Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эластомеры полимеризация

    При замене титана другим переходным металлом, ванадием, вместо кристаллических твердых пластических масс образуются аморфные эластомеры /52/. Исходными веществами для получения гомогенных ванадиевых катализаторов служат ванадилхлорид и алкилванадаты. Видимо, это и обусловливает гораздо более высокую скорость протекания реакции, чем в случае полимеризации пропилена в присутствии титановых катализаторов. В качестве растворителей обычно используют гексан, гептан или хлоралкены с высоким содержанием хлора, например тетрахлорэтилен. Концентрация ванадиевых соединений в растворителе составляет 0,1-0,5 ммоль/л, отношение А1 У обычно колеблется в пределах от 10 1 до 15 1. Катализаторы готовятся на основе Л1(С2Н )з, (С2Н )2Л1С1 и [c.123]


    В макромолекулах эластомеров обычно имеет место статистическая разветвленность, возникающая либо при полимеризации в результате реакций передачи активных центров на полимерную цепь, либо при поликонденсации бифункциональных мономеров в присутствии небольших примесей полифункциональных соединений. [c.24]

    В наши дни этот способ получения синтетических каучуков вытесняет старый и хорошо изученный метод эмульсионной полимеризации и в ближайшее время, по-видимому, станет одним из ведущих в производстве эластомеров. Полимеризацией в растворе в настоящее время производятся такие многотоннажные каучуки, как 1,4-цм -изопреновый (аналог натурального каучука), , А-цис-бутадиеновый, этилен-пропиленовый, бутилкаучук. [c.294]

    В связи с рядом денных качеств галоидосодержащих полимеров ведутся поиски новых мономеров и полимеров этого типа. Из полимеров, содержащих в основной цепи атомы хлора, описано получение растворимого эластомера полимеризацией 2,3-дихлор-1,3-бутадиена [1291]. После обработки продукта полимеризации меркаптаном получается растворимое каучукоподобное соединение с аморфной структурой. [c.412]

    Галогенсодержащие полимеры имеют большое значение в практике, так как позволяют готовить достаточно термостойкие и стойкие к агрессивным средам материалы и изделия из них. Наиболее распространены хлорсодержащие полимеры, среди которых один из самых массовых — поливинилхлорид, получается полимеризацией винилхлорида. Другим представителем хлорсодержащих полимеров, получаемым в процессе синтеза, является полихлоропрен — один из самых стойких к действию различных агрессивных сред эластомеров. Остальные хлорсодержащие полимеры (хлорированный и хлорсульфированный полиэтилен, хлорбутилкаучук, хлорированный полихлоропрен, хлоркаучук и др.) получаются реакцией хлорирования соответствующих углеводородных полимеров, т. е. путем химической модификации. [c.278]

    Промышленные методы синтеза жидких каучуков, не содержащих на концах макромолекул функциональных групп, в принципе не отличаются от методов синтеза высокомолекулярных эластомеров. Полимеризация соответствующих мономеров проводится в массе, эмульсии или растворе. [c.12]

    Рассмотрены методы расчета процессов получения и переработки эластомеров — полимеризации, обработки растворов и латексов, выделения и сушки каучуков. Изложению этих методов предпосланы краткая характеристика технологического оформления и теоретические основы процессов. Для наиболее важных процессов приводятся примеры расчетов, иллюстрирующие использование описанных зависимостей для решения конкретных задач. [c.2]


    В последние годы уделяется большое внимание получению новых эластомеров полимеризацией в растворе [20, 57]. Термопластичные эластомеры представляют собой новый класс материалов, в которых сочетаются свойства вулканизованных эластомеров и термопластов. Такие полимеры при повышенных температурах текучи подобно термопластам, а при нормальной температуре проявляют свойства, характерные для резин — высокую прочность и большое относительное удлинение при разрыве, хорошую упругость и низкую остаточную деформацию. Сетчатая структура обусловлена физическими взаимодействиями, а не ковалентными связями. Эта структура полностью обратима, т. е. разрушается при нагреве и восстанавливается при охлаждении. [c.42]

