Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотная упаковка правила

    Большинство структур силикатов не подчиняется закону плотнейших упаковок. К ним относятся кольцевые, слоистые, каркасные материалы. Плотнейшие упаковки характерны для многих минералов островной структуры, некоторых цепочечных (пироксены) и ленточных (амфиболы) силикатов. Как правило, плотнейшую упаковку образуют ионы кислорода, гидроксильные ионы или изоморфно замещающие их ионы фтора. В некоторых минералах плотнейшая упаковка охватывает не все анионы (02-, 0Н , Р ), в других анионы не занимают всех мест плотнейшей упаковки. [c.30]


    В кристаллическом же состоянии электрические моменты диполей отдельных связей (даже если они и существуют) взаимно скомпенсированы и суммарный собственный электрический момент диполя в кристалле равен нулю. Поэтому исследования поляризационных явлений в кристаллах дают мало информации о направленности связей и структуре. Однако и в кристаллическом состоянии эта направленность существует, что особенно ярко проявляется в кристаллах с преимущественно ковалентной связью (кремний, германий, 1пР, 2п5 и т. п.). Связи в таких кристаллах направлены к вершинам тетраэдра (см. рис. 3 и 4), поэтому подобные вещества часто называют тетраэдрическими фазами. Жесткая пространственная направленность ковалентных связей предопределяет образование рыхлых кристаллических структур с низкими координационными числами (как правило, не выше четырех). Для солеобразных и металлических кристаллов, в которых доминирует, соответственно, ионная и металлическая составляющая связи, характерны плотные и плотнейшие упаковки с координационными числами 6—8 для ионных и 8—12 для металлических решеток. Здесь значительную роль играют размеры взаимодействующих атомов, которые и определяют координационное число в кристаллических решетках. Однако при этом сохраняется определенная направленность химической связи, что проявляется в пространственной периодичности строения кристаллов. На существование электронных мостиков между взаимодействующими атомами указывают [c.82]

    При нерегулярной загрузке шаров в реактор образуются, как правило, случайные группировки с различными локальными значениями 8 и iVk и со средней порозностью г= 0,38—0,39. Укладка шаров с последующей вибрацией слоя или встряхиванием дает несколько более плотную упаковку с ё = 0,33—0,36. В относительно узких трубках средняя порозность слоя несколько повышается вследствие более рыхлой укладки у стенки [1, стр. 11]. [c.8]

    Фазовые переходы второго рода происходят в критических условиях, далеких от термодинамического равновесия. Структура вещества, образующегося в подобных условиях, как правило, не образует плотной упаковки и наилучшим образом описывается при помощи математического аппарата фрактальной геометрии. Парамагнитные ядра образующихся в НДС частиц дисперсной фазы можно описать как фрактальные кластеры. Фрактальное описание строения ядра парамагнитных ассоциатов дает ряд преимуществ [11]  [c.6]

    У,У, VI, УП групп периодической системы можно применять правило Юм-Розери /(=8—N, где N — номер группы элемента [С, 51, Ое, 5п, Р (черный). Аз, 5Ь, В , 5, 5е, Те, галогены]. Оно отражает стремление атомов элементов к образованию электронного октета. Свинец представляет исключение из этого правила он кристаллизуется в решетке кубической плотной упаковки. [c.136]


    Одно и то же вещество в твердом и жидком состояниях имеет различную плотность. Обычно плавление сопровождается некото рым увеличением межатомных расстояний, понижением координа ционного числа, т. е. образованием более рыхлой структуры. Вследствие этого плотность жидкости, как правило, меньше, чем плотность соответствующего кристалла. Однако если кристаллы имеют недостаточно плотную упаковку (например, многие ковалентны кристаллы с тетраэдрическими связями), то при плавлении возможно увеличение координационного числа. Тогда плотность жидкого вещества больше плотности его кристаллов. Подобного рода аномалии обнаруживают, например, германий, кремний, галлий, висмут, вода и многие сложные полупроводниковые фазы. [c.240]

