Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиуретаны молекулярный вес

    Механизм, способы синтеза и свойства различных полиэфиров подробно освещены в литературе. Достаточно полную библиографию по этим вопросам можно найти в монографиях [5, с. 295 8, с. 36 9, с. 41 10, с. 45]. Наименее изученными являются молекулярные характеристики олигомеров (молекулярно-массовое распределение, среднечисленная и среднемассовая функциональность и др.), хотя не вызывает сомнения важное значение их для полу чения полиуретанов с заданными свойствами. [c.525]


    Введение жестких сегментов придает полиуретанам эластомерные свойства. Вероятно поэтому и нет необходимости получать полиуретаны большой молекулярной массы. [c.537]

    Для решения проблемы создания полиуретанов с высокой усталостной прочностью традиционный подход, основанный на анализе критических разрывных характеристик, неприемлем. Более эффективным оказалось математическое моделирование систем с учетом особенностей молекулярной структуры полимера [67]. В этом случае полимер можно подвергать относительно низким деформациям, и, следовательно, изучать менее дефектную сетку. [c.546]

    При эквимольном соотношении компонентов системы полиэфир на основе триола—гексаметилендиизоцианат—полиуретан степень превращения Ф связана со среднемассовой молекулярной массой соотношением [621  [c.554]

    При получении полигексаметиленадипамида для поликонденсации используют обычно заранее полученную соль диамина и адипиновой кислоты (соль АГ), в состав которой компоненты входят в строго эквивалентных количествах. Аналогичное влияние эквивалентности исходных компонентов на молекулярную массу полимера можно наблюдать и при синтезе полиуретанов из диизоцианатов и диолов (рис. 21). [c.150]

    Одна из первых работ в этой области была посвящена синтезу регулярно построенных сетчатых полиуретанов различной химической природы и разной степени сшивания, полученных на основе сложных полиэфиров и толуилендиизоцианатов, и исследованию их физикохимических и механических свойств Синтезированные полиуретаны представляли собою эластомерные продукты. Для исследования термодинамики набухания более частых и жестких сеток были использованы сополимеры стирола с дивинилбензолом, различающиеся содержанием последнего. Показано, что густота сетки не влияет на сорбционную способность, свободную энергию и энтропию смешения пространственных полимеров до тех пор, пока молекулярная масса отрезка цепи между узлами сетки (Мс) много больше величины термодинамического сегмента. Если эти величины соизмеримы, то свободная энергия и энтропия смешения уменьшаются с увеличением частоты сетки. [c.106]

    Несмотря на то что определение линии резонанса, обусловленной группой ЫН, может вызывать некоторые затруднения при интегрировании спектра, анализ полиуретанов методом ЯМР позволяет получать хорошие количественные данные. Можно оценить и молекулярный вес простого полиэфира или сложного полиэфир-гликоля. Приведенная ниже таблица показывает, что результаты оценки методом ЯМР мольных долей компонентов полиуретана, полученного из полиэфира, хорошо согласуются с аналогичными результатами, полученными с использованном гидролиза. [c.151]


    Так как эта реакция может протекать в водной среде, ее выгодно вести на границе раздела фаз (см. раздел 2.1.5.2), особенно в тех случаях, когда необходимо получить полимеры с высокими молекулярными массами при синтезе нетермостойких полиуретанов. Из вторичных диаминов получают Н-алкилированные (полиуретаны, стойкие к гидролизу и обладающие особыми свойствами, обусловленными отсутствием водородных связей. Такие полимеры нельзя получить реакцией диолов с диизоцианатами. [c.207]

    Принцип так называемой жидкой (литьевой) технологии лучше всего рассмотреть на примере литьевых полиуретанов. На первой стадии технологического процесса в обычном реакторе с мешалкой осуществляется синтез форполимера (олигомер с молекулярной массой 2000-5000 г/моль) путем взаимодействия в массе полиэфира (сложного или простого), имеющего концевые гидроксильные группы, с полутора- или двухкратным избытком диизоцианата (алифатического, ароматического). [c.392]

    Один из способов нахождения молекулярной массы полимеров основан на количественном определении концевых функциональных групп. В полимерах такого типа, как полиуретан и ароматические полиамиды, наибольшую трудность представляет определение концевых аминогрупп, обладающих слабыми основными свойствами. Прямое титрование этих групп значительно осложняется в разбавленных растворах. [c.111]