    В промышленности эластомеры получают чаще всего полимеризацией в растворе или в эмульсии [15, 16, 65—67]. Долгое время эмульсионная полимеризация в водной среде была основным промышленным процессом получения синтетических каучуков. Однако ионную и ионно-координационную полимеризацию невозможно проводить в водной среде, поэтому потребовалась разработка промышленной технологии полимеризации в среде органических растворителей. В настоящее время созданы крупнотоннажные производства для получения полимеризацией в растворе ряда эластомеров. Полимеризация в блоке мономера не имеет большого распространения. [c.95]

    Молекулярная масса и молекулярно-массовое распределение. Важнейшим молекулярным параметром, определяющим физические и технические свойства полимеров, в частности, их способность к высокоэластической деформации, является длина молекулярных цепей, которая обычно характеризуется степенью полимеризации Р, т. е. числом мономерных звеньев, входящих в цепь, или молекулярной массой М, равной М = Рт, где т — молекулярная масса мономерного звена. Величина молекулярной массы эластомеров обычно имеет порядок 10 —10 , хотя в последнее время для получения различных резиновых изделий все шире используются так называемые низкомолекулярные полимеры с М порядка 10 —Ю".  [c.21]

    В этом разделе мы приводим результаты исследований связи между молекулярной структурой различных эластомеров, полученных методом полимеризации в растворе, и условиями их синтеза, а также данные о молекулярной структуре некоторых каучуков, выпускаемых в опытном и промышленном масштабе. [c.56]

    Данные по технологическим свойствам резиновых смесей ниже будут рассматриваться с точки зрения молекулярного строения конкретных полимеров такой подход удобен тем, что он непосредственно связан со спецификой синтеза эластомеров и, соответственно, с возможностью регулирования тех или иных их молекулярных параметров путем направленного воздействия на процесс полимеризации. [c.73]

    Относительно хладотекучести следует сказать несколько подробнее. Некоторые каучуки растворной полимеризации, несмотря на высокую вязкость в условиях измерения на вискозиметре Муни, ведут себя при хранении как жидкости, т. е. блоки каучука теряют свою форму. Хладотекучесть делает неприемлемыми такие каучуки в заводских условиях. Это явление было неизвестно для эластомеров, полученных методом эмульсионной полимеризации, и полностью объясняется линейным строением полимерных цепей. [c.82]

    Полимеризация с раскрытием кольца делает принципиально возможным другой путь получения диеновых эластомеров, заключающийся в избирательной циклической ди- или тримеризации диена с последующей дециклизацией. При этом 70—80% теплоты полимеризации выделяется на первой стадии процесса, где ввиду низкой вязкости реакционной смеси теплосъем осуществить значительно легче. Такой метод существенно повысит производительность полимеризационного оборудования. [c.318]

    Процесс протекает под влиянием оснований, из которых для синтеза эластомеров наиболее удобным оказался комплексный катализатор, состоящий из третичного амина и окиси олефина, поскольку он позволяет осуществлять регулирование скорости процесса в достаточно широком интервале. Исследование кинетики реакции [79] показало, что процесс представляет собой своеобразный вариант анионной полимеризации, скорость которой описывается уравнением первого порядка. [c.446]

    Макромолекулы линейных полимеров, к которым относятся, например, эластомеры, в отношении химического строения отличаются последовательными повторениями вдоль цепи одной и той же структурной группы — звена, или химической единицы цепи. Существенным для линейных полимеров является наличие достаточно длинных макромолекул с резким различием характера связи вдоль цепи и между цепями (химические и межмолекулярные связи). Длины линейных макромолекул и полимерных цепей значительно превышают размеры молекул низкомолекулярных веществ, а повторяющаяся группа атомов (звено) обычно соответствует мономерам исходных веществ. Степень полимеризации измеряется числом звеньев в цепи. [c.12]