    Несмотря на ограниченную применимость зонной теории, она позволяет судить о возможности изменения характера проводимости в зависимости от внешних условий (давления и температуры). С точки зрения зонной теории основной критерий полупроводимости — это отсутствие перекрывания валентной зоны и зоны проводимости, т. е. наличие зоны запрещенных энергий АЕ (см. рис. 129). Если создать условия, обеспечивающие сближение атомов кремния на расстояние, меньшее Го (д,о Гр), то, как видно из рис. 129, 35/зЗ-гибридная валентная зона и 45-зона проводимости перекрываются и при этом кремний должен обладать металлическими свойствами. Эти условия можно реализовать при всестороннем сжатии под высоким давлением, когда рыхлая тетраэдрическая структура полупроводникового кремния переходит в плотноупакованную структуру металлического типа. Давления, при которых возможен такой переход, как правило, весьма высоки (10 н-10 МПа). Так, при сжатии красной модификации фосфора (изолятор) под давлением 1,2-10 МПа наблюдается переход в более плотную полупроводниковую модификацию (черный фосфор) с шириной запрещенной зоны 0,33 эВ. Дальнейшее сжатие (2,0-10 МПа) приводит к появлению металлической проводимости в черном фосфоре. Переход от рыхлых структур к плотноупакованным металлическим сопровождается уменьшением энтропии аналогично тому, как это происходит при кристаллизации. Напротив, при переходе от плотной упаковки к более рыхлой структуре энтропия возрастает, поскольку увеличиваются амплитуда колебаний атомов и связанная с этим неопределенность положения их в узлах кристаллической решетки. Это эквивалентно увеличению неупорядоченности в кристалле (А5>0). Такой переход реализуется, например, при нагре- [c.320]

    Цинтля, доминирующей является металлическая связь. При этом возникают металлиды с плотноупакованными кристаллическими структурами. Формальные стехиометрические соотношения при этом не соблюдаются в силу коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к образованию соединений Курнакова, фаз Лавеса, электронных соединений Юм-Розери и т.п. [c.262]

    Известно, что вещества могут находиться в различных агрегатных состояниях. Агрегатные состояния определяются характером теплового движения молекул или атомов, из которых состоит вещество. Наиболее интенсивное тепловое движение характерно для газообразного агрегатного состояния, наименее интенсивное — для твердого состояния. Как правило, твердое состояние характеризуется также наиболее плотной упаковкой атомов или молекул, из которых состоит вещество. Жидкое состояние является промежуточным между газообразным и твердым состояниями. Далее будет показано, что представления о трех агрегатных состояниях недостаточны для характеристики свойств полимеров. Недостаточны для этого и представления о фазовом состоянии. [c.72]

    Для описания отношений симметрии между внешними гранями кристаллов применимы только кристаллографические операции типа пип. Последние могут быть объединены в 32 кристаллографические точечные группы симметрии, известные как классы кристаллов. Внутреннее периодическое расположение атомов в кристаллической структуре требует применения векторов параллельного переноса, которые также могут сочетаться с осями вращения и плоскостями симметрии, как обсуждалось выше. Включение сложных операций симметрии, таких, как винтовые оси и плоскости скольжения, приводит к 230 пространственным группам симметрии, разрешенным для комбинаций элементов симметрии в элементарной ячейке. Они приведены в Международных таблицах кристаллографии [11.2-1]. В этом контексте интересно отметить, что примерно 75% всех органических и металлоорганических соединений образуют кристаллы, принадлежащие всего к 5 пространственным группам, а 12 пространственных групп симметрии, все принадлежащие к триклинным, моноклинным и орторомбическим кристаллическим системам, охватывают 87% таких соединений. Все эти пространственные группы симметрии допускают достаточно хорошую плотную упаковку органических молекул, которые, как правило, имеют низкую симметрию. [c.395]


    Гексагональная ротационная фаза Ы1—самая высокосимметричная среди известных парафиновых ротационных фаз. Как правило, ее описание подразумевает, что цепочечные молекулы в этой фазе могут находиться в состоянии свободного вращения. Следовательно, гексагональную модификацию н-парафинов можно представить как плотную упаковку цилиндров [57,316]. [c.73]

    Принцип плотнейшей упаковки остается справедливым и для ионных соединений. Размеры анионов, как правило, значительно больше размеров катионов. В ионных структурах анионы располагаются по одному из законов плотнейшей кладки, катионы же располагаются в промежутках между анионами, в пустотах. Этим объясняется тот факт, что самыми распространенными координационными числами для катионов являются 4 и 6. Но катионы обычно не заполняют всех пустот между анионами. [c.156]

