Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеры конформационные, устойчивост

    Особенно заметно различие в стабильности молекулярных ионов и вероятности протекания некоторых специфических процессов, распада у стереоизомеров алициклического ряда. Причем увеличение конформационной устойчивости изомера всегда коррелируется со стабильностью его молекулярного иона. . [c.132]

    В задачу статической стереохимии входит выяснение устойчивости конформационнЫх и конфигурационных состояний циклических систем, рассмотрение характерных особенностей их пространственного строения, выяснение влияния пространственного расположения заместителей на свойства молекулы в целом. Особенно большое значение для стереохимии циклических углеводородов имеет определение термодинамической устойчивости отдельных пространственных изомеров, так как из всех физикохимических показателей равновесная концентрация стереоизомеров наиболее тесно и однозначно связана с пространственным строением этих соединений. [c.7]


    Успехи в области конформационного анализа, надежные данные по энергиям, характерным для различных поворотных изомеров бутана, а также рассмотренные в настоящей работе многочисленные сведения о термодинамической устойчивости углеводородов различного строения позволили наметить конкретные пути для априорного расчета термодинамической устойчивости насыщен- [c.134]

    Устойчивой структурой, отвечающей минимуму ППЭ, является заторможенная конформация I, которая трехкратно вырождена. Конформационные переходы между вырожденными изомерами (то-померами) 1а 1б 1в связаны с прохождением через неустойчивые заслоненные конформации II (группа симметрии служащие [c.456]

    Расчетно-теоретическим способом можно получить многие химические и физические характеристики молекул, включая конформацион-ные свойства, барьеры внутреннего вращения, относительные устойчивости различных изомеров или же различных электронных состояний. Можно рассчитать также некоторые константы, относящиеся к электронным и колебательным спектрам, а также другие параметры. Мы рассмотрим только одну из возможных характеристик молекул-ее равновесную геометрию. На сегодняшний день высококачественные расчеты геометрического строения молекул, состоящих из относительно легких атомов, обладают такой же достоверностью, как и наилучшие экспериментальные данные. Однако следует иметь в виду, что расчеты дают нам равновесную геометрию, в то время как различные экспериментальные методы приводят к некоторой эффективной геометрии молекулы, усредненной по внутримолекулярным колебаниям. В зависимости от величины этих колебаний и от их влияния на строение молекулы равновесная и усредненная структуры могут различаться в разной степени. Результаты расчетов становятся менее достоверными, [c.308]

    Конформационный анализ), когда устойчивым конформациям соответствуют разные по глубине минимумы потенциальной энергии, т. е. возникают различающиеся по форме и св-вам поворотные изомеры (конформеры). В частности, у молекул типа 1,2-дизамещенных этана имеются три стабильных конформации-одна транс- (или анти-) и две гош-конформации (см. рис. 2). Относит, стабильность поворотных изомеров определяется разностью их энергий АЕ, т. е. разностью значений энергии в минимумах потенциальной кривой. Напр., транс-изомер 1,2-дихлорэтана более устойчив, чем гош-изомер, т.к. его энергия (в газовой фазе) ниже на 5,6 кДж/моль. При достаточно низких потенциальных барьерах (неск. десятков кДж/моль) поворотные изомеры находятся в термодинамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Для барьеров порядка 10 к Дж/моль время жизни конформеров составляет 10 °с. При высоких значениях Уд (выше 100 к Дж/моль), когда В. а отсутствует, конформеры даже при малой разности их энергий могут существовать как индивидуальные в-ва. В. в. молекул возможно в газовой и жиДкой фазах, параметры К(ф) зависят от характера среды и электронного состояния молекулы. В кристаллах В. в., как правило, отсутствует и стабилен лишь один конформер иногда существуют твердые фазы (напр., у некоторых фреонов), в которых стабильны разные конформеры и между ними осуществляются переходы. [c.392]


