Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Схемы для разделения газовой смеси

    Промежуточный подогрев реакционной смеси осуществляется в змеевиках следующих секций печи 7. Продукты реакции по выходе из реактора 4 снизу проходят систему регенерации тепла (теплообменник 6 и водяной холодильник 8). В отличие от обычных схем разделение жидкой и газовой фаз происходит в газосепараторе 9 низкого давления (1 МПа). Газ из аппарата 9 компримируется компрессором 15 до давления 1,5 МПа, смешивается с жидкой фазой, подаваемой насосом 11, смесь охлаждается в холодильнике/5 и разделяется в газосепараторе высокого давления 12. Такая последовательность сепарации, вызванная низким давлением в реакционной зоне, уменьшает унос бензина с водородсодержащим газом и повышает содержание в газе водорода. [c.42]


    Известны различные схемы абсорбции и десорбции газов. В одних случаях производят десорбцию газа из растворителя в отдельном десорбере, как это описано выше. В других случаях растворитель, насыщенный хорошо растворимыми компонентами, направляется не в десорбер, а непосредственно в ректификационную колонну, где выделяемая из растворителя газовая смесь и подвергается разделению. [c.299]

    Существуют различные технологические схемы окисления углеводородов С3-С4 в газовой фазе. Сущность процесса окисления сводится к следующему. Предварительно проводится смешивание воздуха или кислорода с окисляемыми углеводородами или их смесью и затем добавляют рециркулирующий газ. Смесь нагревают до температуры 350-370 °С при давлении 0,7-1,0 МПа и направляют в реактор, представляющий длинную трубу из малоуглеродистой стали. За счет экзотермического эффекта температура в реакционной зоне повышается до 425-455 °С, что является оптимальным для получения кислородсодержащих продуктов. Из реактора газовая смесь поступает на закалку и далее в систему разделения и очистки. [c.360]

    При разделении смесей, компоненты которых близки по молекулярной массе, процесс сепарации проводят в несколько ступеней, выделяя каждый раз тяжелую или легкую фракцию и затем повторяя процесс в следующей ступени сепарации. На рис. 64 приведена схема многоступенчатой сепарации с выделением тяжелых и легких компонентов, Газовая смесь компрессором 7 подается в базовый сепаратор 2, где разделяется на тяжелую и легкую фракции. Легкая фракция поступает в секцию обогащения легким компонентом, состоящую из компрессоров 1 и сепараторов За...7а. В каждый из сепараторов 4а...6а подается смесь, состоящая из тяжелой фракции, выделяемой в последующем сепараторе, и легкой фракции, полученной в предыдущем сепараторе. Легкий компонент выводится из сепаратора 7а, а обогащенная тяжелым компонентом фракция из сепаратора За поступает на смешение с исходным газом. Тяжелая фракция из базового сепаратора 2 подается в секцию обогащения тяжелым компонентом, состоящую из компрессоров 1 и сепараторов 36...76. В каждый из сепараторов 46...66 подается смесь тяжелой фракции, выделенной в предыдущем сепараторе, и легкой фракции, полученной в последующем. Тяжелый компонент выводится из сепаратора 76, а обогащенная легким компонентом фракция из сепаратора 36 поступает на смешение с исходным газом. [c.167]


    Типичная схема адсорбционной установки с подобным адсорбентом показана на рис. 172. Установка состоит из вертикальной колонны, разделенной перегородками на несколько зон, транспортных трубопроводов и теплообменников. Работает она следующим образом. Исходная газовая смесь подается под распределительную решетку 3, пройдя которую, она поднимается вверх в опускающемся слое зернистого материала в зоне I. Здесь адсорбируются тяжелые компоненты газовой смеси, а легкая фракция удаляется из верхней части зоны /. Адсорбент, поглотивший тяжелую фракцию, опускается вниз, проходит промежуточную зону II [c.201]

    Прямоточная конденсация. На рис. 14, а показана схема прямоточного конденсатора. При частичной прямоточной конденсации разделяемая смесь и образующийся конденсат движутся по трубкам конденсатора в одном направлении. При прямоточной конденсации пар во всех сечениях разделительного аппарата находится в равновесии со стекающей жидкостью. Самая низкая температура, одинаковая для пара и конденсата, будет в нижней части аппарата, где обе фазы (пар и жидкость) также будут находиться в равновесии. В процессе прямоточной конденсации вся образовавшаяся жидкость охлаждается до наинизшей температуры процесса, что позволяет получить в ней максимальное количество низкокипящего компонента, которое достижимо при конденсации. В остаточном газе в этом случае будет находиться максимально возможное количество наименее летучего компонента. Расчет процесса разделения газовой смеси при прямоточной конденсации может быть произведен достаточно точно с использованием констант фазового равновесия К, которые устанавливают распределение отдельных компонентов между паровой и жидкой фазами. Эта методика расчета строится из предположения, что при прямоточной конденсации процесс приближается к процессу однократной конденсации, если для любого сечения конденсатора принять наличие равновесия между образующимся конденсатом и находящимся в этом сечении паром. [c.38]

