Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация расплава полимера

    Смешение в одночервячных экструдерах. Расплав полимера (ньютоновская жидкость) с вязкостью 620 Па-с и плотностью 0,63 г/см перерабатывают на одночервячном экструдере. Диаметр червяка 63,5 мм LiD = 24 1 в сечении червяк имеет форму прямоугольника глубина нарезки червяка постоянная, ранная 10,16 мм ширина винтовой нарезки 6,35 мм зазор между гребнем нарезки червяка и стенкой цилиндра пренебрежимо мал. Производительность экструдера 72 кг/ч частота вращения червяка 100 об/мнн. Рассчитайте среднее значение деформации сдвига в полимере. [c.415]


    В сдвиговом поле реализуются достаточно большие высокоэластические деформации, обусловливающие возникновение аксиальных растягивающих напряжений (эффект Вайссенберга), В условиях кругового течения, например в зазоре между коаксиальными цилиндрами, раствор или расплав полимера как бы стягивается силами, возникающими при появлении нормальных напряжений. Они противодействуют как силе тяжести, так и центростремительной силе (рис. 4.11). [c.180]

    Кристаллические структуры по-разному влияют на механические свойства кристаллических и кристаллизующихся полимеров. При приложении малых напряжений деформация кристаллических полимеров очень мала. Выше температуры плавления полимер переходит практически сразу в вязкотекучее состояние, при этом деформация резко возрастает (рис. И.8). Кристаллизующийся полимер того же химического строения имеет иную термомеханическую кривую. Так, если расплав кристаллизующегося полимера быстро охладить, то он не успеет закристаллизоваться и перейдет в стеклообразное состояние. До температуры стеклования он будет вести себя как обычный аморфный полимер, т. е. проявлять малые обратимые деформации. В отличие от-кристаллического, у кристаллизующегося полимера проявится и область высокоэластического состояния, и именно в ней, вследствие увеличения сегментальной подвижности макромолекул, наступит кристаллизация. Превратившись в кристаллический, полимер обнаружит высокие необратимые деформации лишь после достижения температуры плавления. [c.30]

    Очевидно, что при скорости деформации растяжения, меньшей критического значения ( о = 1/2 1п,ах)> поведение расплавов полимера при одно- и двухосном растяжении можно рассматривать как течение неньютоновской жидкости, при более высокой скорости деформации расплав деформируется как нелинейное высокоэластическое твердое тело. [c.175]

    Хорошее ламинарное смешение достигается лишь тогда, когда в смесителе расплав полимера подвергается большой суммарной деформации. При зтом удается существенно уменьшить композиционную неоднородность материала по сечению канала. Однако особенность профиля скоростей в экструдере заключается в том, что суммарная деформация, накопленная частицами жидкости, зависит от местоположения частиц. Следовательно, степень смешения по сечению канала неодинакова. А значит, и по сечению экструдата следует ожидать определенную композиционную неоднородность. Количественной мерой этой неоднородности могут быть функции распределения деформаций Р (у) и f (у) йу. Проанализируем эти функции для экструдера с постоянной глубиной винтового канала червяка, используя простую изотермическую модель, описанную в разд. 10.2 и 10.3. В гл. 12 рассмотрен процесс смешения в пласти-цирующем экструдере, в котором плавление полимера влияет на вид функций распределения. [c.406]


    Таким образом, в расплаве полимера наряду с необратимыми деформациями (при течении, характеризуемом вязкостью) происходят упругие обратимые деформации. Следовательно, расплав полимера является вязкоупругой жидкостью  [c.11]