    В зависимости от степени отверждения получают эластичные или жесткие полимеры. В жестких полиуретанах в отличие от эластичных макромолекулы соединены между собой большим числом по<перечных связей. В жестких полиуретанах средняя молекулярная масса структурной единицы /составляет 400—700, в эластичных полиуретанах — 2 500—20 000. [c.286]

    Молекулярная масса полиуретанов в среднем 10 000—12 ООО, температура размягчения, в зависимости от А и В, 100—270 С. По своим свойствам полиуретаны подобны полиамидам, только более устойчивы к действию атмосферы и кислот. Их используют для получения пенопластов, каучуков, клеев, волокон. [c.644]

    Повышение вязкости растворов полиуретанов в ходе полимеризации показывает, что средняя молекулярная масса полимера растет с увеличением продолжительности реакции. Существенное влияние на молекулярную массу оказывают температура и соотношение диизоцианата и гликоля (рис. 50). [c.208]

    Ввиду большой экзотермичности реакции целесообразно при синтезе полиуретанов разбавлять реакционную смесь такими инертными растворителями, как толуол или хлорбензол (растворитель должен быть абсолютно сухим, так как вода разлагает изоцианаты). Хотя природа растворителя не играет существенной роли, количество его (точнее, концентрация исходных веществ) довольно сильно отражается на молекулярной массе (рис. [c.209]

    Миграционная полимеризация происходит также при смешивании диизоцианатов с полиаминами вследствие миграции водорода аминогруппы процесс протекает во много раз быстрее, чем при образовании полиуретанов со скоростью ионных реакций. Молекулярная масса получающихся при этом полимочевин зависит от природы растворителя известное значение также имеет температура-реакции. [c.209]

    Сохранение глобулярной структуры в отвержденном полиуретане означает, что образование пространственного геля происходит за счет сшивания частиц микрогеля друг с другом либо непосредственно, либо через разветвленные макромолекулы, не вошедшие в состав частиц. В настоящее время еще нет возможности выразить математически условия, в которых происходит формирование трехмерной сетки в первичном ассоциа-те, на его поверхности и в дисперсионной среде между частицами. Если на молекулярном уровне реакция еще, возможно, подчиняется закономерностям статистической теории гелеобразования, то влияние межмолекулярных взаимодействий на реакцию требует качественно нового подхода. Не исключено, что об уровне межмолекулярных взаимодействий окажется возможным судить [c.68]

    С целью изучения влияния молекулярного строения полимера и поверхности наполнителя на стеклование была исследована температурная зависимость теплоемкости ряда наполненных систем на основе полиуретанов с различной жесткостью цепи [177]. В качестве исходных полимеров были выбраны полиуретаны следующего молекулярного строения  [c.96]

    И наконец, отметим еще одну особенность в исследовании механизма (химизма) формирования сетчатого полимера. Она заключается в том. что вследствие всех трудностей, перечисленных выше, как правило, могут использоваться лишь такие кинетические методы, которые дают интегральную-информацию о кинетике процесса в целом и не дают возможности дифференцировать вклад различных реакций в наблюдаемый интегральный эффект. Поэтому исключительно большое значение при исследовании кинетики формирования молекулярной структуры сетчатого полимера и установлении механизма реакции приобретает исследование этих процессов с использованием модельных монофункциональных реагентов. Как правило, именно-с этого и должно начинаться исследование, и, лишь зная основные черты и детали механизма процесса, можно уже из кинетических данных собственно-процесса формирования сетчатого полимера, с одной стороны, уточнить этот механизм, и с другой — получить данные о кинетических и термодинамических константах элементарных актов и всего процесса в целом. В качестве примеров, иллюстрирующих плодотворность подобного подхода к исследованию кинетических закономерностей формирования молекулярной структуры сетчатых полимеров, можно привести два цикла работ, выполненных в Институте химической физики АН СССР по исследованию эпоксидных смол [37—42, 123, 124] и полиуретанов [125—128]. [c.31]