    В учебном пособии излагаются методы синтеза, модификации и исследования высокомолекулярных соединений. Впервые приводятся описания лабораторных работ на основе методов радиационного инициирования полимеризации, синтеза высокомолекулярных антиоксидантов с оценкой их эффективности и стабильности эластомеров, специфического галогенирования полимеров, циклизации макромолекул, определения молекулярных масс мономеров, олигомеров и полимеров путем измерения теплового эффекта конденсации а др. [c.2]

    Полимеризация винильных мономеров в массе и растворе отверждение эластомеров вулканизация каучуков высокотемпературное отверждение полиэфирных смол. 3. Пероксиэфиры  [c.360]

    Дихлорбутадиен полимеризуется аналогично. Интересно, что продукт полимеризации этого мономера являстся твердым пластиком, а не эластомером. [c.263]

    При полимеризации других оле-финов повышение регулярности строения также ведет к увеличению кристалличности полимеров, которые благодаря этому отличаются повышенной температурой плавления и большей механической прочностью. Кристаллические компоненты продукта сопровождаются высокомолекулярными аморфными полимерами и эластомерами. Стереорегулярность строения сообщает продуктам новые и необычные свойства, которые, несомненно, расширят области применения высокополимеров. [c.290]

    Сополимеры, которые могут использоваться как эластомеры, должны иметь аморфный характер отношение этилен пропилен в готовом продукте может изменяться в широких пределах, примерно от 35 65 до 65 35. Одной из серьезных трудностей производства таких сополимеров является то, что полимеризация этилена протекает во много раз быстрее, чем пропилепа, так что трудно получать сополимеры с примерно постоянным соотношением обоих мономеров. Более вероятно, что эти сополимеры относятся к продуктам блочного типа. [c.205]

    Интересные перспективы промышленного применения открываются перед стереорегулярными полимерами, свойства которых можно изменять в соответ-< твии с намечаемой областью пспользования в качестве пластмасс и эластомеров. Полимеризация на поверхностных катализаторах а-олефинов, равно как и сополимеризация а-олефинов с этиленом позволяет вырабатывать широкий -ассортимент полимеров, свойства которых обеспечивают их успешное применение в многочисленных областях технологии и промышленности. Промышленное применение поверхностных копируюш,их катализаторов в процессах полимеризации диолефинов и сополимеризации диолефинов с а-олефинами также должно привести в ближайшем будупцем к разработке широкой [гаммы эластомеров для специальных областей. [c.307]

    Инициирование полимеризации. Возникновение первичного радикала К-, инициирующего процесс полимеризации, может произойти при энергетическом воздействии (нагревание, свет, радиоактивные излучения) на молекулы мономера. Однако такой процесс протекает с большой энергией активации. В производственных условиях при получении эластомеров полимеризация инициируется почти исключительно путем применения химических инициаторов— веществ, сравнительно легко распадающихся на свободные радикалы. К таким веществам относятся пероксиды, гидропероксиды, азо- и диазосоединения, дисульфиды, соли надсерной кислоты (бензоилпероксид, гидропероксид изопроиилбензола, ди-нитрил азобисизомасляной кислоты, персульфат калия) и др. Бензоилпероксид начинает распадаться при 40—50 °С (при 80 °С константа скорости = 4-10 с ). Гидроперекосид изопроиилбензола при 130—140 °С распадается на свободные радикалы в соответствии с уравнениями [c.36]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    Окиси фторолефинов не полимеризуются по радикальному механизму. Попытка Джонса [80] получить термостойкие эластомеры полимеризацией 1,1,1-трифтор-2,3-бутадиеноксида, а также окисей других алкенов с большим содержанием фтора, используя катализаторы катионного типа, привела к образованию жидких продуктов реакции с низким молёкуляр-ным весом. Из окиси гексафторпропилена удалось получить полимер лишь под давлением на активированном древесном угле и под действием ионизирующего излучения. Свойства полученного полимера, к сожалению, не приведены [81]. [c.200]