    Принципиальная схема абсорбера, работающего по разомкнутой схеме, показана на рис. 16. Исходная газовая смесь поступает в низ абсорбера, а сверху противотоком подается чистый абсорбент. По мере движения газовой смеси вверх в ней уменьшается содержание извлекаемых компонентов вследствие растворения их в абсорбенте. В результате разделения из верхней части аппарата отводится газовая смесь, свободная от компонентов, подлежащих извлечению, а из куба выводится абсорбент, насыщенный извлекаемыми примесями. [c.48]

    Газовая смесь, очищенная от МНз и Н2О, поступает при давлении приблизительно 4,5 МПа в теплообменник 1, где охлаждается выходящими из установки продуктами разделения до 85 К и частично конденсируется. Образовавшийся конденсат, состоящий из компонентов с более высокой температурой кипения (азота, аргона и метана), отделяется в сепараторе 2 и направляется на разделение в колонну 18. Отводимая из сепаратора газовая фаза направляется на дополнительную очистку в промывную колонну 3, где промывается жидким метаном. В результате промывки поток, уходящий из верхней части колонны, содержит кроме водорода, гелия и незначительного количества неона около 1 % метана. Во избежание выпадения метана в твердом виде в аппаратах, где осуществляется разделение этой смеси, он удаляется в низкотемпературных адсорберах 4. Далее этот поток, очищенный от метана, охлаждается в теплообменнике 5 до 85 К испаряющимся жидким азотом. Дальнейшее охлаждение этой смеси и ее обогащение гелием производятся в узле разделения смеси Н2 — Не, принципы построения которого во многом повторяют те, которые использованы в аналогичном узле схемы, показанной на рис. 63. [c.182]

    В одних опытах газовая смесь направлялась в камеру, где имелась пластинка из пористого стекла и наблюдалось разделение смеси при прохождении ее через пластинку. В других опытах газовая смесь двигалась по трубке в соответствии со схемой, представленной на рис. 67. Трубки из пористого стекла, подвергавшиеся испытанию, имели длину 120—200 лш и диаметр 7—15 мм при толщине стенок 0,4—0,8 мм. [c.145]

    Схема установки представлена, на рис. 277. Газовая смесь, богатая водородом, под давлением 10—26 ат, предварительно очищенная от углекислого газа, и азот высокого давления под давлением 200 ат поступают на предварительное охлаждение газами, выходящими из блока разделения. [c.401]

    С. В. Лебедев в своих патентах [1] описывает способ получения дивинила, как одновременную дегидратацию и дегидрогенизацию этилового спирта при повышенной температуре в присутствии особого катализатора. Катализатором, например, может служить смесь окиси алюминия (дегидратирующая составляющая) и окиси цинка (дегидрогенизирующая составляющая). Основная схема производства дивинила [2] изображена на рис. 24. Смесь свежего и оборотного этилового спирта поступает на разложение, в результате которого образуется сложная газовая смесь — контактный газ, содержащий в своем составе дивинил вместе с многочисленными побочными продуктами. Разделение контактного газа с целью извлечения дивинила осуществляется последовательно проведением процессов конденсации и абсорбции газа с последующей разгонкой насыщенного поглотителя. В результате разгонки получается продукт, называемый сырым дивинилом, который кроме дивинила содержит еще ряд примесей. Сырой дивинил передается на последнюю стадию обработки — на очистку, после чего дивинил получается в технически чистом виде (дивинил-ректификат). [c.95]


    Схема процесса приведена в упрощенном виде на рис. 67. Бутан из цистерны 1 поступает в подогреватель 2, на пути смешиваясь с оборотной бутан-бутиленовой смесью, возвращаемой из экстракционного устройства. Из подогревателя смесь идет в контактную батарею (6 реакторов 3—8) минимальное число реакторов в батарее может быть равным 3. После прохождения над катализатором газовая смесь охлаждается в башне 11, где она проходит через столб распыляемого масла, затем дважды сжимается в аппарате 15 и попадает на установку для отделения фракции С4 (скруббер 12 и отгонная колонна 13). Фракция С далее подвергается разделению в экстракционном устройстве 14. Здесь получается оборотная бутан-бутиленовая смесь, которая снова возвращается на конверсию, и дивинил. [c.217]