    Напротив, пиранозный цикл, подобно циклогексановому кольцу, способен существовать лишь в виде нескольких конформационных изомеров с различной устойчивостью, анализ которых может дать, так же как н анализ алициклических производных, ценные сведения о реакционной способности отдельных атомов и групп, а также о сравнительной устойчивости той или другой конфигурации. Поскольку пиранозная форма является той формой, в которой преимущественно находятся все моносахариды как в твердом состоянии, так и в растворе (стр. 48), то конформационный анализ этих форм. моносахаридов представляет как раз наибольший интерес. [c.50]

    Таким образом, эта конформация свободна не только от углового, но также и от торсионного напряжения. Она имеет минимальный запас энергии и поэтому является конформационным изомером. Форма кресла — наиболее устойчивая конформация для циклогексана и почти всех его производных. [c.275]

    У атомов С-1 и С-4 остается лишь одна связь, не участвующая в образовании цикла.,О заместителях, находящихся в этих положениях, принято говорить, что они стоят у узловых атомов или в голове мостика . У атомов 2, 3, 5 и 6 имеются по две внециклических валентности, резко отличающихся по своей пространственной ориентации их называют экзо- и 5н<9о-положениями. Первые напоминают экваториальные положения в циклогексане, вторые — аксиальные положения эн5о-экзо-Формы замещенных бицикло[2,2,1]геп-тана являются реально существующими устойчивыми пространственными изомерами. Этим они резко отличаются от а-и е-форм монозамещенных циклогексанов, где разница лишь конформационная, т. е. обе формы легко могут переходить друг в друга, находятся в равновесии. Внециклические валентности мостикового атома углерода отличаются по своей пространственной ориентации от всех других. Группы, стоящие у атома С-7, называют иногда я-заместителями. [c.386]

    Уравнение (4.32) качественно правильно предсказывает большую устойчивость более полярного изомера в более полярной среде. Однако выполненные с помощью этого уравнения количественные расчеты влияния растворителей на конформационное равновесие приводят к результатам, существенно завышенным по сравнению с экспериментальными данными [182]. Оче- [c.173]

    Тем не менее к решению этого вопроса удалось подойти [37], разрабатывая идеи, изложенные в гл. 3. Влияние конформационной изомерии и колебаний молекул может быть сведено к минимуму при использовании теплот образования, рассчитанных для абсолютного нуля. При 0°К все молекулы должны находиться в наиболее устойчивых конформациях и не имеют избыточной кинетической энергии. Такое положение, конечно, все еще нельзя назвать идеальным, поскольку приведение опытных данных к 0°К сопряжено с неточностями и молекулы все же обладают остаточной энергией колебания и вращения даже при 0°К. Затруднений, вызванных взаимодействиями между несвязанными атомами, можно избежать, используя данные для молекул, в которых такие взаимодействия невелики или совсем отсутствуют. Эти условия были созданы при расчетах, описанных в гл. 3, в результате которых были найдены длины связей, приведенные в табл. 3. Одним из допущений, введенных в эти расчеты, было предположение о наличии в связях атома углерода определенного соотношения между энергией и длиной связи. Математическое выражение для этого [c.75]

    Правило Ауверса — Скита. — Луверс (1925) и Скита (1925) обнаружили зависимость между физическими свойствами веществ, которую они сформулировали в виде правила, позволяющего предсказывать направление гидрирования в кислой и основной среде. Выраженное в терминах конформационной устойчивости (а не цис-транс-взаимоотношений) и безотносительно к способу образования, правило Ауверса—Скита гласит, что из пары циклических цис-транс-изомеров тот, который имеет меньший показатель преломления и меньшую плотность (а часто и более низкую температуру кипения), обладает большей конформационной устойчивостью (Келли, 1957). Приведенные в табл. 8 данные о дкметилциклогексанах показывают, что во всех случаях более устойчивый диэкваториальный изомер имеет более низкие константы. [c.54]