    Полиизобутилены с высоким люлекулярным весом являются эластомерами. Бутилкаучук является сополимером нзобутнлена с небольшим количеством изопрена (около 1,5—4,5%). Нормальные бутилены дегидрируют в бутадиен, который затем сополиме-рнзуется со стиролом (23,5%) или с акрнлонитрилом (25%). При этом получается соответственно бутадиен-стирольный или бута-диен нитрильнып каучук. При обратном соотношении (25% бутадиена и 75% стирола) получается продукт с другими свойствами, в частности высокой износоустойчивостью. При полимеризации изопрена с алкил-алюминиевыми катализаторами получается эластомер, подобный натуральному каучуку [276—278]. [c.582]

    В книге на высоком научном уровне описывается современное состояние теории и практики производства важнейших типов синтетических каучуков и соответствующих латексов. В ней на основе единого плана рассматриваются следующие вопросы строение и свойства эластомеров, современные представления о механизмах полимеризации, синтез и свойства карбоцепных, гетероцеп-ных и других эластомеров, получение и свойства синтетических [c.5]

    В настоящее время акролеин становится исходным веществом для производства синтетического глицерина. Промежуточные продукты этого производства могут служить сырьем для получения синтетических смол, эластомеров и т. п. Окислением акролеина получают акриловую кислоту, основу для производства акрилатных смол. Хлорированием акролеина в жидкой фазе получают а,р-дихлорпронионовый альдегид и далее а-хлоракриловые смолы. В ФРГ усиленно работают над продуктами полимеризации самого акролеина [156]. Каталитическим гидрированием акролеин переводят в пропионовый альдегид или в к-пропиловый спирт. Кроме того, уже сейчас значительное количество акролеина расходуется на производство метионина — вещества, добавка которого в корм домашней птицы ускоряет ее рост [185]. [c.317]

    Открытие катализаторов полимеризации циклоолефинов привело к синтезу нового класса эластомеров — полиалкеномеров [19]. Среди этих полимеров исключительно ценным комплексом свойств обладает гранс-полипентенамер (ТПП). [c.63]

    Влияние РТФ на свойства диенуретановых эластомеров показано на примере полибутадиендиолов радикальной полимеризации в работе [71]. Реакционная способность концевых групп в жидких каучуках и их функциональность оказывают существенное влияние на свойства эластомеров вследствие особенностей формирования пространственной сетки при структурировании жидких каучуков. [c.443]

    Благодаря работам академика С. В. Лебедева 1,3-бутадиен явился первым мономером, на примере которого были изучены многие вопросы полимеризации, структуры и свойств полимеров, а также создано первое в мире промышленное производство СК. Этот доступный и дешевый мономер сохраняет свое значение и в настоящее время. Помимо каучуков, синтезируемых с помощью щелочных металлов (СКБ, СКВ и СКБМ), на его основе получается большая группа нестереорегулярных сополимерных материалов (СКС, СКМС, СКИ и др.), а также стереорегулярные эластомеры (СКД). [c.176]

    Наиболее подробно исследована полимеризация циклопентена, приводящая к образованию цис- или граяс-полипентенамеров — эластомеров, обладающих ценным комплексом свойств. Отличительной особенностью этого процесса является наличие резко выраженной зависимости микроструктуры полипентенамера от температуры полимеризации. Изомер ис-полипентенамер (ЦПА) удается получать лишь при температурах ниже —20 °С, а при 0°С и выше образуется полимер, сильно обогащенный г/занс-зве-ньями (>75%), причем оба полимера могут быть получены в присутствии одних и тех же каталитических систем [6, 7]. Молекулярная масса полипентенамеров поддается регулированию в широких пределах путем введения в систему олефинов. Характер изменения М в ходе процесса полимеризации существенно зависит от состава катализатора [8]. Введением специальных добавок, например воды, удается получать полипентенамеры с широким ММР [9]. Б качестве растворителей при полимеризации циклопентена обычно используют углеводороды или их галогенпроизводные. [c.319]