    Четыре элемента, стоящие в правой части менделеевской таблицы, имеют структуры типа плотнейших упаковок А1, а- и Р-Т1, РЬ, а также 1п, имеющий очень близкую к кубической плотнейшей упаковке тетрагональную структуру. Объясняется этот факт известной гипотезой, согласно которой указанные элементы в кристаллическом состоянии не отщепляют всех своих валентных элементов. Соли четырехвалентного свинца гораздо менее устойчивы, чем двувалентного. Соли трехвалептного таллия менее устойчивы, чем соли одновалентного. Атомы этих элементов, входя в кристаллическую структуру, отдают в общее пользование только часть валентных электронов, которых не может хватить на образование нужного количества ковалентных связей. Подтверждением неполного отщепления электронов могут служить аномальные межатомные расстояния в структурах простых веществ. На рис. 274 по оси абсцисс отложены атомные номера элементов 3, 5 и 6 периодов таблицы Менделеева, но оси ординат — межатомные расстояния. Как видим, эти расстояния у РЬ, Т1, А1 и 1п больше, чем следовало бы ожидать по ходу кривой, соединяющей на диаграмме точки, отвечающие соответствующим значениям межатомных расстояний соседних с ними элементов. Недостаточное количество коллективизированных электронов в структурах РЬ, Т1, 1п и А1 по сравнению с соответствующим количеством у других [c.273]

    В качестве примера кристаллических веществ, внутренняя структура которых отвечает ионной решетке, рассмотрим хлористый натрий. На рисунке V-8 схематически представлено строение элементарной ячейки этого вещества. Принимая сферическую форму ионов с определенными эффективными радиусами, внутреннюю структуру кристалла Na l следует представлять себе как плотную упаковку шаров различного радиуса. Так, эффективный радиус катиона натрия равен 0,98 A, а аниона хлора— 1,81 А (радиус катиона, как правило, меньше радиуса аниона). На рисунке V-9 представлена структура Na l в виде модели, в которой соблюдены соотношения размеров ионов при их плотной упаковке. [c.121]

    Кристаллизация из расплавов по сравнению с кристаллизацией из растворов — процесс более сложный вследствие более плотной упаковки макромолекул однако и здесь образование кристаллитов происходит по тому же принципу. При кристаллизации из расплавов, как правило, образуются не монокристаллы, а сферолиты (рис, 6). Сферолиты — морфологические единицы, которые могут достигать в диаметре нескольких десятых долей миллиметра и которые легко узнать под микроскопом в поляризованном свете. Они состоят из пучка мельчайших кристаллических волоконец (фибрилл), расходящихся радиально из одного центра кристаллизации. Хотя фибриллы и обладают пластинчатым строением, их следует рассматривать не как монокристаллы, а как особую форму кристаллитов. Число и размер сферолитов сильно зависят от условий кристаллизации температуры и числа зародышей. [c.35]

    Допустим, что лиганд связывается только с парами одного типа. Пусть молекула лиганда на расстоянии I [ /г" ] от левого конца имеет группу, узнающую пару Г — Ц. Здесь — целое число, —1 < [ /г" ] /г" - Будем мысленно присоединять молекулы лиганда, начиная с левого конца, так, чтобы узнающая группа каждого последующего лиганда приходилась на ближайшую пару Г —Ц, расположенную на расстоянии, большем или равном I от правого конца предыдущего лиганда. Это дает плотную упаковку. При случайном расположении пар Г — Ц их средняя доля, непосредственно занятая связанными молекулами, равна у[ Хт (т—1)]. Незанятыми могут остаться лишь те пары Г — Ц, которые отстоят от правых концов связанных молекул лиганда на 1,2,. ... I— 1 пар. Вероятность Ш обнаружить i [c.534]

    Металлические кристаллы уже по внешнему виду отличают ся от кристаллов предыдущих типов. Характерный металлический блеск является их непременным признаком. В отличие от других, металлические кристаллы, как правило, пластичны, т. е. легко деформируются без разрушения, обладают высокой электро и теплопроводностью. Поскольку кристаллы металлов построены из одинаковых сферических атомов, их решетки в большинстве случаев представляют собой плотнейшие упаковки КПУ или ГПУ. [c.87]