    Изомеризация углеродного скелета. Простейщим примером такого рода может служить превращение и-бутана в изобутан или л -ксилола в и-ксилол. Частным случаем изомеризации углеродного скелета является кольчато-цепная изомеризация, например пропилена в циклопропан или метилциклопентана в циклогексан. Изомеризация бутена-1 в г/мс-бутен-2 может служить примером изомеризации положения двойной связи между атомами углерода. Превращение г/мс-бутена-2 в /ярднс-бутен-2 иллюстрирует пример геометрической (пространственной или конфигурационной) изомеризации. К этому типу изомеризации можно отнести превращение г/мс-1,2-диметилциклопентана в транс-, 2-диметилциклопентан. Одним из случаев пространственной изомерии является наличие стереоизомеров, называемых также оптическими, т. е. по-разному вращающих плоскость поляризованного света, например 3-ме-тилгексан. Даже н-алканы, строение молекул которых не является линейным, а зигзагообразным (рис. 118П), могут существовать также в виде поворотных (конфор-мационных) изомеров. Конформационная изомеризация происходит в результате вращения в молекуле атомов (групп атомов) вокруг простых (ординарных С С-связей). Так, например, н-бутан имеет 4 конформационных изомера, из которых энергетически наиболее устойчивой является трансоидная форма. [c.857]


    Таким образом, в углеводородах ряда циклогексана термодинамическая устойчивость стереоизомеров будет зависеть от числа аксиально ориентированных заместителей, подобно тому как в углеводородах ряда циклопентана устойчивость связана с числом г ис-вицинальных взаимодействий. Энергия перехода аксиально ориентированного метильного радикала в экваториально ориентированный, равная 1800 кал1молъ, определяет, что в равновесии в системе е нри комнатной температуре будет находиться около 95% метилциклогексана с экваториальной ориентацией метильного радикала (см. рис. 9). При двух заместителях, например, в диметил-циклогексанах, количество диаксиальных изомеров будет еще меньшим и конформационное равновесие в системе аа ее практически [c.28]

    С точки зрения энтальпии (АН°) более устойчивой (приблизительно на 700—800 кал моль) должна быть трансоидная конформация. Однако энтропийные показатели A.S°T) более благоприятны для скошенных конформаций. Так, в бутане скошенная форма существует в виде двух конформаций (ф1 и ф ), являющихся зеркальными изомерами (конформационными энантиомерами). Следовательно, исходя из общих положений конформационного анализа, энтропия смешения этих конформеров должна быть больше энтропии трансоидной конформации на величину 1,4 э. е. или на 400 кал моль для 300° К. Отсюда разница в конформационной свободной энергии трансоидной и скошенной конформаций н.бутана составляет всего 300—400 кал моль . (По предложению Илиела, избыток свободной энергии данной конформации по отношению к конформации, обладающей минимальной свободной энергией, в да.льнейшем определяется как конформационная свободная энергия .) Таким образом, уже при комнатной температуре около трети всех молекул н. бутана будет находиться в скошенных конформациях. [c.11]

    Следует заметить, что для сахаров в циклической форме возможен еще один вид изомерии — конформационная изомерия, связанная с расположением в пространстве углеродных атомов шестичленного кольца. Пиранозный цикл, подобно циклогексановому (стр. 366), способен существовать в виде нескольких конформационных изомеров с различной устойчивостью. От циклогексанового он отличается несимметричностью, обусловленной присутствием в цикле кислородного атома, что увеличивает число возможных конформационных изомеров. В то время как для циклогексанового кольца возможно всего два конформационных изомера — кресловидный и ваннообразный — пиранозное кольцо может существовать в виде восьми ненапряженных конформаций, две из которых кресловидные и шесть ваннообразные. Эти шесть ваннообразных конформаций энергетически менее выгодны и их существование можно не учитывать. Две более устойчивые креслообразные конформации получаются при такой конверсии пиранозного цикла, в результате которой все аксиальные заместители становятся экваториальными и наоборот (1С и С1). [c.295]