    Эти данные еще раз подтвердили отсутствие влияния в указанных системах изменяющейся и усложняющейся топологической структуры сетчатого полиуретана на кинетические особенности его образования последние целиком могут быть объяснены на молекулярном уровне, т. е. на основе развитых в настоящее время представлений о механизме процесса образования полиуретанов. [c.65]

    Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-10 . Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила З-Ю" [42]. Для полиуретанов молекулярной массы 5-10 и более можно считать вполне надежными данные спектров ЯМР [43]. [c.537]

    Например, разработан состав для обезвоживания и обессоливания (пат. 2186827 РФ), содержащий ПАВ блоксополимер окиси этилена и пропилена на полиэфире (молекулярная масса 1000-5000), блоксополимер окиси этилена и пропилена на полиуретане (молекулярная масса 3000-5000), блоксополимер окиси этилена и пропилена на алкилфенолформальдегидной смоле (молекулярная масса 1000-5000), а в качестве растворителя — смесь ароматических углеводородов (фракция 120-200) и метанола (1 2) при следующем соотношении компонентов, % мае.  [c.119]

    Молекулярные параметры. Молекулярная масса полиуретанов определяется в первую очередь функциональностью полимердно-лов, их относительной мольной долей в системе, степенью завершенности реакции и, наконец, условиями ее проведения. Наиболее характерное свойство полиуретанов заключается в том, что удлинение полимерной цепи за счет реакции функциональных групп протекает довольно легко. [c.537]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Из полиуретанов линейного строения наибольшее распространение получил полиуретан на основе гексаметилендиизоцианата-1,6 и бутандиола-1,4. При синтезе других полиуретанов применяют толу-илендиизоцианаты, а в качестве гидроксилсодержащих соединений — простые и сложные полиэфиры с молекулярным весом 400—10 000. [c.85]

    В основе синтеза уретановых эластомеров лежит реакция взаимодействия диизоцианатов с соединениями, содержащими две или более гидроксильные группы. В качестве гидроксилсодержащих соединений для получения полиуретанов наиболее широко используются простые или сложные полиэфиры с молекулярной массой около 2000. Простые полиэфиры получают полимеризацией окисей алкиленов. В производстве уретановых каучуков чаще всего применяют полимеры окиси пропилена и тетрагидрофуран а  [c.241]

    На основе полиуретанов получают каучуки. Полимеры для них имеют очень длинную молекулярную цепь. Их получают взаимодействием диизоцианатов с линейными сложными или простыми полиэфирами, имеющими концевые гидроксильные группы. Применяются следующие диизоцианаты 2,4-толуиленди-изоцианат, 2,6-толуилендиизоцианат и 1,5-нафтилендиизоцианат. [c.254]

    Производство вальцуемых СКУ осуществляется также одно- ли двухстадийным способом из тех же мономеров. Из них по- лучают преполимеры с концевыми гидроксильными группами, а удлинение цепи достигается путем добавления гликолей и ди-жзоцианата при отношении N 0 0H< 1. Молекулярная масса этих полиуретанов (2—3) 10 . Они вполне стабильны при хранении, так как не содержат свободного диизоцианата. [c.292]

    Многие свойства полимеров зависят от молекулярной массы и степени полидисперсности. В процессе поликонденсации регулирование молекулярной массы образующихся продуктов можно осуществлять следующими способами 1) прекращением реакции при низких ступенях превращения этот принцип получения различных олигомеров широко используется при производстве фенолоформальдегидных, карбамидных, эпоксидных и др. олигомеров 2) использованием избытка одного из компонентов по этому способу получают олигоэфирдиолы, применяемые в производстве полиуретанов, а также непредельные олигоэфиры 3) введением в реакционную смесь монофункционального соединения, блокирующего функциональные группы одного типа (синтез олигоэфиракрилата). [c.129]