    Разделение газовых смесей фракционированием требует присутствия жидкой фазы. Самый летучий из углеводородов, метан, имеет температуру кипения —168°. Чтобы избежать применения столь низкой температуры, можно вести фракционирование под давлением. Однако при этом температура не должна быть выше критической. Понятно, что здесь возникает большое число вариантов в зависимости от замены холода давлением. Тем не менее, все эти варианты будут иметь некоторую общую основу в схеме своего выполнения. Разделяемая газовая смесь.под тем или иным давлением и при определенной соответствующей температуре конденсируется. Можно конденсировать все тяжелые составные части, начиная от Сг и кончая Сз, тогда метан и водород остаются в газовой фазе. Можно вести конденсацию и как дробный процесс, получая, допустим, две фракции тяжелую (углеводороды Сб и С4) и легкую (углеводороды Сз и Сг). Затем конденсат ли его отдельные фракции разделяются ректификацией. [c.63]

    Газовая хроматография — наиболее разработанный в аппаратурном оформлении хроматографический метод. Прибор для газохроматографического разделения и получения хроматограммы называется газовым хроматографом. Принципиальная схема газового хроматографа приведена на рис. 5. Газ-носитель из баллона 1 непрерывно в течение всего опыта пропускается через всю систему дозатор, колонку, детектор, измеритель скорости. Дозатор 2 служит для ввода в хроматографическую колонку 3 газообразной, жидкой или твердой пробы анализируемой смеси. В двух последних случаях смесь одновременно должна быть испарена. [c.14]

    Для проведения структурного анализа нужно иметь индивидуальное соединение, так как в большинстве случаев спектроскопическим путем нельзя отличить смесь веществ от чистого соединения. Индивидуальность исследуемого образца гарантируется подходящими методами разделения, особенно газовой хроматографией. Однако в случае очень близких по свойствам изомеров родственных соединений иногда и эти методы оказываются несостоятельными. Наиболее сильные полосы поглощения в регистрируемом спектре должны быть выписаны полностью. Расшифровка спектров осуществляется тем легче и однозначнее, чем больше имеется дополнительной информации об анализируемом образце уже из постановки задачи (молекулярный вес, данные элементного анализа, растворимость, схема синтеза и др.). [c.240]

    Принципиальная схема газового хроматографа в самом общем виде представлена на рис. 15. Газ-носитель непрерывно продувает все части газовой схемы. Пробу анализируемого газа (если исследуемый образец — жидкость, то его с помощью специального испарительного устройства хроматографа переводят в парообразное состояние) вводят в поток с помощью устройства 2. Газ-носитель продвигает внесенную смесь через колонку 3 и детектор 4. Колонка — один нз основных частей прибора, поскольку в процессе движения в ней анализируемая смесь газов разделяется на компоненты. Разделенные компоненты образца, выходя из колонки, поступают в детектор, который обнаруживает их и выдает сигналы, обычно записываемые иа ленте регистратора 5. [c.61]

    Упрощенная схема этого процесса изображена на рис. 87. Па-ро-газовую смесь исходных веществ подогревают в теплообменнике I горячими реакционными газами и подают в реактор 2. Выходящая из него смесь последовательно охлаждается в теплообменнике 1 и системе водяных и рассольных холодильников 3, где конденсируются все жидкие вещества. Иепрореагировавший ацетилен возвращают на приготовление исходной смеси, а жидкость направляют на разделение в систему ректификационных колонн 5, где отгоняются легкая фракция, винилацетат, уксусная кислота (возвращаемая на синтез) и этилидендиацетат. Тяжелый остаток идет на сжигание. [c.300]

    Технологическая схема синтеза углеводородов при атмосферном давлении в газовой фазе представлена на рис. 7.1. Очищенный синтез-газ нагревается в подогревателе (2) и поступает в реактор (1). После реактора парогазовая смесь охлаждается в оросительном холодильнике 4 оборотной водой. При охлаждении выделяется конденсатное масло, которое в смеси с водой выводится снизу холодильника. После отделения масла газовая смесь проходит установку адсорбции (5), где активным углем извлекают газовый бензин и газоль (смесь углеводородов СрСе с небольшим количеством СО, СОз, NS, Нг). Адсорбер периодически продувается паром получаемым с сепараторе (3). Парогазовая смесь направляется на разделение. Синтез-газ после адсорбера (5) проходит подогреватель (6) и поступает в реактор второй ступени (7). Далее процесс аналогичен первой ступени. [c.108]

