Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа положения

    Автоклав с измерительной трубкой помещается в термостат. При исследовании теплопроводности жидкого кислорода термостатом для двух измерительных трубок служил медный блок весом 8,3 кг. На медном блоке была сделана обмотка из константана, положенная на шеллачной изоляции. Обмотка служила для обогрева блока, установления и поддержания постоянной температуры на измерительной трубке. Медный блок помещался в полый латунный сосуд, из которого при надобности можно было откачать воздух с помощью форвакуумного насоса. [c.75]


    Константы положения заместителей [c.513]

    С постановкой вопроса о влиянии температуры на физические константы положение коренным образом изменяется. Любая физическая однородная область, в которой устанавливается некоторое распределение температуры, характеризуется соответствующими полями физических констант. [c.173]

    Ализариновый желтый представляет собой кислоту с кажущейся константой ионизации К = 10 ". Кислотная его форма желтого, а щелочная форма — синего цвета. Объясните возникновение интервала перехода у этого индикатора и найдите положение ее на шкале pH. [c.292]

    Это обстоятельство можно использовать для разработки точного метода определения констант скорости реакций. Предположим вначале, что реакция начинается с чистого вещества А. В различные моменты времени определяется состав реагирующей смеси, который наносится на диаграмму тина рис. У.7. Проведя касательную к нути реакции в точке Е, мы можем сделать вывод, что точка Л должна лежать на прямолинейном пути реакцип. Пусть точка О соответствует смеси веществ А и С в пропорции 4 1. Начав реакцию с этого состава, мы снова получим криволинейный путь реакцни, однако теперь в нашем распоряжении будет больше данных о ходе реакции вблизи равновесия, что позволит нам сделать более точное предположение (Е) об исходном составе (М), приводящем к прямолинейному пути реакции. После нескольких подобных проб (некоторые из них могут дать и перелет — точку С) мы найдем точное положение точки М л [c.109]

    Расчет процесса химической абсорбции не составит труда, если сопротивление массопереносу в газовой фазе незначительно и константа скорости /г по колонне не изменяется. Действительно, в соответствии с положениями, рассмотренными в разделе 3.1, величина Со постоянно равна с и дифференциальный материальный баланс для необратимой реакции [уравнение (3.11)] имеет вид [c.91]

    В связи с изложенным, для численного раскрытия величины Кр предпочтительнее всего обратиться к выражению (11.85), которое позволяет с требуемой точностью количественно оценить значение константы равновесия при различных величинах давления и температуры в газонефтяной системе. Отличительной особенностью выражения (П.85) по сравнению с (П.89) является то, что рекомендуемая для вычислений формула целиком и полностью опирается на информацию Д(3, Ср, с , полученную при непосредственном экспериментировании в условиях, близких к природным [10]. Это положение усугубляется также и тем, что величины А0(АФ1) и Кр характеризуют направление протекания процессов и термодинамические условия равновесия, или указывают, насколько данный процесс далек от условий равновесия, что определяет выражение (П.89). Поэтому величина АО примерно равна нулю, если процесс находится в состоянии равновесия. Когда АО большая отрицательная величина, то данная система должна еще прореагировать в значительной степени, прежде чем процесс достигнет равновесия. Однако скорость процесса не связана ни с знаком, ни с величиной термодинамического потенциала, и его нельзя предсказать, зная АО. [c.89]


    Для системы из N частиц будем иметь ЗЛ таких уравнений. В принципе можно решить эти уравнения, и тогда в каждом уравнении окажутся по две произвольные константы интегрирования. Для всей системы будет таких констант интегрирования, и, чтобы исключить эти константы, необходимо иметь независимых исходных величин. Это могут быть, например, координаты (З У) каждой точки в два различных момента времени . Ясно, что механическое поведение системы не определяется однозначно до тех пор, пока нет достаточных экспериментальных сведений для определения 6 N констант. Состояние такой системы будет полностью определено только тогда, когда такая внутренняя информация дается наряду с внешним описанием системы (т. е. массами частиц, положением и величиной силовых полей, положением границ, стенок и т. д.). В простейшем случае, представляющем интерес с физической точки зрения, скажем для моля гелия , мы должны [c.113]

