Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

кра с ные спектры металлов, галогенидов

    Сопоставление расстояния наибольшего сближения ионов, а, рассчитанного из данных о константах равновесия, с расстоянием N—Вг в кристаллической решетке показывает, что первое на 17% меньше. Такая разница, вероятно, вполне возможна. Она, в частности, согласуется с данными исследования микроволновых спектров поглощения галогенидов щелочных металлов в газовой фазе [112] и с данными о дифракции электронов [113], согласно которым межатомные расстояния в молекулах этих соединений в газовой фазе на 10—17% меньше соответствующих значений в кристалле. Данные микроволновых спектров газообразных галогенидов галлия, индия, таллия свидетельствуют, что эта разница достигает иногда 20—25% [114]. Если полагать, что в газовой фазе и в рас- [c.122]


    Не менее интересными и даже более полными оказались исследования ИК-спектров паров галогенидов щелочных металлов. Основной целью этих исследований была также проверка ионной модели, которая широко используется многими авторами для онисания галогенидов щелочных элементов. [c.78]

    УФ-спектры могут использоваться для выяснения строения углеводородной части. арилпроизводных гетероатомных соединений или их комплексов донорно-акцепторного типа с галогенидами металлов. Спектроскопическое исследование комплексов нефтяных сульфидов с иодом, бромидом алюминия, хлоридом галлия, [c.142]

    Сложнее получить ИК-спектр раствора вещества, которое растворимо только в полярных растворителях, поскольку эти растворители имеют меньше областей, пропускающих ИК-излучение (табл. 20). Значительные трудности возникают при необходимости снять ИК-спектр водных растворов. Вода сильно поглощает ИК-излучение, особенно в областях 1630 и 3710 см , и для снятия спектров водных растворов требуются тонкие кюветы. Кроме того, здесь неприменимы обычно использующиеся для изготовления кювет галогениды щелочных металлов. Для снятия спектров водных растворов используют тонкие (около 0,01 мм) кюветы, окна которых изготовлены из флюорита, хлорида серебра или других нерастворимых в воде и прозрачных для ИК-лучей веществ. Можно записывать спектры растворов, содержащих не более 20% воды (или метанола) и в обычных кюветах, но при этом необходимо часто полировать соляные окошки. [c.208]

    Оказалось, что данная закономерность имеет общее значение. В этом можно убедиться, сравнив ширину запрещенной зоны в энергетических спектрах галогенидов щелочных металлов, которые служат основой для щелочно-галогенидных фосфоров, и в энергетических спектрах галогенидов меди, серебра,.ртути, галлия, индия, таллия — их активаторов. Становится понятным, почему [c.124]

    В спектроскопии ЭПР имеется также круг объектов, которые представляют собой простейшие парамагнитные центры — электроны или дырки в твердых телах или растворах. Это могут быть, например, захваченные электроны в кристаллах, в частности различных галогенидов щелочных металлов, называемые f-центрами. При нагревании кристалла, например LiF, в присутствии паров металла и последующего быстрого охлаждения образуется вакансия аниона, занимаемая электроном, т, е. f-центр. Система имеет характерную окраску, обусловленную f-полосой поглощения в видимой области оптического спектра, а в спектре ЭПР появляется широкая полоса i -центров в области чисто спинового значения -фактора. Ширина сигнала связана с перекрыванием линий сверхтонкой структуры, обусловленных взаимодействием с ядром окружающих катионов и в меньшей степени с ядрами анионов. Плотность захваченного электрона в основном локализуется на вакансии и мало размывается на окружение, хотя между вакансией и шестью окружающими ее катионами решетки идет конкуренция за электрон. Так, при увеличении размеров катиона и постоянном анионе (вакансии) s-характер электронной плотности на шести ближайших катионах возрастает, а при одном и том же катионе и увеличении размеров аниона (от F к С1 ) 5-характер электронной плотности на катионах убывает. Существуют и некоторые другие электронно-избыточные центры и предложены различные теоретические модели их описания. [c.76]


    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    Чистые диэлектрические кристаллы галогенидов щелочных металлов прозрачны в видимой области спектра. Они остаются прозрачными до относительно высоких температур. Однако если кристалл галогенида нагревать в присутствии паров щелочного металла или паров галогена, то он окрашивается. Так, например, если кристалл хлористого натрия нагревать в присутствии паров натрия, то он становится желтым хлористый калий, нагретый в парах калия, становится красным. Вызывать или усиливать окраску можно и другими способами (например, облучением рентгеновскими или гамма-лучами, нейтронами, электронами, а также при помощи электролиза). [c.423]