    Жидкие продукты из сепаратора высокого давления 5 дросселируются в сепаратор среднего даапения 7, из которого в виде газовой фазы отбираются легкие углеводороды 1- 4, а также сероводород и аммиак. Эта газовая смесь очищается от сероводорода в абсорбере моноэтаноламином (на схеме не показано) и направляется на установку разделения углеводородных газов на сухой газ (С1-С2) и сжиженный газ — углеводороды С3-С4. [c.282]

    Производительность колонны разделения определяется максимально допустимыми нагрузками по газу на единицу сечения колонны, при которых газовый поток еще г е разрыхляет (взвешивает) слои адсорбента. При разделении газовых смесей нагрузка будет наибольшей "в адсорбционной секции колонны. Особенно велика нагрузка адсорбционной секции колонны по сравнению с нагрузкой ректи-фикагщонных секций в тех случаях, когда разделяемая смесь содержит большое количество легких компонентов. Для повышения производительности колонны в ней устанавливают несколько питающих тарелок, имеющих каждая свою адсорбционную секцию, где осуществляется противоточный контакт газа со свежим адсорбентом. Это достигается 1шдивидуальной подачей адсорбента в верхнюю часть каждой секции и регулированием соответствующего отбора в основании каждой секции с помощью специального распределителя. Схема колонны с двумя питаюпшми тарелками предста ена на рис. 368. [c.535]

    В [233] предложено несколько схем очистки абгазов от ВХ. Н< рис. 5.6 приведена одна из таких схем, согласно которой получаете соляная кислота. Абгазы обрабатываются высокотемпературным топочными газами в камере окисления /, откуда газовая смесь направ ляется в башню, разделенную на две части. В закалочной башне.2 происходит охлаждение горючих газов концентрированной соляной кислотой, а в скрубберной башнеЗ - абсорбция НС1 из газа водой образование 20%-й соляной кислоты. Затем газы направляются е санитарный скруббер 6, где раствором каустика поглощается свобод ный хлор. Очищенный газ выбрасывается в атмосферу. Предло.женные схемы предусматривают утилизацию тепла. [c.156]

    Регенерацию адсорбента проводят путем ступенчатой десорбции. Давление первой ступени десорбции выбирается таким, чтобы выделяющаяся из аппарата смесь имела примерно тот же состав, что и исходная газовая смесь, поступающая на очистку. Газы первой ступени десорбции могут быть присоединены к исходному потоку, и вновь подвергнуться очистке. Цель второй ступени десорбции — наиболее полное удаление поглощенного монооксида углерода — наилучшим образом будет достигнута при минимально возможном давлении на этой ступени. Процессы КБА пригодны также для очистки циркулирующего водорода риформинга (при этом 60-70 % подвергаемого очистке водорода можно получить концентрацией 99,9 % и более), для разделения углеводородных газов и для очистки газов от кислородсодержащих компонентов. Например, одна из оптимальных схем очистки водорода риформинга от примесей углеводородов ряда i-Сю (США), реализуется в двух адсорберах, в нижней части которых размещен крупнопористый силикагель, а в верхней — активированный уголь. Силикагель эффективно и обра- [c.576]

    При газожидкостной хроматографии разделение исходной газовой смеси на компоненты происходит путем растворения их в адсорбирующей жидкости, которая распределяется тонкой пленкой на поверхности твердого носителя. На рис. 3-24 представлена схема хроматографического разделения газовой смеси. Проба газа, состоящего условно из трех компонентов (I, П, 1П), перемещается с помощью инертного газа-носителя (азот, гелий, водород) через слой сорбента, находящегося в кольцевой хроматографической колонке. Сорбент находится в измельченном состоянии. Замедление движения компонентов анализируемого газа обусловлено их различной сорбируемостью. Различие в скоростях движения компонентов через некоторое время приводит к их полному разделению. Наименее сорбирующийся компонент, например П1, будет следовать первым. Из хроматографической колонки выходят последовательно газ-носитель и бинарная смесь [c.162]

    Такие значения фактора разделения не позволяют пол) ать при одноступенчатом разделении смеси, содержащие более 55 об. % кислорода или более 95 об. % азота. Воздух представляет собой единственный вид природного сырья, которое имеется в пеофаниченном количестве. Затраты на проведение процесса разделения определяются главным образом энергозатратами на сжатие исходной смеси, а степень извлечения компонента не является в данном случае ключевым параметром. Коэффициент деления потока может быть меньше 0,1, поэтому в промышленной практике получила распространение вакуумная схема обогащения воздуха кислородом. Исходная газовая смесь подается в мембранный разделитель при помопщ воздуходувки под давлением, близким к атмосферному. Пермеат откачивается вакуум-насосом. Такая схема разделения применяется для мембранных аппаратов с низким гидравлическим сопротивлением (на основе пхюских мембран). Обычная компрессионная схема ддя мембранных аппаратов на основе польк волокон также имеет особенность. Воздух на разделение подается внутрь волокон, а не в межтрубное пространство [1]. Этот вариант схемы обычно применяют для получения азота. [c.427]