    Однако применение поршеньков в качестве воспринимающего элемента имеет ряд недостатков. Расплав полимера при высоких температурах переработки может затекать в зазор между поршеньком и отверстием в корпусе, образуя тонкую пленку, искажающую показания прибора. Трудно учитывать тепловые расширения воспринимающего элемента при обеспечении заданной точности посадки, особенно при малых диаметрах поршенька. Кроме того, трудно обеспечить герметичность посадки поршенька. Эти недостатки можно устранить применением мембраны для восприятия непосредственно давления расплавленного полимера (рис. 80,6). Прогибаясь под давлением расплава, мембрана перемещает стержень, деформирующий вторую мембрану (рис. 81, а). Деформация второй мембраны воспринимается дополнительным штоком (стержнем), сжимающим элемент, оклеенный датчиками сопротивления. При применении мембраны необходимо учесть, что последняя деформируется еще и под действием, температуры. Отсюда ясно, что мембрана неприменима при сильных колебаниях температур. [c.150]

    В области вязкотекучего состояния термопласты обладают низким модулем упругости, т. е. малым сопротивлением деформации, величина которой в этой области весьма значительна. Происходит скольжение макромолекул друг относительно друга, т. е. течение полимера . В процессе вязкого течения полимер не может сохранять свою форму, и поэтому расплав термопласта нуждается во внешнем оформляющем инструменте. На этом основаны процессы литья под давлением и экструзии, в которых расплав полимера продавливается через узкое отверстие в специальные приспособления для придания нужной формы изделию, например литьевые формы или калибрующее устройство для труб. [c.30]

    Величина обратимой высокоэластической деформации в расплаве полимера может быть определена лишь после того, как прекратится действие внешних сил на расплав полимера. [c.64]

    Последующее расщепление пленки на отдельные частицы можно осуществлять путем аэро- или гидродинамического воздействия, обработкой в ультразвуковом поле, деформацией в поперечном направлении (возможна двухосная деформация), механическим воздействием в измельчителях различной конструкции. Один из вариантов схемы процесса показан на рис. 3.14. Выдавленный через щелевую фильеру расплав полимера охлаждают (зона А), деформируют до появления сети [c.128]

    Переход в вязкотекучее состояние различен для аморфных и кристаллических полимеров. Жидкому состоянию аморфных полимеров предшествует высокоэластическое состояние, которое характеризуется относительно высокой обратимой деформацией системы область перехода 01 высокоэластического состояния к вязкотекучему обычно размыта. Даже при сравнительно большом удалении от этой области расплав полимера обладает отчетливыми вязкоэластическими свойствами, существенно отличаясь от ньютоновских жидкостей. Часто употребляемую для аморфных полимеров характеристику — температуру текучести следует рассматривать как условную, поскольку речь идет об относительно широкой области перехода. В технической литературе используется также [c.72]

    Каждая точка кривой течения любого полимера является обычно результатом отдельно поставленного опыта. Расплав полимера помещается в рабочий узел прибора, обеспечивающего деформацию расплава. Флуктуационная сетка полимера, о которой говорилось ранее, оказывает сопротивление деформированию. Всегда требуется определенное время для того, чтобы возникло динамическое равновесие процессов распада и последующего восстановления узлов флуктуационной сетки. [c.172]

    Кривая деформации кристаллического полимера в значительной степени определяется температурой, при которой проводилось испытание, а также молекулярным весом материала. В самом деле, при достаточном повышении температуры любого кристаллического полимера он должен расплавиться, если только температура его плавления ниже, чем температура химического разложения. В этом случае полимер перейдет в расплав, обладающий либо [c.208]

    Длинные цепные молекулы, содержащие большое число ковалентных связей, оказываются способными принимать различные конформации . Конформациями принято называть различные пространственные формы полимерной цепи, реализуемые поворотом одной части молекулы относительно другой вокруг направления соединяющей их химической связи. Их можно рассматривать на локальном уровне — ближний конформационный порядок (статистическая, зигзаг или спиральная) или как характеристику, описывающую форму всей цепи — макромолекулярная конформация (складчатая, статистический клубок, выпрямленная конформация). Конформации, характеризующие дальний конформационный порядок (такие, как выпрямленные цепи или длиннопериодная складчатость), могут быть получены в результате воздействия на расплав деформаций сдвига или растяжения или при помощи отжига. Следовательно, переработка полимеров, которая включает как деформирование, [c.38]