    Однако даже величины, полученные при перегруппировке симметричны.х гликолей, следует использовать с осторожностью, поскольку конфигурация гликолей мезо или d,l) не уточнена. Важность конфигурационных и конформационных факторов видна на примере семипинаколиновой перегруппировки при дезаминировании диастереомерных аминоспиртов 6.62 трео) и 6.63 эритро). Под действием азотистой кислоты г/зео-изомер дезаминируется с миграцией п-анизильной группы и превращается в кетон 6.64. В тех же условиях эрытро-изомер превращается в кетон 6.65, потому что к карбониевому центру мигрирует исключительно фенильная группа, хотя миграционная способность п-анизильной группы должна быть больше ([1050] см. также [367, 364, 365]). Это может быть объяснено различием конформаций реагирующих частиц [91, 1059], что показано на рис. 6.10. Учитывая размер групп и возможность образования водородной связи между соседними группами ОН и NH2, можно предположить, что устойчивость возможных для 6.62 конформаций изменяется в последовательности а>в>б. Если перегруппировка и разрушение образовавшегося иона 6.66 происходят быстрее, чем вращение вокруг центральной связи С—С, то будет преобладать миграция п-анизильной группы. В случае эритро-изомера наиболее устойчивым конформером является б.бЗв, и в соответствующем ему карбониевом ионе 6.67в фенильная группа находится в благоприятном для миграции транс-положении. Наблюдаемая прн дезаминировании диастереомерных 1-амино-1-фенил-2-арил-пропанолов-2 фактически независимость пространственного про- [c.253]

    Вместе с тем, если для реакции 1,2-цис—>-1,2-транс характерно выделение тепла и высокая константа равновесия, то для аналогичной реакции 1,3-диалкилзамещенных — поглощение тепла и низкая константа равновесия. Соответственно в равновесных смесях 1,2-диалкилзамещенных будет больше трансизомера, а в смесях 1,3-диалкилзамещенных — цис-изомера. Различная термодинамическая устойчивость транс- и цис-изо-меров в зависимости от расстояния между алкильными заместителями объясняется с позиций конформационного анализа высокой устойчивостью только таких структур, в которых минимально отталкивающее взаимодействие несвязанных атомов. Ясно, что такое взаимодействие будет весьма значительным для 1,2-цис-, но не для 1,3-цис-структур. Расчеты показывают, что в 1,2-диметилциклопентанах содержание цис-изомера составляет только 5%, в то время как для 1,3-диметилзамещен-ных —уже 62%. Отметим сразу, что с позиций конформационного анализа трудно объяснить большую термодинамическую устойчивость 1,3-цис по сравнению с 1,3-транс-изонерами. В экспериментальных исследованиях достигаемое соотношение этих изомеров близко к единице [35, 36], вследствие чего нет уверенности в точном определении термодинамических параметров [c.196]

    Из этих изомеров соединения и III должны обладать приблизительно одинаковой устойчивостью. Изомер II значительно менее устойчив благодаря 1,3-диаксиальному взаимодействию метильных радикалов. г ис-2,4-Диметиладамантаны имеют некоторую аналогию с г ис-1,3-диметилциклогексаном, который существует в виде двух конформаций (ее и аа). Однако в случае диметил-адамантанов из-за невозможности инверсии колец конформацион-ные изомеры становятся уже изомерами конфигурационными. [c.76]

    В общем виде изменение энтропии в реакциях изомеризации суммируется 1) за счет изменения числа симметрии (б) молекул (число симметрии а равно числу эквивалентных пространственных ориентаций, которые может занимать молекула в результате простого вращения изменение энтропии численно выражается как —Д1пз) 2) из вклада, вносимого появлением -форм (рацематов или диастереомеров). При этом мезоформы имеют нулевой вклад а вклад -формы выражается значением Л1п2 и равен 1,38 э. е. 3) для углеводородов, имеющих гексаметиленовые кольца, обла-дающиеконформационной подвижностью, учитывается также вклад, возникающий от смешения двух неидентичных конформационных изомеров (например, ее ааж т. д. ). Расчет энергии этого вклада выполняется из соотношения—В(х 1п х- - у 1пу), где х ш у — молярные доли конформеров в равновесии при исследуемой температуре. Равновесие конформеров приближенно определяется на основании числа скошенных бутановых взаимодействий, характерных для каждой из конформаций. Обычно этот вклад невелик, так как чаще всего в конформационном равновесии значительно преобладает один устойчивый конформер. [c.139]