    Метод спектроскопии в ближней ИК-области позволяет измерять изменение концентрации свободной воды при добавлении электролитов. С помощью получаемых при этом данных можно оценить число молекул воды в сфере первичной гидратации. (Слабо ассоциированные молекулы воды в сфере вторичной гидратации при этом рассматриваются как свободные молекулы воды.) Возможность таких измерений основана на снижении интенсивности полосы поглощения воды при 0,96 мкм при ее ассоциации [62]. Измерения интенсивности поглощения водных растворов некоторых галогенидов щелочных металлов в дифференциальных спектрах (относительно воды) в ближней ИК-области позволяют определить степень гидратации и объем растворенного вещества [168]. Измерения проводились в области [c.416]

    УФ-спектры могут использоваться для выяснения строения углеводородной части арилпроизводных гетероатомных соединений или их комплексов донорно-акцептор-ного типа с галогенидами металлов. Спек- [c.82]

    Для оценки порядка величины энергии, перенесенной в результате этого процесса от твердого тела в газовую фазу, необходимо знать соответствующие спектры поглощения твердого тела и газа для данной области энергии, а также спектры испускания твердого тела при тех же энергиях. Спектры поглощения большинства газов обычно хорошо известны в видимой и в близкой ультрафиолетовой областях. При этих же энергиях число известных спектров для твердых тел гораздо более ограниченно, причем из них детальнее изучены галогениды щелочных металлов. Для длин волн короче 2000 А сведений о спектрах поглощения газов сравнительно немного, а для твердых тел их совсем мало. Тем не менее величины коэффициентов поглощения таковы, что слой твердого тела толщиной от десятых микрона до нескольких микрон вдвое уменьшает интенсивность проходящего света. Спектры испускания облученных твердых тел практически неизвестны. Этим объясняется тот факт, что до настоящего времени не приводилось экспериментальных доказательств в поддержку гипотезы о переносе энергии путем избирательного поглощения фотонов. Наконец, нужно отметить, что фотоны, длины волн которых отвечают этому диапазону энергий, представляют собой частицы, которые могут избирательно поглощаться указанные выше явления совсем не наблюдаются для других видов радиации, рассмотренных в этой статье. [c.239]

    NaF и KF. Экспериментальное определение молекулярных постоянных NaF и KF встречает большие трудности из-за низкой летучести этих веществ и диффузного характера их электронных спектров. Единственной работой, в которой были получены полосатые спектры фторидов натрия и калия, является работа Барроу и Каунта [648], которые исследовали спектры поглощения галогенидов щелочных металлов в ультрафиолетовой области на приборах Хильгера с низкой и средней дисперсией. Спектры обеих молекул состояли из размытых полос, не имеющих кантов. Определить постоянные NaF из полученных спектрограмм не удалось, так как спектр состоял только из пяти полос, причем в величине интервалов между полосами отсутствовала какая-либо закономерность. В то же время спектр KF содержал свыше 20 полос, которые авторы работы 1648] интерпретировали как связанные с переходами с ряда последовательных колебательных уровней основного состояния в верхнее нестабильное (или имеющее небольшой минимум потенциальной энергии ) возбужденное состояние этой молекулы. Поскольку в интервалах между полосами KF также отсутствовала строгая последовательность, для определения частоты колебания молекулы фтористого калия Барроу и К унт оценили величину постоянной ангармоничности, предположив, что [c.897]


    Нейтральная пара вакансий может быть ориентирована различным образом на рис. 9 показано несколько случаев разной ориентации. Способность этих пар к ориентации в соответствии с классической теорией Дебая для постоянного диполя должна приводить к процессам релаксации, которые будут вызывать появление аномальных диэлектрических потерь при низких частотах. Этот эффект был открыт и детально исследован Брекенриджем [40] в 1948 г. Явления, открытые Брекенриджем, по-видимому, обязаны своим, возникновением дефектам решетки в этом случае снова трудно решить, существует ли комплекс вакансия — примесь или пара вакансий, так как оба образования должны вести себя аналогично. Недавно были высказаны сомнения в отношении надежности некоторых результатов Брекенриджа и их интерпретации в пользу существования пар вакансий, но полученные данные об аномальных частотных характеристиках кристаллов, в которые были специально добавлены примеси, явились дополнительным доказательством справедливости модели комплекса вакансия — примесь, описанного выше. В то время как результаты этих исследований и исследований по диффузии свидетельствуют об образовании комплекса вакансия—примесь, в отношении пар вакансий нет неоспоримых экспериментальных доказательств, кроме косвенных, вытекающих из наличия М- и/ -полос в спектрах поглощения галогенидов щелочных металлов (см. гл. 3). В 1946 г. для объяснения результатов облучения была предложена теория пар вакансий, а в 1950 г. эти результаты были объяснены на основе теории дислокаций (см. следующий раздел). [c.62]