    Приведем ряд примеров. Изотактический полипропилен обычно кристаллизуется в моноклинной форме. Однако при быстром охлаждении полипропилен кристаллизуется в виде сферических агломератов, состоящих из несовершенных гексагональных кристаллитов [9, 10]. Аналогичные результаты получил Уайт с сотр., исследуя волокно изотактического ПП, охлаждавшееся на воздухе и в воде [11 ]. Полибутен-1 при кристаллизации из расплава обычно образует кристаллы формы П [12]. Однако если расплав полибутена-1 подвергнуть деформации и только после этого произвести изотермическую кристаллизацию, то он кристаллизуется преимущественно в виде стабильных кристаллов формы I. Полимер, состоящий из кристаллов формы I, обладает более высокой плотностью (р = 930, Ри = 877 кг/м ). Более того, в ряде случаев наблюдается переход кристаллической формы П в форму I с максимальной скоростью при комнатной температуре [13]. Поэтому можно ожидать, что любые изделия из полибутена-1 будут подвергаться усадке при хранении. Величина этой усадки с увеличением деформации расплава уменьшается. Таким образом, инженер-технолог, прибегая к ориентации расплава, может избавиться от этой неприятной особенности весьма полезного полимера. [c.49]

    Переменная скорость плавления означает, что твердая фаза подвергается или деформации, или вращению, или тому и другому вместе. Твердые полимеры, в частности в виде пробки спрессованных гранул или порошков (как это обычно наблюдается в процессах переработки), можно считать деформируемыми. Расплав, образующийся в очаге плавления, проникает внутрь пустот между твердыми частицами пробки, позволяя им скользить и перестраиваться в области, прилегающей к поверхности раздела фаз. Физическая сущность деформации твердой пробки состоит в следующем. Медленно дефор- [c.282]

    Современный экструдер — это машина, обеспечивающая одновременно нагрев полимера за счет работы сил внутреннего трения и гомогенизацию вследствие больших деформаций сдвига, а также создающая гидростатическое давление, необходимое для непрерывного продавливания материала через профилирующий инструмент. Поэтому можно определить современный экструдер как совершенно свободный от пульсации давления насос, подающий термически однородный расплав с постоянной производительностью и при постоянном давлении. [c.198]

    Кристаллические полимеры. Типичные термомеханические кэи-вые для кристаллических полимеров представлены на рис.. 7. Кривая 3 относится к полимеру, который плавится при температуре Тт и сразу переходит в вязкотекучее состояние, кривая 4— к полимеру, который после плавления переходит в каучукоподобное состояние (этому состоянию соответствует второй горизонтальный участок кривой). При охлаждении ниже температуры Tg жесткость полимера плавно увеличивается. Этот температурный переход соответствует стеклованию аморфных областей, существующих в любом кристаллическом полимере. Чем меньше степень кристалличности полимера, тем большей деформации соответствует положение термомеханической кривой в области температур между Тд и Тт- Если расплав кристаллического полимера быстро охладить ниже температуры стеклования, то затем при нагреве выше температуры он сразу переходит в каучукоподобное [c.23]

    В начале зоны температура расплава равна температуре плавления. Продвигаясь в зоне дозирования, полимер продолжает разогреваться как за счет подвода тепла извне, так и за счет тепла, выделяющегося вследствие интенсивной деформации сдвига. Одновременно идет процесс гомогенизации расплава. Происходит окончательное расплавление мелких включений и выравнивание температурного поля. Для нормальной работы экструдера необходимо, чтобы расплав, поступающий к рабочему инструменту (к головке), имел заданную, однородную по сечению температуру. Поэтому время пребывания расплава в зоне дозирования должно быть достаточно для его прогрева и гомогенизации. [c.241]

    Участок наибольшей ньютоновской вязкости соответствует очень малым деформациям сдвига. При этих режимах течения не происходит структурных изменений, а следовательно, и изменения вязкости. При малых градиентах скорости интенсивность теплового движения макромолекул достаточна для того, чтобы препятствовать ориентации молекулярных клубков и надмолекулярных образований. Структура полимера поэтому заметно не меняется, а расплав ведет себя как ньютоновская жидкость. [c.75]