    Все монозамещениые циклогексаны находятся преимущественно в экваториальной форме, У двузамещенньгх 1,2 —производных циклогексана, транс-изомер может находиться в двух формах е,е и а,а. Форма е,е более устойчива, У полизамещенных циклопарафиновых углеводородов конформационная изомерия еще более сложная, В связи с таким разнообразием форм изомерии число возможных изомеров циклопарафиновых углеводородов резко возрастает с увеличением молекулярной массы, [c.61]

    Говоря об устойчивых (или неустойчивых) конформациях в конфор-мационном анализе, имеют в виот относительную термодинамическую устойчивость, определяемую значениями конформационной свободной энергии /103/, В условиях равновесии в алкаке существует бесчисленное множество конформаций. Однако основное конформационное состояние молекул определяется стереохимическими особенностями лшяь некоторых, термодинамически наиболее устойчивых поворотных изомеров /102/, Если конформационную свободную энергию определять только значением энтальпии конформационного перехода АН, пол .-гая изменение энтропии равным нулю, то наиболее устойчивой будет трансоидная конформация. Образование скошенных форм может оказаться предпочтительней только вследствие изменения энтропии. При повышении температуры и удлинении молекулы роль энтропийного фактора растет, В наших расчетах свободная энергия конформеров определялась как разность энергии данной конформации и полностью трак-соидной. [c.147]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    В примерах (1) —(3) существует равновесие между диастереомерами . примеры (4)—(6) иллюстрируют аиомерный эффект ei конформацион-но подвижных системах. Во всех случаях, иаиболее устойчивый изомер написан справа.  [c.94]

    КОНФОРМАЦИОННЫЙ АНАЛИЗ, раздел стереохимии, изучающий конформации молекул, их взаимопревращения и зависимость физ. и хим. св-в от конформац. характеристик. Конформации молекулы-разл. пространств, формы молекулы, возникающие при изменении относит, ориентации отдельных ее частей в результате внутр. вращения атомов или групп атомов вокруг простых связей, изгиба связей и др. Каждой определенной конформации соответствует определенная энергия. При рассмотрении пов-сти потенц. энергии основного состояния молекулы как ф-ции координат атомных ядер возможно существование одного, двух и более энергетич. ми1Шмумов. Б этом случае имеются соотв. одна, две и более устойчивые конформации (в общем случае различающиеся по своей энергии), разделенные потенц. барьером (барьерами). Множество конформаций, находящихся в окрестности энергетич. минимума с энергией ниже соответствующего потенц. барьера, представляет собой конформер. Обычно понятие конформера отождествляют с конформацией, имеющей миним. энергию. Явление существования разл. конформеров наз. конформац. изомерией. Любой переход между двумя конформациями, осу- [c.457]

    Две креслообразные конформации более устойчивы. В незамещенном или симметрично замещенном циклогексановом кольце, они соответствуют вполне идентичным конформациям, полученным при конверсии этого кольца, наоборот, в замещенном пиранозном цикле креслообразные конформации обычно достаточно четко различаются по запасу внутренней энергии следовательно, моносахарид обычно существует в одной из дву.х креслообразных форм. Эти две конформации (1 или С1) являются изомерами, получающимися при конверсии пиранозного цикла, в результате которой все аксиальные заместители становятся экватори-альнььми и наоборот. Отсюда достаточно ясно, что предпочтительность той или иной конформации (1 или I) определяется имеющимися в пиранозном кольце заместителями и их пространственным расположением, т. е. другими словами, строением и конфигурацией моносахарида. В то же время, выяснив конфор.мацию того или иного производного моносахарида, мы можем, наоборот, используя законы конформационного анализа, сделать заключение о его стереохимии. [c.51]