    В некоторых случаях функциональные группы в теломере представляют собой малоактивные фрагменты гелогена и их переводят путем химических превращений в другие функциональные группы, способные участвовать в реакциях конденсации или полимеризации. Так, с целью получения теломеров с концевыми ксан-тогеновыми, а затем сульфгидрильными и гидроксильными группами была проведена теломеризация различных непредельных соединений в присутствии телогена диизопропилксантогендисзгль- фида [43, 44]. В качестве инициатора использовалась гидроперекись изопропилбензола. Были синтезированы и выделены теломе-ры — диксантогенаты, с функциональностью близкой к двум, с различной природой молекулярной цепи. Среднечисленная молекулярная масса теломеров изменялась в пределах (0,1- 5)-10 В дальнейшем путем ряда модификаций были синтезированы те-ломеры с концевыми сульфгидрильными и гидроксильными группами, на их основе получены полиуретановые и полисульфидные эластомеры с диеновыми и олефиновыми звеньями в молекулярной цепи. [c.427]

    В результате полимеризации могут получаться высокомолекулярные вещества, обладающие пластическими свойствами (синтетические каучуки, полиизобутилен или оппанол, тиокол и т. д.), которые объединяют под названием эластомеров, или же твердые (растворимые или нерастворимые, плавкие или неплавкие) полимеры, известные под названием пластомеров. К последним относятся так называемые пластмассы (целлулоид, бакелиты, глифтали, коросил, полистиролы, акрилоиды и т. д.). Некоторые считают, что термопластичные полимеры—акрилаты и метакрилаты, полистиролы, поливиниловые эфиры и т. д.—занимают промежуточное место, и называют их эластопластиками [3]. [c.587]

    В основе синтеза уретановых эластомеров лежит реакция взаимодействия диизоцианатов с соединениями, содержащими две или более гидроксильные группы. В качестве гидроксилсодержащих соединений для получения полиуретанов наиболее широко используются простые или сложные полиэфиры с молекулярной массой около 2000. Простые полиэфиры получают полимеризацией окисей алкиленов. В производстве уретановых каучуков чаще всего применяют полимеры окиси пропилена и тетрагидрофуран а  [c.241]

    Полимеры, обладающие свойствами эластомеров, были получены [145] эмульсионной сополимеризацией при 5 и 50° С перфторметил-, перфтор-пропил- и перфторгептилпропенилкетонов с бутадиеном, изопреном, 1,1,2-трифтор-З-хлорбутадиеном и 1,1,2-трифторбутадиеном. В литературе отмечены [144] синтез и легкость полимеризации необычного мономера 1,1,2,3-тетрафтор-1,3-бутадиена. [c.212]

    Распространение получают промышленные процессы радиационной модификации все более разнообразных полимеров, вулканизации эластомеров, радиационной полимеризации и сополимерияа-ции и поликонденсации Осуществлены некоторые важные, преимущественно цепные процессы радиационно-химического синтеза теломеризация, хлорировагше, сульфохлорирование. И ценно то, что радиационно химические процессы могут быть проведены в условиях более низких температур по сравнению с процессами обычной технологии, могут проводиться без использования катализаторов или вещественных инициаторов (это пример чистой , некаталитической, химии.— В. Л. ), могут идти в значительно меньшее число стадий, могут создавать в материалах свойства, которые иным способом создать сегодня нельзя [17]. [c.237]

    До последней четверти прошлого века человек потреблял только натуральные высокомолекулярные продукты. История раавития химической обработки (модификации) природных полимеров начинается с синтеза нитроцеллюлозы в 70-е годы XIX в., а в конце векаважного продукта химической модификации целлюлозы — ацетата. Первые синтетические полимеры типа фенолформальде-гндных смол были получены в начале XX в., а начиная с 30-х годов начал осуществляться в промишлениости синтез полимеров методом поликонденсации и полимеризации дненовых и виниловых мономеров, пик развития которого приходится на 40-е годы. В 50-х годах получены стереорегулярные полимеры и разработаны промышленные методы производства пластиков на основе этилена и про-пилена, а на основе изопрена и бутадиена—эластомеров с регулярной и контролируемой структурой и свойствами. [c.7]