    Например, кристаллические решетки металлов, несмотря на плотную упаковку атомов, имеют тетраэдрические и октаэдрические пустоты. Если такой материал контактирует с веществом, содержащим атомы небольшого размера кислород, бор, азот, углерод, водород, то последние могут внедряться в эти пустоты. Образуются специфические химические соединения внедрения — гидриды, нитриды, карбиды, бориды или некоторые низшие оксиды. Заполнение пустот, как правило, бывает неполное, и поэтому соединения внедрения имеют переменный состав. [c.40]

    Итак, в переходном состоянии обе новые о-связи возникают одновременно, однако только в особых случаях следовало бы предположить, что они будут вполне равноценными. Как правило, образование связей начинается одновременно, но по своему характеру они оказываются различными, поскольку именно в переходном состоянии (вследствие его плотной упаковки ) существенным образом сказываются структурные и электронные факторы, определяющие неравномерное распределение электронной плотности во фрагментах, вносимых диеном и диенофилом. В силу этого структурная направленность диенового синтеза (региоселективность), выражающаяся в преимущественном образовании аддуктов с орто-или пара-расположением заместителей, находит в рамках описываемого механизма хотя и не исчерпывающее, но удовлетворительное объяснение и в большинстве случаев согласуется с формальной схемой механизма синхронного переноса электронов с учетом эффекта заместителей  [c.32]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    На начальном участке кривой изменение объема происходит в основном за счет сближения отдельных частиц и перехода их в более плотную упаковку. Поэтому значительные объемные деформации е у происходят при сравнительно небольших давлениях сжатия р. Как правило, зависимость между ними на этом участке близка к линейной. После достижения некоторой плотной упаковки дальнейшее изменение объема происходит за счет сжатия частиц, часто сопровождаюпдиеся упругими и вязкопластическими деформациями по зонам контакта. На этой стадии сжатия незначительное уменьшение объема уже требует значительных давлений, и зависимость между объемной деформацией и давлением становится нелинейной. [c.38]

    Согласно этой теории (с учетом дополнений В. А. Кожеурова и И. С. Куликова), взаимное расположение атомов в твердых силикатах характеризуется более или менее плотной упаковкой атомов кислорода, тетраэдрические пустоты которой заполнены частично трех-, четырех- и пятивалентными катионами, такими, как 81, Р, В, А1, а октаэдрические — атомами Ыа, К, Са, Мд, Ре и др. Выполнение правил радиусов указывает на координационный характер решеток и на отсутствие в них замкнутых групп атомов, т. е. молекул. [c.184]

    Распределение форм кристаллических решеток по сингониям и классам неравномерно. Как правило, чем проще химическая формула вещества, тем выше симметрия его кристалла. Так, почти все металлы имеют кубическую или гексагональную структуру. Аналогичное положение характерно для многих простых химических соединений (галогениды щелочных и щелочноземельных металлов). Усложнение химической формулы ведет к понижению симметрии его кристалла (например, силикаты). Причин такого поведения много, но главнейшей из них является плотность упаковки, т. е. число частиц в узлах кристаллической решетки. Чем плотность упаковки больше, тем более устойчива и вероятна структура кристалла. Свободное пространство здесь оказывается, наименьшим. Указанный принцип наиболее плотной упаковки, однако, применим не ко всем кристаллам. Его нельня использовать, например, для льда, где большое влияние на формирование кристалла оказывает образование направленных водородных связей. [c.142]

    Кристаллизация металлов определяется принципом наиболее плотной упаковки более вероятна та структура, которая отвечает наименьшему значению С в данных условиях. Как правило, такая структура имеет наиболее плотную упаковку ионов, атомов или молекул в кристалле. В металлических решетках связи не имеют определенной направленности, вследствие чего принцип наиболее плотной упаковки господствующий. Именно поэтому металлы имеют наиболее плотно построенные решетки гранецентрированного куба, объемноцентри-рованного куба (К-12 и К-8) и плотную гексагональную (Г-12). Известны многие соединения металлов (интерметаллические соединения) с металлической связью (СияАи, Mg (i, А1Со, Си1 А12 и др.), многие твердые растворы углерода, азота, водорода в переходных металлах, а также и соединения этих элементов с переходными металлами, которые имеют металлическую проводимость. В соединениях металлов [c.126]