    Когда расплавленный полимер подвергается действию напряжения сдвига, он не ведет себя подобно вязкой жидкости, как, например, низкомолекулярные жидкости, а характеризуется частичной упругостью. Это означает, что при стационарном течении полимерного расплава возникает упругая деформация, от которой данный расплав может освободи гься при снятии напряжения сдвига. Такую упругую деформацию можно выразить как уе = г/О, где С — модуль упругости при сдвиге. [c.273]

    В одночервячном прессе механическая работа,- вызывающая деформацию сдвига в расплаве, превращается в тепло, нагревающее полимер. В двухчервячном прессе основным источником тепла являются внешние нагреватели в этом случае, чтобы перемешать расплав, на червяках делают специальные секции со смесительными элементами. [c.145]

    Рассмотрим ньютоновскую жидкость и расплав полимера, находящиеся в одинаковых экспериментальных условиях между двумя параллельными пластинками (рис. 6.3). Нижняя пластинка фиксирована, верхняя мгновенно смещается на расстояние Ах . Тогда мгновенно приложенная деформация составит -= Ах/Ау. В обеих жидкостях будут развиваться напряжения =--- t)IAy. Их зависимость от времени показана на рис. 6.3, а и б. В случае ньютоновской жидкости напряжения релаксируют мгновенно в соответствии с уравнением (6.2-1) таким образом, за исключением бесконечно малого промежутка времени, когда пластинка смещается на расстояние Ах, величина к (AxlAy)ldt == dvjdt у = 0. Следовательно, медленная релаксация напряжений в полимерных расплавах при Y = О не может быть описана с помощью определяющего уравнения ньютоновской жидкости, однако это возможно в рамках тррии вязкоупругости (см. разд. 2.1 и 6.4). [c.138]

    Другой особенностью вязкоупругого поведения является восстановление деформации после прекращения действия внешних сил. Такое восстановление может быть полным, частичным или вообще отсутствовать в зависимости от числа Деборы . Восстановление деформации было рассмотрено ранее в связи с явлением разбухания экструдата. Более четко это явление было продемонстрировано Капуром [9]. Снова рассмотрим два одинаковых капилляра типа изображенного на рис. 6.1. Один содержит ньютоновскую жидкость, другой — расплав полимера. Заранее введем в жидкости метки, а затем на короткое время приложим давление. Поведение ньютоновской жидкости соответствует урав-нению (6.2-1). После прекращения [c.138]

    Рассмотрим конкретный практический пример ламинарного смешения. Жидкий компонент вводят в смеситель, содержащий расплав полимера в форме капель микроскопических размеров. Мы утверждаем, что то, что произойдет с каплями в потоке жидкости в начальной стадии смешения, не зависит от смешиваемости компонентов. Это объясняется тем, что при быстром растворении образуется тонкий (в лучшем случае) пограничный слой. Постепенно капли де формируются, подвергаясь воздействию локальных напряжений.. Поле напряжений неоднородно, поскольку компоненты смеси имеют различные реологические свойства (как вязкость, так и эластичность). Влияние поверхностного натяжения несущественно (соответственно несущественно и наличие или отсутствие четких границ раздела), Вязкие силы превышают поверхностное натяжение По мере деформации капель и увеличения площади поверхности раздела степень смешиваемости двух компонентов начинает играть все возрастающую роль. Для смешиваемых систем внутренняя диффузия способствует достижению смешения на молекулярном уровне, а в случае несме-шиваемых систем — вводимый компонент дробится на мелкие домены. Эти домены вследствие вязкого течения и под воздействием сил поверхностного натяжения достигают состояния, характеризуемого постоянной величиной деформации. Таким образом, для несме-шиваемых систем смешение начинается по механизму экстенсивного смешения и постепенно переходит в гомогенизацию. Морфология доменов, образующихся как в смесях, так и в сополимерах, является предметом интенсивных исследований [19]. [c.388]