    Дальше будет показано, что это приводит к такому положению, при котором простые операции по измерению константы скорости, порядка и энергии активации химической реакции не дают необходимых данных для установления истинного механизма химической реакции. Задача установления истинного механизма реакции требует от экспериментатора большой изобретательности нри выборе критерия для обоснования отдельных стадий, совокупность которых составляет предполагаемый механизм сложного процесса. [c.283]

    Уравнение скорости в математической форме можно согласовать с данными измерений любых указанных выше переменных, однако, если выбор переменных неудачен, уравнение сильно усложняется. Необходимо связать константы таких уравнений с основным выражением скорости в единицах массы или концентрации с учетом действительного порядка и константы скорости реакции. Ниже представлено несколько примеров, иллюстрирующих эти положения. [c.28]

    Порядок и знак величины ДС° позволяют качественно предвидеть положение равновесия реакции. Большая положительная величина AG означает, что конечные продукты имеют гораздо больший потенциал, чем исходные вещества, и равновесное состояние близко к исходным веществам, т. е. сдвинуто влево выход продукта мал. Константа равновесия в этом случае много меньше единицы. Например, для реакции i/2N2+i/202=NO (при 2675 °К) ДО° = 15425 кал /Ср=3,5-10 3 и выход NO равен 2,88%. [c.298]

    С изменением температуры положение равновесия химической реакции смещается. Поэтому константа равновесия является функцией температуры. [c.304]

    Величина не зависит от времени и положения в пространстве и называется константой скорости реакции псевдопервого порядка, а сама реакция имеет как бы первый порядок. Ниже будет рассмотрен случай подобной реакции. [c.36]

    Устойчивость системы можно улучшить введением в схему теплообменника, в котором исходная смесь подогревается теплом отходящих газов. В этом случае наклон прямой Ь уменьшается, что облегчает проведение автотермического процесса. Применение теплообменника часто бывает необходимым, например, при синтезе аммиака или пароводяной конверсии окиси углерода. Положение и форма кривой а зависят от константы равновесия, ограничивающей степень превращения. В случае автотермической [c.298]

    Если кажущаяся константа равновесия меньше истинной константы равновесия, реакция протекает самопроизвольно в сторону образования продуктов. Но если условия проведения реакции таковы, что кажущаяся константа равновесия больше истинной константы реакция самопроизвольно протекает в обратном направлении (см. эксперименты I, I и К в табл. 16-1). Когда кажущаяся константа равновесия совпадает с Кр вн, прямая и обратная реакции протекают с одинаковой скоростью и химическая система находится в положении равновесия. [c.81]

    Изменение свободной энергии газовой реакции зависит от парциальных давлений ее компонентов по уравнению ДС = ДС° + RT nQ. Величина Q представляет собой кажущуюся константу равновесия, определение которой было введено в гл. 4. В частном случае, когда реагирующая химическая система находится в положении равновесия, свободная энергия реакции равна нулю (ДС = 0) и кажущаяся константа равновесия совпадает с истинной константой равновесия, Q = В этом случае стандартная [c.83]

    Зависимость между строением стероида и его хроматографическим поведением в различных системах, в которых используется одна и та же неподвижная фаза, изучал Мацек с помощью групповых констант и констант положения (частное сообщение). Данные табл. 49 показывают, что при использовании растворителей, которые могут быть акцепторами протонов (например, бутилацетат), соедипения со свободными гидроксильными группами перемещаются относительно быстрее, нежели соедипения с кетогрунпой или хелатообразующей гидроксильной группой (21-окси). [c.338]


    Разделение на фракции проводили ректификацией. О положении хлора в молекуле судили по физическим константам фракций (температура кипения, показатель преломления, плотность), сравнивая их с литературными данными. Омылением фракции, принятой за первичный хлористый ундецил, получен спирт, который был переведен в ундекано-вую кислоту окислением перекисью водорода в щелочной среде. Выход по отдельным стадиям авторы не приводят. [c.558]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Для экзотермических реакций температура будет внутри сосуда более высокой, чем у стенок, в то время как для эндотермических реакций имеет место обратное положение. Для многих реакций пиролиза наблюдается уменьшение скорости в области от 100 до 400. мм рт. ст. Хотя эти реакции являются сложными цепш.ши реакциями и уменьшение скорости по большей части может быть обусловлено увеличением обрыва цепей на стенках, необходимо учитывать, что п температурный градиент может играть немаловажную роль. Так, в реакциях пиролиза величина температурного градиента пропорциональна скорости, с которой происходит реакция. Скорость реакции в свою очередь изменяется прямо пропорционально количеству газа в системе. При высоких давлениях градиенты больше, чем при низких давлениях. Для эндотермических реакции, таких, как реакции пиролпза, средняя температура в сосуде уменьшается с ростом давления. Константа скорости уменьшается с увеличением давления при отсутствии конвекции. [c.375]