    Инертные газы обыадо кристаллизуются с образованием плотнейших упаковок атомов. (О некоторых отклонениях от этого правила см. стр. 79). Чтобы понять, на чем основан упомянутый выше вывод о слабых химических взаимодействиях между их атомами, надо сначала рассмотреть некоторые из свойств плотнейших упаковок шаров одинакового размера. Мы воспользуемся описанием, имеющимся в книге А. И. Китайгородского [33] и работе Л. Иенсена ([4], стр. 251). Наиболее плотная упаковка шаров одинакового размера достигается следующим образом. Разместим несколько шаров так, чтобы они плотно прилегали друг к другу (рис. 10). Внутри такого упакованного слоя каждый шар имеет шесть соприкасающихся с ним соседей. Это единственно возможный способ создания наиболее плотной упаковки в слое одинаковых шаров. Между шарами имеются лунки. В эти лунки сверху можно положить шары. Тогда мы получим второй плотно упакованный слой. Отметим, что одни из лунок нижнего слоя будут заняты, а другие останутся свободными. Лун- [c.78]

    Другим способом снижения формовочной влажности смеси является введение отощающих добавок. В качестве последних могут применяться инертные, а также малоактивные тонкодисперсные попутные продукты (пиритный огарок, зола-унос, ЦП, ТОС, МОГ и др.). Попутные продукты, как правило, обладают высокой дисперсностью, что позволяет оптимизировать гранулометрический состав и повысить прочность получаемых изделий. Повышенная прочность полученных материалов объясняется достижением более плотной упаковки частиц вследствие их разнофракци-онности, увеличения количества контактов между частицами дисперсной фазы [9, 77]. [c.105]

    Важный экспериментальный вывод, полученный многими авторами при исследовании свойств обратных эмульсий заключается в том, что индивидуальные ПАВ, как правило, являются менее эффективными стабилизаторами, чем их смеси с ПАВ других классов. Это происходит, по мнению Дж. Шульмана и Е.Кокбей-на, в результате более плотной упаковки эмульгаторов в составе слоя за счет дипольного взаимодействия разноименно заряженных полярных групп ПАВ между собой и дополнительного структурирования слоя. При этом наблюдается и более эффективное снижение межфазного натяжения, чем с каждым ПАВ в отдельности. [c.23]

    ПЛОТНАЯ УПАКОВКА атомов и молекул, способ модельного описания кристаллич. структур, В кристаллах металлов и отвердевших благородных газов, как правило, реализуются т. н. плотнейшие шаровые упаковки (ПШУ) или плотные шаровые кладки (ПШК). Первые построены из плотнейших слоев (рис. А), к-рые налагаются друг на друга т. о., что каждый шар (атом) касается трех шаров соседнего слоя (рис. Б и В) в итоге каждь1Й шар имеет координац. число 12. Число слоев, приходящихся на период ПШУ, перпендикулярный плоскости слоя, наз. слойностью упаковки. В ПШК шары располагаются менее компактно и имеют более низкие координац. числа (рис. Г и Д). [c.449]

    Пространственные группы Р2 и P2i2,2, также относятся к группам, обеспечивающим возможность образования плотнейшей упаковки. Однако их возможности ограничены по сравнению с группой Pli с, и они встречаются только в тех случаях, когда молекулы выступают в своей левой или правой форме. [c.463]

    К М.с. относятся фазы внедрения (фазы Хэгга), структура к-рых состоит из атомов металла, расположенных так же, как и в характерных для металлов плотных упаковках (гексагон., гранецентрир. или объемноцентрир. кубич.), а атомы неметаллов (Н, N, С, В, Р, О) расположены в пустотах Этой плотной упаковки. Фазы внедрения могут образовываться, если отношение радиусов атомов металла и неметалла равно или менее 0,59 (правило Хэгга). Когда это отношение больше 0,59, возникают более сложные структуры. В фазах внедрения, как правило, подрешетка атомов металла отличается от структуры исходного металла. Так, у кароидов Т1 и V тш1а МХ гранецентрир. кубич. кристаллич. решетка (хотя эти металлы не кристаллизуются в такой решетке). Для фаз внедрения характерно образование более или менее широких областей гомогенности, верх, границей к-рых является стехиометрич. состав. [c.42]

