные комплексные соединения, чем роданид железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также хлориды и сульфаты, присутствующие в значительных количествах. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь, молибден, вольфрам, титан в 3- и 4-,валентном состоянии, ниобий, палладий, кадмий, цинк, ртуть. [c.136]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Комплексное соединение с титаном в слабокислых растворах дает 2,7-дихлорхромотроповая кислота [190]. Соединение легко извлекается изобутиловым спиртом после введения соли тяжелого органического катиона (хлорида дифенилгуанидиния). Мешающее влияние Fe, V, r устраняется аскорбиновой кислотой. Оптическую плотность экстракта измеряют при 490 ммк. Чувствительность метода такого же порядка, как и в случае салицилгидроксаматного метода. В условиях определения титана экстрагируются Мо и W. [c.67]

    Кальции, магний, марганец, титан, хлориды и сульфаты мешают определению только в том случае, если присутствуют в высоких концентрациях. Очень мешает кремнекислота. Аналогичным способом определяют суммарное содержание железа (III) и алюминия. Автор рекомендует в том же растворе после титрования суммы железа и алюминия определять железо титанометрически. [c.365]

    В последнем своем исследовании Милнер и Эдвардс [79] упростили ход анализа циркониево-урановых сплавов тем, что обратное титрование избытка комплексона они проводят хлоридом железа при pH 2,3 фотометрическим методом. В качестве индикатора применяют калиевую соль бензогидроксамовой кислоты, которая дает с ионами трехвалентного железа синюю окраску. Главное преимущество этого варианта метола заключается в том, что определению тогда не мешает даже 50-кратное количество урана, вследствие чего отпадает необходимость предварительного выделения циркония. Метод имеет основное значение прн анализе вышеупомянутых бинарных смесей, поскольку некоторые другие элементы, особенно олово и титан, мешают этому определению. Авторы поступают следующим образом соответствующую навеску сплава растворяют в платиновой чашке в азотной кислоте при добавлении возможно меньшего количества плавиковой кислоты. Раствор выпаривают с 10 мл разбавленной серной кислоты (1 1) до выделения белых паров. После 10-минутного нагревания дают оставшемуся раствору охладиться и в стакане разбавляют его до 300 мл. Прибавляют в небольшом избытке [c.493]

    Pb ", Мо Сг V , Ti ", Г, S N, NO2, ЗаОз иВг. а также ор-ганическне соединения. Влияние поглощения органических веществ можно учесть, измеряя поглощение растворов при 275 нм. Если к раствору, содержащему нитраты и хлориды, добавить H2SO4, то максимум поглощения сдвигается до 230 нм. В этой области мешающее влияние посторонних ионов выражено слабее. Применение сернокислых растворов предложено в работе [67]. Метод использован для анализа воды [68] и других объектов [69]. Измерение поглощения в УФ-области позволяет определять нитрит и нитрат при совместном присутствии [70], поскольку оба иона поглощают в области 302 нм, а нитрит — в области 355 нм. При использовании кюветы с толщиной слоя 1 см предел обнаружения нитрита равен 0,02 мг/мл, а нитрата 0,09 мг/мл. Определению мешает ряд ионов [70]. Описан косвенный метод определения нитратов, основанный на их восстановлении титаном (III) до аммиака и измерении поглощения аммиака в газовой фазе при 201 нм. Ионы кобальта, меди, железа и цинка подавляют сигнал, хотя не мешают определению аммония в аналогичном методе. Предполагается, что этот эффект связан с частичным окислением титана(III) или образованием неустойчивых промежуточных комплексов этих ионов, которые разлагаются с выделением не аммиака, а других соединений азота. [c.128]

    Метод значительно экспресснее, чем классический, длительность которого составляет 2 ч. Поскольку метод применяют в анализе сталей, сплавов и других металлургических объектов, важно знать влияние ионов металлов. Влияние Са, Mg и Fe несущественно [37]. В легированных сталях Мп, Сг, Ni и W (до 20%), Со (до 10%), а также Мо, V и Си (до 5%) не мешают определению [38]. Титан и цирконий мешают, но влияние титана подавляют введением кальция. Сведения о влиянии алюминия противоречивы. По данным работы [37], определению силикатов (125 мг SiOa) не мешает 15—30 мг алюминия. Другие авторы указывают на возможное со-осажденне ионов, которое наблюдается, например, в присутствии гитана. Для предотвращения соосаждения рекомендуют добавлять хлорид кальция [39,40]. Важно, что определению кремния не мешают фториды. [c.194]

    Присутствие хлорида, фторида и сульфата аммония тормозит образование осадка, такое же действие оказывают НС1, HF и H2SO4. Мышьяк, селен, кремний, теллур, вольфрам, ванадий, титан и цирконий мешают определению, их мешающее влияние можно устранить, если осаждение проводить в более концентрированных растворах HNO3. Изучали [64] влияние мышьяка и ионов переходных металлов на осаждение, результаты исследований показали, что фосфат можно количественно осадить при 50—70 °С 3,5-кратным по сравнению со стехиометрическим избытком молибдата аммония даже в присутствии эквивалентных количеств мышьяка. С помощью радиоактивных изотопов было показано, что количество осаждающегося As зависит от избытка молибдата аммония и температуры, при которой проводят осаждение. В этой же работе было найдено, что нитрат железа ингибирует осаждение фосфата (так же, как и арсената), нитраты хрома (III), никеля (II) и марганца (II) оказывают меньше влияния на скорость образования осадка. [c.445]