    На примере разветвленных углеводородов состава С4—Се показано [25], что влияние структуры углеводорода на скорость гидрогенолиза связано главным образом с изменением констант адсорбции, в то время как константа скорости разрыва С—С-связи изменяется мало. Максимальная реакционная способность наблюдается в случае третичного атома С. Для связей, в которых участвует четвертичный атом С, природа атомов С в а-положении к нему оказывает меньшее влияние на реакционную способность связи, чем атомы С в Р-поло-женпи. Обсуждаются механизмы процесса с участием 1,2-, 1,3-, 1,4-и 1,5-дпадсорбированных частиц. [c.92]

    Кинетическое сопротивление можно представить через константу скорости реакции k. Влиять на величину k можно не только изменением Е и k , но и температуры — см. уравнения (IX-49) и (IX-72). Скорость реакции возрастает экспоненциально с повышением температуры, т. е. очень быстро. В связи с этим реакцию в кинетической области следует проводить при максимально возможной температуре, ограничиваемой, однако, перемещением положения равновесия экзотермических реакций в нежелательном направлении, трудностями подбора конструкционных материалов и возможностями изменения механизма процесса (например, при синтезе бензина методом Фишера — Тропша из синтез-газа СО + Нз может образовываться метан). [c.417]

    Экспериментальные данные большинства исследователей экстраполируются в область очень высоких давлений обычно путем нанесения на график обратной константы скорости реакции первого порядка относительно обратного давления (см. рис. 4). Такое экстраполирование действительно, разумеется, только в том случае, если порядок реакции меняется при низких давлениях от первого до второго. Поскольку это положение доказано, вероятно, лучше оценить экспериментальные данные следующим образом. Сакссэ дает для энергии активации величины, лежащие между 70 и 73 ккал, изменение которых происходит в интервале давлений от 20 до 200 мм рт. ст. Результаты при давлении ниже 20 мм рт. ст. совершенно неточны. По данным Стици и Шейна энергия активации имеет величину 70 ккал. Наилучшей поэтому представляется экспериментальная величина 72 2 ккал в интервале давлений 20—500 мм рт. ст. Результаты Кухлера и Тиле не могут быть рассмотрены подробно, поскольку они приводят только данные по константам скоростей, экстраполированные до бесконечного давления. Экспериментальные данные оказыг ваются промежуточными между двумя предсказанными теоретически границами и они указывают на сложность механизма, где имеют место, возможно, реакции обрыва (5а) и (56) и некоторые другие, играющие важную роль. [c.24]

    Обзор реакций озонирования будет неполным без рассмотрения важных исследований Уибо и его школы ио кинетике озонирования ароматических углеводородов [20, 21]. Озонирование ароматических углеводородов должно протекать подобно озонированию алифатической двойной связи. Но так как в ароматическом кольце нет двойных связей, то некоторые голландские исследователи [9, 10] предположили, что под влиянием поляризованной молекулы озона происходит такое распределение эт-электронов в ароматическом ядре, когда одна пара перемещается к тому углероднод1у атому, который подвергается атаке молекулой озона, а остальные я-электроны распределяются на остальных пяти углеродных атомах углерода, занимая самое низкое энергетическое положение. На основе кинетических изменений, Уибо и другие [1, 18, 23] сообщили, что триозонид бензола образуется в результате трех биомолекулярных реакций, первая из которых протекает значительно медленнее, чем последующие две, и поэтому общая скорость реакции определяется скоростью первой реакции. Константа скорости для бензола нри температуре—30° С была определена в 5 X 10 (миллимоль /мин. ). Механизм реакциимо-жет быть изображен следующим образом  [c.353]

    Активация заместителя X нитрогруппами, находящимися в о- и п-положениях, настолько сильная, что нитроарильная группа ведет себя как ацильная, особенно в полинитросоединениях. Эта активация становится очевидной из рассмотрения констант диссоциации нитрофенолов (табл. 1). Ацильная группа, присоединенная к гидроксилу, ослабляет О—Н-связь и дает возможность атому водорода удалиться в виде иона, например в уксусной кислоте Ас—О—Н о- и п-мононитрофенолы в 10 раз более сильные кислоты, чем л -соединения. 3,5-Динитрофенол — наиболее слабая кислота из динитрофенолов — является единственным изомером, в котором ни одна из нитрогрупп не находится в сопряжении) [c.547]