    Спектры поглощения галогенидов щелочных металлов в ультрафиолетовой области, определенные Хильшем и Полем [6] и Шнайдером и О Брайаном [7], показаны на рис. 3. Ссылки на литературу по спектрам поглощения некоторых других неорганических солей даны в табл. 1. [c.84]

    Трехатомные пары галогенидов металлов второй группы разлагаются при нагревании частично на элементы [М]тв + (Х2)газ, частично, и даже преимущественно, на радикалы (МХ)газ + + /2(Х2)газ. в благоприятных случаях оба равновесия удается изучить. Например, для СёЛг Герцог и Виланд [54] сделали это на основании абсорбционных спектров металлов или радикалов. И здесь сильно благоприятствуют распаду радикалов транспортные реакции (МХ2)газ + [М] = 2(МХ)газ. Таким путем наблюдались абсорбционные спектры почти всех этих двухатомных галоген-радикалов от Ве до Ва и от 2п до Hg в равновесных условиях гораздо выше 1200°. Поэтому они годятся для определения соответствующих равновесий. [c.252]

    Небольшие дополнительные максимумы, появляющиеся с высокочастотной стороны основной полосы в спектрах кристаллов галогенидов щелочных металлов (не указанные в табл. 8.5), относятся к многофононным процессам. Интенсивность такого поглощения меньше в кристаллах галогенидов щелочных металлов, чем в кристал- [c.240]

    Мы проследим здесь лишь за влиянием полос ПЗ на цвет таких трердых соединений, как галогениды и окислы. Некоторые из них — свинцовый сурик, неаполитанская желтая, сурьмянокислый свинец — широко используются в качестве пигментов. Спектры поглощения галогенидов и окислов металлов группы Б (например, бромида серебра), как известно, не очень характерны начиная с ультрафиолетовой, они более или менее далеко заходят в видимую область. Из зависимости между наблюдаемой окраской вещества и положением его спектра поглощения (см. стр. 8) можно определить начало полосы поглощения у подобного соединения. В табл. 1-1 приведены полученные таким путем приближенные положе- [c.12]

    В спектрах ЭЛДОР могут наблюдаться также линии, соответствующие накачке запрещенных переходов Wx, Х х ), из которых может быть получена информация как о константах СТВ, так и о средних частотах ЯМР. Вообще методы ЭЛДОР и ДЭЯР являются взаимно дополняющими, причем первый более информативен в случае систем с сильными, а ДЭЯР —со слабыми сверхтонкими взаимодействиями. Преимущества методов двойного резонанса перед обычной спектроскопией ЭПР в достижении не только более высокого спектрального, но и временного разрешения. Этими методами плодотворно исследуются различные релаксационные процессы. Методом ЭЛДОР, например, можно наблюдать более медленные, чем в спектроскопии ЭПР, процессы, время протекания которых сравнимо с временем электронной спиновой релаксации Т е. Методами спектроскопии двойного резонанса достигается также высокое пространственное разрешение при необходимости изучения рассредоточенных парамагнитных центров в образце. Именно методом ДЭЯР, например, изучались / -центры в кристаллах галогенидов металлов и устанавливалась протяженность размытия плотности захваченного анионной вакансией электрона. [c.82]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    Призма в монохроматоре должна быть прозрачной для дли1 волн в исследуемой части спектра, она изготавливается из кварца, если измеряют пропускание веществ в УФ и видимой областях спе <тра, из стекла для видимой области и из галогенидов щелочных металлов для ИК спектрофотометров  [c.194]

    Своеобразные дефекты образуются при внедрении атомов щелочных металлов в кристаллические решетки их галогенидов. Эти дефекты можно создать нагреванием кристаллов в парах металлов. Они делают кристаллы окрашенными. Так, Na l, выдержанный в парах натрия, окрашивается в желтый цвет, КО в парах калия — в синий. Попадая в кристалл, атомы щелочного металла отдают свои электроны анионным вакансиям, в результате получаются своеобразные системы ва- кансия — электрон, похожие по свойствам (в частности, спектрам) на одноэлектронные атомы. Такие дефекты называют F-центрами. [c.264]