    Укладка молекул в М. к. осуществляется по принципу плотной упаковки. Стремление к плотной упаковке часто приводит к тому, что молекула в кристалле утрачивает собств. элементы симметрии (кроме центра симметрии), однако из-за слабости межмолекулярных ван-дер-ваальсовых взаимод. по сравнению с ковалентными связями искажения собств. симметрии невелики. Типичный пример-нафталин, своб. молекула к-рого кроме центра имеет три зеркальные плоскости симметрии, но в кристалле сохраняется лишь центр-плоскости симметрии утрачиваются, что проявляется в небольших искажениях длин связей и валентных углов. Молекула с центром симметрии в кристалле практически всегда располагается в центре кристаллич. симметрии (правило центросимметричиости). [c.117]

    Ю. В. Мнюх [98] выводит общее правило для случая ограниченной растворимости, основанное на принципе плотнейшей упаковки молекул в органическом кристалле [57, 59, 67]. Предполагается, что часть молекул н-парафина А замещается молекулами другого н-парафина В (рис. 12). В случае соотношения длин молекул А>В (рис. 12, слева) возможна упаковка без искажений. Предел растворимости наступает, когда пустот становится слиштом много и плотность упаковки заметно падает. В случае >4<5 (рис. 12, справа) вхождение даже небольшого числа молекул В вызывает искажения, что быстро приводит к невозможности дальнейшего растворения. [c.50]

    Приведецные гидратационные или координационные числа вытекают иа правила плотнейшей упаковки> [120]. [c.28]

    Несмотря на грандиозность подобной задачи (в результате опыта измеряются 1—3 тысячи дифракционных лучей, и для каждой из пробных структур надо анализировать совпадение с опытом этой большой информации), она безусловно выполнима дан е для очень сложных структур. Дело в том, что вовсе не требуется перебрать все без исключения мыслимые структуры. Как правило, до начала анализа мы располагаем приближенными сведениями о химической формуле, расстояния между ковалентно связанными атомами также известны заранее с достаточной точностью. Наконец, используя принцип плотной упаковки, мы в состоянии отбросить все взаимные размещения молекул, не согласующиеся с этим правилом. Таким образом, составив достаточно сложную программу действия, мы можем вести достаточно уверенный поиск правильной структуры. Используя математический метод, так называемый метод оврагов , разработанный в СССР И. М. Гельфапдом, удалось решить весьма сложные структурные задачи. [c.355]

    Относящиеся к соединениям внедрения карбиды и нитриды обладают многими свойствами, характерными для интерметал-лическнх соединений непрозрачностью (в противоположность прозрачным солеподобным карбидам кальция и др.), хорошей электропроводностью и металлическим блеском. Одиако в отличие от чистых металлов эти соединеиия, как правило, обладают очень высокой твердостью и имеют высокие температуры плавления. Структуры соединений с формулой МХ обычно основаны иа кубической плотнейшей упаковке, а соединений с [c.495]

    Полинг и Кори определили наиболее устойчивые конформации полипептидной цепи, основываясь на данных рентгеноструктурных исследований и на рассмотрении плотной упаковки цепей с максимальным числом водородных связей. Таких конформаций три. Это, во-первых, а-спираль, показанная на рис. 4.2. Она характеризуется поворотом вокруг оси на 100° и перемещением вдоль оси на 0,15 нм на каждое пептидное звено. Соответственно на один полный виток спирали приходится 3,6 пептидной единицы и смещение вдоль оси на 0,54 нм. Водородные связи образованы между С=0-группой данной единицы и Н—N-гpyппoй четвертой предшествующей единицы. Такие связи реализуются между всеми аминокислотными остатками, за исключением пролила (Про), не содержащего К—Н-группы. а-Спираль может быть правой и левой. В первом случае Ф = 132°, г = 123°, во втором — Ф = 228°, ф = 237° (углы отсчитываются от плоской транс-конформации цепи). Конформация а-спирали определяется, в частности, плоским расположением атомов —СО—NH —. [c.89]