    При изучении кинетики нитрования нитробензола в серйой кислоте Мартинсен нашел зависимость константы скорости от начальной концентрации серной кислоты. С увеличением концентрации серной кислоты от 80 до 90% константа скорости второго порядка увеличивается приблизительно в 3000 раз. При более высоких концентрациях серной кислоты константа скорости падает, составляя 25 % от максимальной скорости при концентрации серной кислоты 100%. Такое же явление наблюдалось при нитровании других ароматических соединений. Положение максимума константы скорости реакции для различных ароматических соединений мало меняется с изменением температуры. [c.559]

    Вестхеймер и Караш нашли, что положение максимума скорости нитрования сдвигается в область более высокой концентрации серной кислоты в результате прибавления гидросульфата калия. Так как ион бисульфата в серной кислоте является основанием, то он должен был бы действовать в направлении понижения кислотности для данной концентрации серной кислоты. Добавление азотной кислоты, хотя и увеличивает абсолютную скорость реакции, снижает константу скорости реакдии, если концентрация серной кислоты значительно ниже оптимальной. Это может быть отнесено за счет азотной кислоты, вызывающей уменьшение кислотности среды. Подобным же образом понижает кислотность среды и нитробензол. Динитробензол и пятиокись фосфора не изменяют кислотности сернокислотной среды и не влияют на константу скорости реакции нитрования. [c.560]

    В 1940 г. [25] были вновь рассчитаны величины констант для синтеза метанола (рис. 2) в интервале давлений от О до 1000 ат и при температурах 250, 300, 350, 400, 450 и 500° С. Но и здесь не сообщается деталей расчета и данных, положенных в осрюву расчета (критическая температура, критическое давление для метанола, водорода и окиси углерода). Отсутствие в обеих статьях указаний на исходные расчетные данные некоторым образом обесценивает оба эти графика, тем более, что сопоста-влепие их показывает, что при одинаковых условиях ( и Р) численные значения константы Ку несколько различаются. При давлениях 100— 150 ат эти расхождения еще весьма незначительны, при 150—300 ат они уже заметны, а при более высоких давлениях велики. [c.354]

    В спектрах Н ЯМР комплексов с такими лигандами наблюдается пять пиков с соотнощением интенсивностей 1 1 1 1 3. Протоны Нь и Не появляются в спектре в виде дублетов, расщепляясь на ядре протона На с константами /дь = 6 — 7Гц и /ос = = 10—14 Гц соответственно. Также дублетом с константой И снз—6 —7 Гц является резонанс метильной группы. Протоны На и Не дают мультиплеты. Наиболее существенной разницей в спектрах Н ЯМР син- и акты-комплексов является положение сигналов протонов Н<г и Не, а также величина констангы спинг спинового взаимодействия последних с протоном На- Существование того или иного изомера зависит от природы лигандов, входЯ щих во внутреннюю координационную среду центрального атома, условий реакции и т. д. В бис (л-кротилникельгалогенидах) л-кро-тильный лиганд находится в сын-конфигурации [40]. [c.109]

    Исходя из положения и Ве в периодической системе, указать, какое соотношение констант гидролиза солей МеСЬ и ВеС1г справедливо  [c.244]

    Если в молекуле олефина имеются легко уязвимые С -Н-свя-зи, например в а-положении к двойной связи, то пероксидный радикал вступает параллельно в две реакции отрыва и присоединения. В результате образуются параллельно пероксид и гидропероксид. При окислении индена, например, отношение констант скоростей реакций присоединения и отрыва равно 10 (30 °С [45]). Параллельно с пероксидом при окислении стирола образуется оксид стирола (в результате распада пероксидал-кильного радикала), бензальдегид и формальдегид. [c.31]