    При свободнорадикальной полимеризации по длине цепи каждой макромолекулы могут существовать все виды структур иоли-диенов, что приводит к нестабильности и невоснроизводимостн свойств таких полимеров. Структуры типа 1—4 формируются обычно только в гранс-положсииях. В цепи эластомера полихлоропрена подавляющее большинство звеньев располагается в виде [c.34]

    Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры цис-, А-по-лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярнын полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры. [c.82]

    Цепную полимеризацию проводят при низких темпе ратурах (порядка минус 70 — минус 100 °С) в присутствии безводного хлористого алюминия или фтористого бора. Получающиеся продукты представляют собой вязкие или каучукоподобные массы (эластомеры). Полимеры молекулярного веса 20000— 40 000 (суперол, эксанол или паратон) и каучукоподобные (оп-панол) применяются в качестве присадок к нефтяным смазочным маслам, улучшающих из вязкостные характеристики. Продукт совместной низкотемпературной полимеризации изобути-лена с небольшим количеством изопрена, так называемый бу-тилкаучук, является одним из специальных видов синтетического каучука. [c.142]

    Наконец, интересный диеновый полимер, который представляет собой твсрдын плотный материал, но не Эластомер, получают инициированной персульфатом полимеризацией 2, 3-дихлорбутадиена. Этот полимер можно получить методами, описанными Куном, который нашел условия, необходимые для образования полимера, способного формоваться и отливаться. [c.275]

    Эластомеры НК, СКН-26, СКД, СК МС, ПИБ-200, ХСПЭ для защиты от повреждений микробиологами могут быть модифицированы двумя методами. Первый (механический) заключается в добавлении биостойких полимеров, например оловосодержащих металлоорганических полимеров. Второй (химический) основан на прививке к молекуле каучука гидрида непредельной дикарбоновой кислоты радиальной полимеризацией в присутствии регулятора роста цепи с последующей модификацией мономерными биоцид- [c.84]

    Для промышленной реализации результатов исследовательских работ по новым эластомерам необходимо детально изучить проблемы, связанные с переходом к крупному масштабу производства, и уточнить лабораторные данные о физических свойствах новых материалов и технологических особенностях их переработки. Описаны [160] методы испытаний и оценки на полузаводских установках новых видов материалов (эмульгаторы, масла для резиновых смесей, антиокислители), используемых в производстве бута-диенстирольного и нитрильпого синтетических эластомеров процессами эмульсионной полимеризации. Следует подчеркнуть, что сложность проблем перехода к промышленному масштабу для подобных коллоидных систем создает чрезвычайно большие трудности для технологов, работающих в области новых эластомеров. Значительную помощь в лабораторной оценке технологических свойств бутадиенстирольного и нитрильного каучуков оказывает изучение кривых потребления энергии, определяемых на лабораторных смесителях тина Бенбери [77 ]. Описано также применение смесителя ротомилл непрерывного действия [146] и других новых методов заводской переработки [140]. [c.198]

    Фторированные полимеры нового типа получены группой английских исследователей [76]. Трифторнитрозометан сополимеризовали с тетрафтор-этиленом по месту двойной связи N =0. При 80° С получался циклический содимер (оксазетидин), но при 0° С образуются сополимеры, представляющие собой в зависимости от степени полимеризации масла, консистентные смазки и твердые воски. При —20° С образуется сополимер с соотношением компонентов 1 1, обладающий всеми свойствами эластомера. Он обнаруживает высокую термическую стойкость при 200° С в присутствии воздуха и сохраняет упругие свойства при —30° С. Молекулярный вес этого полимера лежит в пределах 150000—200000 он растворим во фторированных углеводородах. [c.212]


Смотреть страницы где упоминается термин Эластомеры полимеризация: [c.693]    [c.524]    [c.125]    [c.34]    [c.204]    [c.205]   
Химия и технология полимеров Том 2 (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Эластомеры



© 2025 chem21.info Реклама на сайте