    Естественно, что условия устойчивости того или иного конформационного изомера данного моносахарида существенно меняются для его производных, у которых имеется ряд дополнительных с."руктурных особенностей наиболее существенно в этом отношении влияние дополнительных конденсированных циклов, которые имеются в ангидросахарах и а-окисях, в изопропилиденовых и бензилиденовых производных, в циклических карбонатах и т. д. Конформационные соотношения в таких производных еще в значительной мере остаются непроанализированными из-за очевидной сложности вопроса. [c.53]

    Выше мы полагали, что скорости конкурирующих реакций — миграции анизиль-иой группы и миграции фенильной группы — определяются относительным содержанием двух конформационных изомеров. Это допущение справедливо, если, как в данном случае, миграция осуществляется относительно легко и происходит быстрее, чем взаимопревращение двух конформаций карбониевого иоиа. Однако еслн миграция осуществляется с трудом и происходит медленнее, чем взаимопревращение конформаций, то тогда относительные скорости реакций будут определяться относительной устойчивостью двух переходных состояний. И в этом случае мы получим тот же результат. Это справедливо и в общем случае, поскольку те же структурные факторы, которые определяют предпочтительность одной конформации по сравнению с другой, определяют предпочтительность переходного состояния, соответствующего одной из конформации, по сравнению с переходным состоянием, соответствующим другой конформации (ср. разд. 4.32 и 7.8). [c.840]

    Гибкие циклические системы стремятся принять конформацию с минимальной энергией, в которой сумма всех классических компонентов энергии напряжения (напряжение деформации связей, торсионное напряжение, напряжение, обусловленное невалентными взаимодействиями и взаимодействием электронов) мпнимизована для всех валентных углов и межатомных расстояний (см. разд. 2.1.7.) Для шестичленных насыщенных циклических соединений жесткая кресловидная конформация соответствует наиболее устойчивому конформационному изомеру например, циклогексану соответствует конформация кресла (22), обладающая симметрией Оз  [c.43]

    Пространственная структура гомологов метана определяется возможностью свободного вращения фрагментов их молекул, соединенных простыми связями, вокруг этих связей. При таком вращении молекула приобретает определенную геометрию (конформацию). Конформации одного соединения различаются степенью поворота фрагментов молекулы относительно одной или нескольких а-связей. Например, при повороте метильных групп относительно С-С-связи молекула этана может принимать бесконечное число конформаций. Эти конформации различаются по устойчивости. Устойчивые конформации называют конфдрмерами. Конформеры являются конформационными изомерами. В отличие от структурных изомеров они имеют одинаковые структурные формулы, но различаются степенью поворота фрагментов молекулы относительно одной или нескольких а-связей. [c.141]

    С появлением конформационного анализа стало возможным истолковать многие из результатов по изучению равновесий с точки зрения относительной термодинамической устойчивости геометрических и структурных изомеров природных соединений, содержащих эпимеризуемые центры. Основной принцип метода может быть сформулирован следуюш им образом наименьшей энергией основного состояния будет обладать лишь та конфигурация и конформация, в которой заслоняюш ий эффект и другие неблагоприятные несвязанные взаимодействия минимальны. Следовательно, основное звено проблемы — выбор конфигурации, удовлетворяющей этому условию. При отсутствии экспериментальных данных выводить ймпирически порядок относительной устойчивости изомеров довольно рискованно. Тем не менее во многих случаях, когда нет оснований опасаться осложнений, изучение равновесной изомеризации может явиться очень надежным, а иногда и самым удобным методом установления стереохимии. [c.668]


Смотреть страницы где упоминается термин Изомеры конформационные, устойчивост: [c.472]    [c.344]    [c.364]    [c.80]    [c.55]    [c.486]    [c.486]    [c.38]    [c.37]    [c.444]    [c.432]    [c.87]    [c.890]    [c.274]   
Современные теоретические основы органической химии (1978) -- [ c.104 ]

Современные теоретические основы органической химии (1978) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Изомерия конформационная

Конформационные

Конформационные изомеры устойчивость

Конформационные изомеры устойчивость



© 2025 chem21.info Реклама на сайте