    Насколько образование такого ассоциата действительно ускоряет реакцию можно определить, сравнив константы скорости реакции КОг-с двумя фенолами, имеющими очень близкие прочности О—Н-связи с 2,6-диметилфенолом и 2,б-ди-7 ре7 -бутилфено-лом. Пероксидный радикал образует водородную связь с первым и не может образовать ее со вторым фенолом из-за стери-ческого препятствия, которое создают две трет-бутильные группы в о-положении. Первый фенол реагирует с тетралилперокси-радикалом с 1пн= 1Л Ю л/(моль-с) при 50°С, в то время как второй —на порядок медленнее —с йтн=1,3-10 л/(моль-с) [35]. [c.103]

    Константа скорости реакции ингибитора с КОг- зависит от природы разрываемой 1п—Н-связи, (О—Н-связь фенола или N—Н-связь амина), от прочности 1п—Н-связи и от стерических препятствий, создаваемых объемными заместителями в о-положении. Чем прочнее 1п—Н-связь в ингибиторе, тем медленнее он реагирует с пероксидными радикалами. Для 2,6-ди-г/зег-бу-тилфенолов с разными заместителями в п-положении вшюл няется линейная зависимость между энергией активации и теплотой реакции (уравнение Поляни — Семенова) [177] Е = 8,2—0,072 <7, которая позволяет при известной В1пн найти Е, так как <7 = 368—/)1пн. Линейно связана с /)1пн и константа скорости реакции пероксидных радикалов с фенолами этого -ипа [177] [c.103]

    Реакция протекает быстро с константой скорости порядка 10 —10 л/(моль-с). Если в феноксильиом радикале о- и л-положении имеется атом Н, то образуется хинон, видимо в ре-зультате распада пероксида [c.107]

    Из приведенных графиков видно, что все кри-170 вые изменения степени превращения на интервалах слоя имеют максимумы, положение и величи-Ш на которых зависят от других параметров. Увеличение скорости потока уменьшает в данном случае максимум степени превращения и сдвигает его по направлению потока. Повышение исходной температуры газа увеличивает максимум степени превращения и сдвигает его по направлению ко 130 входу реактора. При мольном отношении ре-210 агентов, превышающем оптимальное (1 55), максимум степени превращения уменьшается. При мольном отношении, не достигающем оптимального, максимум также понижается. По результатам измерений степени превращения и темпера-130 туры Паштори и др. рассчитали кинетические 2Ю параметры — такие, как константы равновесия и константы скорости реакции. [c.178]

    На рис. 4-5 иллюстрируется одно из доказательств утверждения, что катализатор не может изменять константу равновесия. Если бы катализатор мог смещать положение равновесия в смеси реагирующих газов и вызывать изменение их объема, то такое расширение и сжатие могло бы использоваться для получения механической работы. Мы получили бы настоящий вечный двигатель, в котором создается даровая энергия. Но здравый смысл и повседневный опыт подсказывают, что это невозможно. Этот здравый смысл , основанный на опыте, научно формулируется в виде первого закона термодинамики, который будет обсуждаться в гл. 15. Проведенное выше доказательство в математике называется доказательством от противного Если мы предположим, что катализатор способен изменить значение Кравн, то это позволяет предположить возможность существования вечного двигателя. Однако поскольку существование вечного двигателя невозможно, наше исходное предположение должно быть неверным, и следует заключить, что катализатор не может изменять значения Хравн- [c.196]

    Принцип Ле Шателье гласит, что если на систему в состоянии равновесия оказывается внешнее воздействие, положение равновесия (т.е. количественное соотношение между реагентами и продуктами) смещается в таком направлении, чтобы свести к минимуму влияние этого воздействия. Это означает, что для эндотермической реакции (идущей с поглощением тепла) Кравн увеличивается при повышении температуры, поскольку дальнейшее продвижение реакции приводит к частично.му поглощению подводимого тепла. По той же причине для экзотермической реакции (идущей с выделением тепла) охлаждение приводит к увеличению Кра . Хотя константа равновесия Кр в,, не зависит от давления и изменение суммарного давления в реакционной системе непосредственно не изменяет ее величины, повышение давления может привести к смещению равновесия в направлении, при котором уменьшается суммарное число молей присутствующих газов. [c.198]


Смотреть страницы где упоминается термин Константа положения: [c.65]    [c.91]    [c.93]    [c.68]    [c.515]    [c.83]    [c.252]    [c.350]    [c.294]    [c.34]    [c.403]    [c.260]    [c.109]   
Хроматография на бумаге (1962) -- [ c.338 ]




ПОИСК







© 2025 chem21.info Реклама на сайте