    Галогенидные и роданидные комплексы. Галоге-нидные и роданидные комплексы широко используют для разделения элементов методом экстракции, а также в фотометрических методах для определения ряда металлов. При взаимодействии галогенид- и роданид-ионов с ионами металлов обэазуются комплексные соединения, многие из которых характеризуются определенными спектрами поглощения [Bih] — желтого цвета, Fe(S N)3 и Mo(S N)6 — красного, W(S N)6 — желто-зеленого. NbO(S N)4]-и [Bi(S N)6p — желтого. [ o U] — голубого или синего, [ o(S N)4] — синего. [c.265]

    Например в ходе количественного эмиссионного спектрального определения с конечной фотографической регистрацией спектра осуществляются следующие основные процессы и операции а) испарение и перенос пробы из канала угольного электрода в плазму разряда б) возбуждение атомов элементов в плазме и излучение характеристических спектральных линий элементов в) отбор определенной доли светового потока из общего потока, излучаемого плазмой, с помощью дозирующей щели спектрографа г) пространственное разложение полихроматического излучения на соответствующие характеристические частоты (развертка спектра) с помощью призмы илн дифракционной решетки д) фотохимическое взаимодействие светочувствительного материала с квантами электромагнитного излучения (образование скрытого изображения спектра на фотопластинке или фотопленке) е) химические реакции восстановления ионов серебра до металла и растворения галогенидов серебра в комплексующих агентах (проявление и фиксирование) ж) поглощение света спектральными линиями на фотографической пластинке при измерении плотности почернения спектральных линий определяемого элемента и фона с помощью микрофотометра а) сравнение полученных значений интенсивностей спектральных линий с илтен-сивностью соответствующих линий эталонов или стандартов и интерполяция искомого содержания элемента в пробе по градиуровочному графику. [c.42]

    При снятии спектров в ИК-области работать с водными растворами практически невозможно вследствие сильного поглощения самой- воды в очень широкой области. Поэтому для съемки используют либо раствор в специально подобранном растворителе, не поглощающем в предполагаемой области поглощения исследуемого вещества, либо суспензию вещества в вазелиновом масле, если нет необходимости проверять область поглощения метнльных и метиленовых групп, либо наконец, пленку самого вещества. Часто используют таблетки, спрессованные из смеси исследуемого вещества с бромидом калня илн другим галогенидом щелочного металла. Растворители или вазелиновое масло должны быть тщательно высушены. Области поглощения некоторых функциональных групп приведены в приложении II. [c.86]

    Ц. о. могут быть разрушены при наф. (термич. обесцвечивание) или воздействии света, соответствующего спектральной области поглощения самих Ц. о. (оптич. обесцвечивание). Под действием тепла или света один из носителей заряда, напр, электрон, освобождается из захватившего его дефекта и рекомбинирует с дыркой. В кристаллах галогенидов щелочных металлов F-центр обусловливает селективную поло поглощения колоколообразного вида, обычно в видимой области спектра, смещающуюся для кристаллов с одинаковыми анионами (катионами) и разными катионами (анионами) в сторону длинных волн при увеличении ат. м. катиона (аниона). Напр., в Na l F-полоса имеет максимум поглощения в синей области спектра (А, 465 нм) и цвет кристалла - желто-коричневый, в КС1 - в желт -зеленой области (А, 563 нм) и кристалл выглядит фиолетовым. [c.343]