    В ряду полиэфиров, полиамидов, полиуретанов наблюдается. хорошо известная из органической химии закономерность —различие в температурах плавления соединений с четным и нечетным числом атомов углерода. Эта закономерность проявляется уже в ряду нормальных парафинов. С увеличением молекулярного неса парафиновых углеводородов температуры плавления их возрастают, асимптотически приближаясь к некоторому предельному значению. При Этом Кривая для углеводородов с четным числом атомов углерода проходит выше, чем для углеводородов с печотиым числом атомов углерода. Разность температ>р между кривыми составляет несколько градусов, но резко возрастает лля молекул, имеющих на обоих конаах массивные группы, способные к образованию прочных межмолекуляриых связей, например, группы СООН. Так, в ряду низших дикарбоновых кислот температуры плавления уменьшаются с увеличением молекулярного веса, при этом разность температур плавления мел<ду соседними членами гомологического ряда состаеляет 50 град, и она тем. меньше, чем больше число групп СНг. Соединения с четным числом атомов углерода плавятся при более высоких температурах, чем с нечетным. Например, щавелевая кислота плавится при 189,5, малоиовая — при 133, янтарная— "ри 153 глутаровая — при 97,5, пимелиновая — при 105° С и т. д. [c.141]

    В последнее время все большее значение приобретают процессы блоксополимеризации, направленные на сращивание линейных макромолекул различных полимеров между собой с сохранением линейного строения новых макромолекул. Используя метод блоксополимеризации, можно значительно повысить молекулярный вес полимеров. Например, блоксополимеризацией полиэфиров и полиуретанов получают полиэфироуретаны (стр. 576 сл.)  [c.435]

    Экспериментальное подтверждение влияния поверхности раздела на кинетику образования трехмерных полимеров можно показать на примере кинетики образования трехмерных полиуретанов в объеме и на поверхности [2511. Была изучена кинетика реакции образования полиуретановых эластомеров путем сшивания триме-тилолпропаном макродиизоцианатов, полученных на основе полиок-сипропиленгликолей с молекулярными весами 2000 и 1000, а также 4,4-дифенилметандиизоцианата при соотношении 1 2. Кинетика образования полимера на медной подложке и в объеме исследовались методом ИК-спектроскопии. [c.177]

    Исследование коэффициентов диффузии и констант растворимости для наполненных аэросилом и сажей полиуретансемикарб-азидов показало, что при введении уже 1—3% наполнителей снижаются коэффициенты проницаемости и диффузии азота, аргона и двуокиси углерода и увеличиваются константы растворимости [91]. Эти изменения зависят как от природы и удельной поверхности наполнителя, так и от молекулярной массы гибкого блока в цепи полимера. Для полиуретанов с более гибкими цепями введение наполнителя приводит к более резкому снижению констант диффузии, что объясняется сильно выраженным в случае гибких цепей ограничением конформационного набора макромолекул вследствие взаимодействия с твердой поверхностью. [c.48]

    Анализ многочисленных данных позволяет считать, что взаимодействие наполнителей с полимерами значительно более заметно в случае аморфных полимеров, чем кристаллизующихся. С этой точки зрения интересно сопоставить свойства наполненных полимеров, имеющих одну и ту же -химическую природу, но различающихся по фазовому состоянию [151]. Для того чтобы выяснить, каковы особенности ограничивающего действия поверхности наполнителя на полимер, находящийся в разных агрегатных состояниях (в жидком и в твердом), были изучены сорбционные свойства твердых линейных кристаллизующихся полиуретанов, а также их расплавов. Для исследования были взяты образцы линейного полиуретана на основе олигодиэтиленгликольадипината с молекулярной массой 2000 и 2,4-толуилендиизоцианата, наполненные сажей ТМ-70 с удельной поверхностью 70—75 м /г и аэросилом с удельной поверхностью 175 м г. Содержание наполнителей составляло 1 5 и 20 масс. ч. на 100 масс. ч. полимера. Наполнители вводйли путем смешения на влльцах. [c.77]

    Из двух разных полимеров, растворенных в общем растворителе, были приготовлены эмульсии. В качестве растворителя был выбран К-метилпирролидон (т. кип. 204 °С), который практически не испарялся во время экспериментов. Для работы использовали полиуретан (ПУ) со средневдакостным молекулярным весом = 48 400 и полиакрилонитрил (ПАН) с = 60 300. Иэ каждого полимера готовили раствор концентрации 15 вес. %. На раствор ПУ с величайшей осторожностью выливали такое же количество раствора ПАН, не допуская эмульгирования на поверхности жидкости. Термодинамическое равновесие между двумя фазами в этом случае маловероятно. Через трое суток объем фазы раствора ПУ уменьшился на 5%. Затем раствор выдерживали в течение еще восьми суток, после чего два слоя были разделены и из двух полученных жидкостей при сильном перемешивании готовили эмульсии с различным содержанием компонентов. Полученные таким образом эмульсии были стабильны, но крайней мере в течение одних суток. [c.62]