    Функция распределения деформаций степенной жидкости при течении под давлением между параллельными пластинами. Рассмотрите две параллельные пластины бесконечной ширины (длина зазора , высота //). В направлении х непрсрыв(ю подается расплав полимера. Течение изотермическоо, установившееся, полностью развившееся. Покажите, что  [c.414]

    Как упоминалось ранее, подводящий канал и формующая щель головки выполняют еще одну важную функцию. Па этих участках расплав полимера должен забыть о неоднородной деформации, которой он подвергался при повороте потока. Уорс и Парнаби [681 назвали эти области зонами релаксации и, предполагая, что расплав ведет себя как простая жидкость Фойхта (см. разд. 6.4), приближенно рассчитали минимальную длину, необходимую для достижения желаемого уровня релаксации деформации, наложенной на входе. [c.493]

    Еще раз укажем, что аморфный полимер во всех трех областях, в частности, в области каучукоподобной эластичности II, надлежит рассматривать как расплав. Это существенно, ибо ряд в принципе кристаллизующихся полимеров (например, полиэтилен-терефталат) можно быстрым переохлаждением перевести в стеклообразное и вполне аморфное состояние. Правда, при этом в области II (именно из-за релаксационного расстекловывания ) возникает сегментальная подвижность, а она, в свою очередь, может способствовать кристаллизации. Расплав вновь появится в этом случае при Гх, п. Что касается агрегатных состояний, или степени твердоподобия, то, как уже указывалось, их не удается трактовать однозначно, как для простых веществ. Впрочем, различие это в значительной мере кажущееся, если мы ограничиваемся таким механическим свойством, как податливость тогда перемещая стрелку действия, можно нивелировать разницу между этими состояниями напротив, если рассматривать обратимость деформаций, специфика полимеров, особенно состояния каучукоподобной эластичности, станет бесспорной. Эта бесспорность лишь подчеркивается тем обстоятельством, связанным с зыбкостью границ (особенно для Гт), что расплавы выше Гт и даже достаточно разбавленные растворы гибкоцепных полимеров при очень быстрых воздействиях проявляют не только твердоподобие, но и высокоэластичность при вполне умеренных частотах (см. гл. V). [c.80]

    Выше мы отмечали, что во всех полимерных расплавах существует пространственная структура, образованная вторичными (ван-дер-ваальсовыми) связями. Еще раз оговоримся, что, несмотря на наличие этих связей, расплав полимера является истинной жидкостью в том смысле, что даже самые малые напряжения сдвига вызывают необратимую деформацию — течение. Однако при этом вязкость расплава очень велика. Существование пространственной структуры, образованной физическими связями, не препятствует этому течению, поскольку процесс разрушения связей под воздействием теплового движения молекул протекает достаточно быстро. Поэтому при малой скорости деформации расплавы не обнаруживают никаких эластических свойств, ибо скорость релаксации высокоэластических деформаций выше скорости их накопления. Входовые эффекты, соответствующие малым скоростям деформации, оказываются настолько малы, 86 [c.86]

    Киевским заводом Большевик совместно с Киевским политехническим институтом создан экспериментально-промышленный образец червячно-дискового экструдера типа ЭЧД, имеющий червяк с насаженным на него диском. Диаметр диска больше диаметра червяка, поэтому в дисковой зоне образуется два зазора, в которых развиваются высокие деформации сдвига, обеспечивающие интенсивную переработку и смешение полимерного материала. Перерабатываемый материал перемещается через дисковую зону за счет давления, создаваемого в червячной зоне. В дисковой зоне при необходимости могут быть установлены устройства для дополнительного воздействия на расплав полимера. В зависимости от величины и геометрии рабочих зазоров, частоты вращения диска, реологических характеристик перерабатываемого материала, производительности экструдера, противодавления формующего инструмента, можно задавать такие режимы послойного сдвигового течения, при которых скорость перемещения частицы в радиальном направлении рабочего зазора увеличивается, остается постоянной или уменьшается. При этом в каждом слое полимер подвергается действию растягивающих деформаций. Кроме того, возможность создания условий возникновения вторичных течений позволяет осунгествлять обмен между слоями полимера. Все это в комплексе обеспечивает высокое качество диспергирования, смешения или гомогенизации полимерной композиции. [c.38]