    Правило отношения радиусов. В ЫаС1 экспериментально определенное расстояние между центрами ионов Ма+ и С1 составляет 2,81 А, и постоянная решетка ао для элементарной ячейки, относящейся к кубической сингонии, оказывается равной 5,62 А. Для наиболее плотной упаковки, если рассмотреть три иона С1 , локализованные в точках с координатами (0,0,0), (1,0,0), (1/2,0, 1/2), и ион На+, локализованный в точке (1/2,0,0), из теоремы Пифагора можно получить следующее соотношение  [c.177]

    Одной из особенностей структур силикатов является то, что большинство структур силикатов не подчиняется принципу плотнейших упаковок. В кремнекислородных мотивах, лежащих в основе структур силикатов, кислород координирован только двумя катионами кремния. Такое низкое координационное число кислорода по кремнию делает невозможным образование плотно упакованных решеток, и силикаты, как правило, имеют м нее плотные структуры, чем другие типы соединений (например, оксиды). Отсутствие плотнейшей упаковки в большинстве ликатов объясняется рядом причин. Например, плотнейшую утзаковку нарушают часто встречающиеся в силикатах крупные еатионы. Они помещаются в октаэдрических пустотах упаковк из атомов кислорода, раздвигают их, образуя координационные многогранники с большими координационными числами. Кроме того, расположение тетраэдров [5104] - при плотнейшей упаковке будет сопряжено с большим отталкиванием двух высокозарядных катионов кремния соседних тетраэдров, которое приводит к тому, что анионы, занимавшие первоначально места плотнейшей упаковки, перемещаются, объем структуры резко возрастает и плотнейшая упаковка расстроится. [c.18]

    Колбочки общим числом 7 млн. распределены по всей сетчатке, за исключением так называемого слепого пятна — места, где нервные волокна объединяются и выходят из глаза, образуя зрительный нерв (рис. 1.1). Наиболее плотно они расположены в центральной ямке желтого пятна, где нет палочек. Их довольно много в области, окружающей центральную ямку, с угловым диаметром до 5 " (парафовеальная область), где палочек еще очень немного. Небольшое количество колбочек имеется среди преобладающих там] палочек и на крайних участках периферии сетчатки, используемых только для взгляда искоса. Рис. 1.3 [533] представляет собой поперечное сечение сетчатки в области, где отношение числа палочек к числу колбочек равно примерно 4 1. На левой половине рис. 1.3 показано поперечное сечение сетчатки, каким оно выглядит под микроскопом, правая половина — это схематическое изображение, в котором выделены существенные черты реальной картины, помещенной слева. На концах колбочек находятся щетки нервных окончаний, дающие много возможностей для боковых соединений. Такое строение соответствует их сложным функциям. В центре сетчатки колбочки расположены очень близко одна к другой, что позволяет различать при восприятии очень мелкие детали объекта. Фактически оптическая система глаза такова, что еще более плотная упаковка колбочек вряд ли улучшит наши зрительные возможности. Не содержащая палочек область (угловым размером в 2 ) имеет площадь 1 мм и содер- [c.22]

    Подобными методами, а также электронной микроскопией определены элементарные ячейки многих полимеров. В простейшем случае полиэтилена линейного строения она имеет орторомбическую структуру с цепями, расположенными вдоль четырех ребер и в середине ячейки (в ней всего две цепи одна в центре и по четверти цепи в каждом углу) параллельно друг другу в форме плоского зигзага с периодом идентичности 2,54 А (рис. 118). Как видно из правой части рисунка, цепи идеально дополняют друг друга, что обеспечивает на11более плотную упаковку их. Конформация плоского зигзага в случае линейного полиэтилена легко осуществляется вследствие небольших размеров атомов водорода (вандерваальсовский ра- [c.429]


Смотреть страницы где упоминается термин Плотная упаковка правила: [c.167]    [c.156]    [c.233]    [c.440]    [c.470]    [c.40]    [c.378]    [c.223]    [c.233]    [c.40]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.312 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Упаковки плотные плотнейшие



© 2024 chem21.info Реклама на сайте