    Хлориды в магнии (2-10 %) определяли без отделения от основы на фоне 4,5 М Н2504, а в титане —на фоне 1,ЗМ Н2504. Определению С1 не мешают 20-кратные МД Ре и Си [204]. [c.205]

    Полярографический метод применяют для определения хлорид-ионов в самых разнообразных объектах в титане [350], тантале 1801], селене [64], уране [688] и его солях [426], сульфате цинка и цинковом электролите [207], монокристаллах ( d r2Se4) [91], люминофорах на основе сульфидов кадмия и цинка [223, 224], кислотах (серной [970, 1068], фосфорной [46, 970], хлорной [970]), в смесях с другими галогенидами [294, 523], полимерах [860], природных водах и солях [90], сточных водах [230, 782], водно-метаноль-ных смесях [737], биологических объектах [436]. [c.109]

    По ТУ МХП 3052—55 примесь железа определяют следующим образом титан и железо осаждают аммиаком, осадок растворяют в соляной кислоте, железо извлекают эфиром и определяют роданидным методом в остатке после выпаривани5 эфира. В условиях, указанных в ТУ, определение железа не дает правильных результатов, так как для количественного извлечения хлорида железа (П1) эфиром должна быть сильно кислая среда (6н.), и извлечение необходимо проводить несколько раз в зависимости от количества железа. Метод извлечения хлорида железа (III) очень трудоемок и требует применения эфира. [c.235]

    Перхлораты (СЮ ) определяют осаждением в виде перхлоратов калия, рубидия и цезия. Разработаны методы определения СЮ с нптроном, метплен-блау, хлоридом тетрафениларсония, тетраппридином меди, треххлористым титаном. Малые количества IO определяют колориметрически с бриллиантовым зеленым (при этом методе наличие IO пе мешает). [c.348]

    В различных органических растворителях роданидный комплекс более устойчив, чем в водных растворах. В этиловом эфире или в смеси из 2 частей этилового и 1 части петролейного эфира, которые предварительно встряхивались с роданидом и хлоридом олова (II), интенсивность окраски остается практически постоянной или же слабо vnaflaeT после часового стояния, а затем очень медленно повышается. Предварительно насыщенный реактивами оиклогексанол дает раствор, в котором интенсивность окраски практически не меняется несколько часов, но при более долгом стоянии медленно увеличивается. Растворы комплекса в бутил-ацетате при стоянии довольно быстро темнеют, особенно если растворитель сначала встряхивался со смесью роданида, хлорида олова (II) и кислоты. Иногда рекомендуют выполнять реакцию в водно-ацетоновой среде, так как ацетон стабилизует окраску и предотвращает ее изменение с течением времени . Если определение производят при экстрагировании молибденово-роданид. ного комплекса эфиром или др/гими органическими растворителями, то большинство элементов не мешает. Среди немешающих элементов отметим железо, алюминий, титан, марганец, никель, кобальт, уран и тантал. [c.328]

    В качестве восстановителя применяют раствор хлорида олова (II) в фосфорной кислоте [67]. При определении серы в сульфатах бария, магния, цинка, натрия [63, 68], а также при анализе сульфидных руд, тиосульфата и других серусодержащих материалов [69] раствор хлорида олова(П) и.фосфорной кислоты предварительно нагревают до удаления хлористого водорода. Восстановление этой смесью детально изучено, и усовершенствован способ приготовления реагента для восстановления [70]. Для восстановления серы рекомендовано также применять металлические титан, хром, молибден, ванадий или вольфрам в присутствии фосфорных кислот и их солей [71]. Чаще других металлов рекомендуется применение металлического хрома в присутствии фосфорной кислоты, этот восстановитель применен для определения серы в феррохроме, металлическом хроме [14] и хлориде титана (IV) [72]. Широко распространен метод восстановления серы смесями иодистоводород-ной и фосфорноватистой кислот [73], иодистоводородной кислоты и гипофосфита натрия в присутствии, уксусной [64], муравьиной [74] и хлористоводородной [75—77] кислот. Кроме того, рекомендована смесь иодистоводородной и муравьиной кислот и красного фосфора [78], а также смесь сульфата титана (111) и фосфорной кислоты [79]. [c.214]

    Титан, как и кремний, образует при испарении аэрозоля в пламени прочные кислородные соединения, и поэтому для его определения мол<но использовать только пламя динитроксид — ацетилен. Для подавления ионизации атомов титана необходимо введение депрессора (обычно хлорид калия). [c.191]


Смотреть страницы где упоминается термин Хлорид титана III определение: [c.277]    [c.234]    [c.102]    [c.112]    [c.205]    [c.33]    [c.25]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.0 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Титан хлорид III

Хлориды определение



© 2025 chem21.info Реклама на сайте