    Упругодеформируемые дросселирующие планки (рис. 2, г-Х1У) позволяют применять одну и ту же головку для переработки различных типов полимерных материалов при различных технологических условиях (например, при изготовлении листов из полиэтилена, полистирола и полиамида). Расплав полимера поступает в коллекторный канал а и распределяется по ширине плоской щели. Для окончательного выравнивания линейной скорости предназначена упругодеформируемая дросселирующая планка 2. Упругая деформация осуществляется болтами [c.372]

    Режим т= onst осуществляется, например, в капиллярных вискозиметрах, когда расплав полимера продавливается через металлический капилляр под определенным, заранее заданным постоянным давлением. Распространены также приборы, в которых полимер помещается между двумя пластинками, из которых нижняя неподвижна, а на верхнюю действует постоянная по величине сдвигающая сила. На рис. 121 приведена кривая деформация — время, получающаяся в режиме т=сопз1. Внешний [c.173]

    При деформации полимеров в расплаве молекулярные цепи стремятся ориентироваться в направлении действия силы, а среднее расстояние между концами молекулы увеличивается. Степень ориентации можно определить по величине угла двулучепреломления в потоке расплава (см. разд. 3.9). Другим методом определения молекулярной ориентации является измерение анизотропии усадки при отжиге тонких, быстро охлажденных образцов. Чтобы рассчитать степень молекулярной ориентации, которой подвергается полимерный расплав под воздействием поля напряжений, необходимо знать продолжительность действия напряжений и располагать адек- [c.68]

    Как показано в разд. 9.1, механическая энергия превращается в тепло различными способами деформацией отдельных частиц, трением между частицами и диссипативным разогревом в областях расплава. В процессе плавления последний способ становится доминирующим. Интенсивное перемешивание распределяет вновь образовавшийся расплав по всему материалу. Расплав, контактируя с твердыми частицами полимера, охлаждается сам и в то же время нагревает и расплавляет поверхностные слои частиц. Следовательно, частицы полимера, находящиеся в смесителе, постепенно превращаются сначала в термически (и реологически) негомогенную, частично расплавленную массу, а в конце концов — в гомогенный расплав. В смесители типа Бенбери новую порцию материала загружают с небольшим количеством расплавленного и перемешанного [c.297]

    В пром-сти П. у. получают гл. обр. термич. полимеризацией в массе по непрерывной схеме так же, как и полистирол, и т. наз. блочно-суспензионным способом по периодич. схеме. В первом случае бутадиеновый или бутадиен-стироль-ный каучук измельчают и растворяют в стироле (4-15%-ная концентрация). При нагр. и интенсивном перемешивании р-ра параллельно протекают полил1еризация стирола и прививка его на каучук. После образования 2-3% полистирола реакц. среда расслаивается на стирольную фазу (р-р полистирола в стироле) и каучуковую (р-р каучука и привитого сополимера в стироле). Образование привитого сополимера протекает на границе раздела фаз. Структура, размеры дискретной каучуковой фазы, содержание в ней окклюдированного полистирола зависят от интенсивности перемешивания, концентрации основных компонентов и модифицирующих добавок. При степени превращения стирола 30-40% реакц. система из-за высокой вязкости становится стабильной и перемешивания уже не требуется. На завершающей стадии процесса происходит частичное сшивание каучука в частицах микрогеля, в результате чего возрастает их устойчивость к сдвиговым деформациям. Продукт представляет собой расплав П. у., содержащего 0,5-10% непрореагировавшего стирола, к-рый удаляют в вакууме, а полимер гранулируют. [c.25]

    Механические свойства полимеров в вязкотекучем состоянии исследуют чаще всего при динамических режимах деформирования. Деформационные свойства расплавов к растворов (концентрированных и разбавленных) оценивают комплексным динамическим модулем С, состоящим из модуля накопления (модуль упругости) С и модуля потерь С". Комплексный модуль имеет тот же физический смысл, что и напряжснне сдвига при установившемся течении, и его значение зависит от сопротивления внутреннему трению и сопротивления развитию вы- сокоэластнческон деформации. Значение модуля потер), распла- [c.313]