    Метод прессования таблеток с КВг имеет некоторые существенные недостатки, которые не всегда осознаются в полной мере. Вероятно, наиболее серьезные проблемы связаны с изменением либо кристаллической структуры, либо состава образца. Спектры твердых веществ, обладающих полиморфизмом, будут различаться в зависимости от степени размола и величины давления (рис, 4.4) [7]. Изменения в спектрах фенолов и органических кислот, очевидно, вызьшаются адсорбцией их молекул на частицах галогенидов щелочных металлов [116]. В ходе приготовления таблетки образцы могут реагировать с атмосферными водой и углекислым газом, хотя имеются пути, позволяющие избежать [c.94]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Наиболее приемлемым методом работы с твердыми веществами является, вероятно, растирание нескольких миллиграммов их с каплей медицинского парафина (нуйол) и затем сжимание полученной пасты между двумя пластинками. Нуйол сильно уменьшает рассеяние света твердыми частицами, а его собственный спектр (рис. 4.2, а) относительно прост и легко вычитается из полного спектра получающейся пасты. Другой очень удобной методикой является суспендирование вещества в таблетке галогенида щелочного металла (КС1 или КВг) около 1 мг образца растирают в 300 мг галогенида калия и затем подвергают значительному сжатию в металлической форме получается почти бесцветная даблетка галогенида металла, содержащая тонко диспергированное вещество. Захваченная вода часто дает полосы вблизи 3400 и 1600 см , в остальном же полученный спектр является спектром самого вещества. Дальнейший путь к преодолению трудностей, связанных с толщиной слоя и рассеянием света, заключается в расплавлении вещества (например, ст. пл. <150°) между двумя пластинками соли, причем при остывании расплава образуется тонкий кристаллический слой. Молекулы в таком слое часто специфически ориентированы по отношению к световому лучу, и сравнение этого спектра со спектром того же самого вещества, но со случайно расположенными частицами, в нуйоловой пасте может выявить значительные различия. [c.121]

    Преимуществами метода являются отсутствие мешающих полос поглощения, возможность контроля концентращ1и образца и удобство хранения образцов. Недостатки метода проявляются чаще всего при исследовании кристаллических образцов в процессе приготовления таблетки может изменяться кристаллическая структура, поэтому спектры будут зависеть от степени размола и величины давления. Возможна адсорбция веществ на частицах галогенидов щелочных металлов. При исследовании неорганических солей, солянокислых органических аминов и других оснований может происходить частичный или полный ионный обмен, приводящий к существенным спектральным изменениям. Этот процесс зависит от содержания адсорбированной воды в таблетке, времени и температуры, а таюке размеров частиц КВг. [c.477]

    Н. Е. Третьяковым, О. М. Оранской и мною исследовании спектров адсорбированных бензонитрила и метилметакрилата (ММА), обнаруживают также окислы магния, цинка, титана и циркония. При адсорбции бензонитрила на этих окислах наблюдается увеличение частоты колебания связи С = N, характерное для донорно-акцепторного взаимодействия [77]. Степень этого увеличения частоты,котораяможег служить мерой,электроноакцепторной способности адсорбционных центров при адсорбции на окиси алюминия и окиси титана, приблизительно совпадает с соответствующей величиной для галогенидов алюминия и титана. Спектр ММА претерпевает при адсорбции изменения, указывающие на образование донорно-акцепторной связи между атомами металла окислов и карбонильной группой этой молекулы. На рис. 15 в качестве примера показан снектр ММА, адсорбированного на окиси магния. В присутствии паров ММА спектр адсорбата представляет собой наложение спектров слабо и прочно адсорбированного ММА. После откачки на поверхности остается ММА, образующий донорно-ак-цепторную связь с атомами магния. Характерной особенностью спектра ММА в этом случае является присутствие сильно пониженной частоты [c.128]

    Де Бур с сотрудниками исследовал электронные спектры некоторых соединений, адсорбированных на сублимированных в вакууме пленках галогенидов щелочноземельных металлов. Хотя эта работа была кратко освещена в сборнике из серии Катализ [46], желательно (даже за счет некоторого дублирования) дать подробное описание этих исследований, поскольку они являются важным вкладом в рассматриваемый в данном обзоре вопрос. Здесь не приводится подробное описание методики этих исследований, так как она не нашла широкого применения при изучении тех многих твердых тел, которые представляют интерес для катализи, [c.29]


Смотреть страницы где упоминается термин кра с ные спектры металлов, галогенидов: [c.92]    [c.405]    [c.143]    [c.379]    [c.151]    [c.21]    [c.308]    [c.104]    [c.521]    [c.182]    [c.13]    [c.183]    [c.259]    [c.392]    [c.132]    [c.143]    [c.406]    [c.32]   
Органические синтезы через карбонилы металлов (1970) -- [ c.172 , c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Галогениды металлов

Галогениды щелочно-земельных металлов спектры ЭПР

Галогениды щелочных металлов, инфракрасные спектры

Эксперимент. Спектры поглощения и спектры испускания принес j ных атомов в окислах, галогенидах серебра и щелочных металлов

спектр получение с помощью галогенида металла

спектры галогениды



© 2025 chem21.info Реклама на сайте