    Даже в простейшем случае, когда высокомолекулярное соединение состоит из молекул одинакового состава, построенных по одному типу, оно является неоднородным по величине молекулярного веса, т>. е. является смесью полимергомологов. Это относится как к синтетическим полимерам, молекулы которых неодинаковы по величине вследствие особенностей механизма их образования, так и к природным полимерам, которые, по-видимому, претерпевают частичную деструк-пию и структурирование в процессе их выделения и очистки. Лишь использовав особые приемы, можно синтетическим путем получить полимеры, размеры молекул которых будут почти однородными. Так, например, Гипперт, Довел и Фордис [4] путем ступенчатого синтеза получили индивидуальные полиэтиленоксиды с мол. весом около 8000. Венжер [5] предложил способ получения практически монодисперсного поли-а-метилстирола, путем полимеризации мономера в тетрагидрофу-ране в присутствии металлического натрия. Предложен также [6] способ синтеза монодисперсныХ полиуретанов. [c.7]

    Взаимодействие полиблочного СПУ с растворителем определяется термодинамическими параметрами взаимодействия компонентов (блоков) как между собой, так и каждого компонента с растворителем [14, 15]. В результате количественного различия в термодинамических параметрах взаимодействия компонентов с общими растворителями образуются ассоциаты макромолекул, которые являются лабильными и их формирование связано с предисто-рией приготовления раствора. В работе [16] установлено, что при одно- и двухстадийном способах получения полиуретана отличаются как кинетические параметры, так и молекулярно-массовые характеристики результирующего продукта. В случае двухстадийного способа получения ПУ степень полимеризации существенно выше. Причина этого явления заключается в том, что присзтствие низкомолекулярных акцепторов протонов препятствует самоассоциации уретанмочевинных жестких сегментов при синтезе полимера [17]. При этом прочностные характеристики полимера могут значительно измениться по сравнению с тем же материалом, полученным без растворителя. Кроме того, использование растворителя при формировании структуры полиуретана дает возможность оказывать влияние на конформационные свойства его макромолекул. Установлено [18], что образцы сеток, полученных из раствора, имеют более простую топологию и меньше зацеплений. Различные растворители могут оказывать различное действие на конечную форму макромолекулы, в результате чего изменяются и механические свойства полимера. Использование полярных растворителей при синтезе полиуретанов, где происходит максимальное разворачивание макромолекулярного клубка, позволяет получать материалы, имеющие удлинение при разрыве более 1000% при достаточно высоких значениях разрывной прочности, достигающей 52 МПа [19, 20]. [c.227]

    Коршак, Стрепихеев и Моисеев [271], показали, что полиуретаны могут быть синтезированы без применения растворителей нагреванием гексаме-тилендиизоцианата с бутандиолом-1,4. Присутствие воздуха приводит к понижению молекуляриого веса образующегося полиуретана [272]. Молекулярный лес полиуретанов можно регулировать добавлеаием нужных количеств одноатомных спиртов или мопоаминов [272]. Этим способом были получены смешанные полиуретаны из гексаметилендиизоцианата и различных гликолей [273]. Они отличаются повышенной растворимостью и эластичностью [273]. Применение полиуретанов для лакокрасочных покрытий рассмотрено Мортом [274]. [c.251]

    Привалко В. П. Калориметрическое исследование влияния молекулярного строения и границы раздела с твердой фазой на термодинамические и кинетические свойства полиуретанов. Канд. дис. М., НИФХИ им. Карпова, 1969. [c.244]


Смотреть страницы где упоминается термин Полиуретаны молекулярный вес: [c.532]    [c.459]    [c.145]    [c.226]    [c.118]    [c.123]    [c.134]    [c.315]    [c.315]    [c.315]   
Волокна из синтетических полимеров (1957) -- [ c.155 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.621 , c.622 ]




ПОИСК





Смотрите так же термины и статьи:

Полиуретаны



© 2025 chem21.info Реклама на сайте