    Пластикация смесей. Б процессе переработки через расплав ПВХ композиции подвергаются значительным термомеханическим воздей ствиям [3], что приводит к деструкции полимера [56]. Следовательно, для обеспечения эффективной и надежной работы перерабатывающего оборудования особое значение приобретает определение максимально допустимого времени пребывания полимера под действием тепла и деформации сдвига. Поэтому основным критерием перерабатываемости ПБХ композиций является термостабильность - продолжительность индукционного периода от начала термомеханического воздействий до момента выделения свободного НС1 [56]. Б настоящее время наиболее широкое применение находят следующие методы определений [c.182]

    Выше температуры размягчения упругость полимеров не идеальна, так как упругое восстановление после деформации образца не является полным ( остаточная деформация ). Это происходит потому, что внутренние напряжения внутри образца, вызванные деформацией сегментов, при взаимном перемещении макромолекул могут быть компенсированы, что, в свою очередь, вызывает уменьшение восстанавливающей силы. Такого рода процессы называются релаксационными. При более высоких температурах процессы релаксации протекают быстрее (усиление мак-роброуновского движения), хотя сам полимер в расплавленном состоянии еще остается упругим, так как макромолекулы находятся в виде переплетенных клубков. Поэтому расплавы высокомолекулярных веществ называют также вязкоупругими жидкостями. Вязкоупругие свойства отчетливо обнаруживаются только в определенном температурном интервале в непосредственной близости от температуры размягчения полимеры являются настолько жесткими, что для их деформирования требуются значительные усилия и восстановление протекает весьма медленно. Значительно выше температуры размягчения расплав легко деформируется, но на упругое восстановление накладывается течение вследствие усиления макроброуновского движения. Область [c.37]

    Макромолекулы В. п. должны иметь линейную или слаборазветвлен-ную форму. Полимеры с сетчатой (сшитой) структурой непригодны Д.ПЯ получения волокон, т. к. они пе могут быть переведены в расплав или р-р. Наличие в макромолекулах больших разветвлений снижает возможность межмолекулярных взаимодействий (уменьшается фактор к, см. ур-ние) и одновременно затрудняет ориентацию макромолекул при формовании и пластифи-кационном вытягивании волокна это снижает прочность волоквд при растяжении и увеличивает нежелательные пластич. деформации. Поэтому, напр., из класса полиолефинов для формования волокон пригодны только стереорегулярные практически перазветвленные полимеры (напр., изотактич. полипропилен). [c.254]

    Рассмотрим последовательность изменений, происходящих на уровне НМС при получении, например, волокон из аморфнокристаллических полимеров. Исключая малоисследованную, но существенную стадию перевода полимера в раствор или расплав и его роль в создании первичной аморфнокристаллнческой НМС, рассмотрим процесс отверждения волокна при формовании его из расплава. Как правило, кристаллизация волокна происходит после остывания расплава после выхода его из отверстий фильеры в шахгу. В зависимости от степени фильерной вытяжки, температурных условий охлаждения и некоторых других параметров отвердевшее волокно содержит некоторую объемную долю сферолитов определенного размера. Размеры этих сферолитов зависят от температурно-скоростного режима формования и лежат в пределах от долей до 10 мк. При дальнейшем ориентационном вытягивании волокна (режим которого зависит от механических свойств отдельных сферолитов в системе) происходит деформация этих сферолитов и переход к ориентированной НМС. Малый радиус сферолитов в получаемых системах крайне затрудняет [c.7]


Смотреть страницы где упоминается термин Деформация расплава полимера: [c.304]    [c.367]    [c.103]    [c.599]    [c.139]    [c.257]    [c.137]    [c.318]    [c.175]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Деформации полимера

Расплавы полимеров

Расплавы полимеров полимеров



© 2024 chem21.info Реклама на сайте