    ГИПЕРСОРБЦИЯ — разделение газовых смесей методом избирательной адсорбции слоем поглотителя, движущимся навстречу газовому потоку. Схема установки с Д)зижущимся слоем твердого поглотителя для разделения газовой смеси на 3 фракции приведена на ри-с нке. Основным аппаратом установки является ] олонна 1, состоящая из адсорбционной секции 2 и расположенных под ней ректификационных секций 3. Исходная смесь поступает под распределительную тарелку 4 и поднимается вверх навстречу гранулированному поглотителю, движущемуся вниз под действием силы тяжести. Остаточный газ отводится сверху адсорбционной секции, а насыщенный поглотитель опускается в ректификационные секции, где подвергается десорбции. При повышении темп-ры выделяющиеся тяжелые компоненты поднимаются вверх в виде флегмы, вытесняя из поглотителя более легкие. В результате в ректификационной секции происходит разделение поглощенных компонентов на фракции. Подогрев на-сьаценного поглотителя производится в отнарной секции о глухим паром. [c.472]

    Технологическая схема производства тетрамера пропилена из пропан-пропиленовой фракции крекинг-газов приведена на рис. 19. Жидкая фракция Сз вместе с рециркулятом из низших полимеров насосом 1 передается под давлением в теплообменник 2, где подогревается паро-газовой смесью, выходящей из реактора. Пары сырья после добавления небольшого количества воды поступают в реактор 3 с несколькими слоями катализатора на специальных полках. В пространство между полками для отвода тепла полимеризации подают сжиженный газ из депропанизатора 4. Горячая паро-газовая смесь из реактора охлаждается в теплообменнике 2 и на-правляется на разделение. [c.76]

    Схема извлечения криптона и ксенона из воздуха. Эти газы получают как цен-ные побочные продух5ты при разделении воздуха. Цифрами обозначены 1 — основной аппарат для разделения воздуха на кислород и азот (он состоит из двух сочлененных ректификационных колонн конденсатор нижней колонны служит испарителем верхней) 2 — дополнительная колонна для отделения криптона и ксенона 3 — испаритель дополнительной колонны 4 — дефлегматор (конденсатор) дополнительной колонны 5 — испаритель, в который из колонны 3 поступает кубовая жидкость, обогащенная Кг и Хе 6 — газгольдер 7 — контактный аппарат, в котором выжигают углеводороды, 8 — абсорбер для поглощения СОд. Из последней ректификационной колонны выходит газовая смесь, в которой 50—757о криптона и ксенона [c.159]

    Из уравнения (175) видно, что разрешающая способность ИК-ана-лизатора есть величина переменная. Мешающие компоненты оказывают тем большее влияние, чем больше отношения a/ j и Q lQi-Значительная часть отечественных и зарубежных оптико-акустических газоанализаторов построена по дифференциальной. схеме. На рис. 48 и 49 изображены отечественные дифференциальные приборы. От двух источников инфракрасной радиации 5 и 7 с помощью вогнутых зеркал 4 ж 6 излучение, прямое и отраженное зеркалами, направляется в оптические каналы. Потоки радиации прерываются обтюраторами 2, которые вращаются синхронным электродвигателем 5 с частотой обычно 5—6 Гц всегда в одной и той же фазе. Канал i, заполненный газовой смесью постоянного состава, является сравнительным, канал 8 — рабочим. Потоки радиации из обоих каналов поступают в герметичные цилиндры 9 ш11 лучеприемного уст]ройства, основным узлом которого служит мерная камера 10, разделенная упругой мембраной микрофона на две половины. В цилиндрах находится газовая смесь, содержащая определяемый компонент. Под действием прерывистого излучения температура газа в цилиндрах периодически изменяется и соответственно изменяется его давление, которое преобразуется конденсаторным микрофоном в напряжение переменного тока. Чем больше разность концентраций анализируемого компонента в каналах 1 ж8, тем больше разность в колебаниях температур в лучеприемных цилиндрах и тем больше изменения давления в них. [c.110]

    Принцип противотока поясняется простой схемой, показанной на рис. ХП1.15. В качестве компактной фазы в разделительной колонке 4 применяется гранулированный, по возможности износоустойчивый адсорбент или же материал с нанесенной жидкой фазой, который подается с постоянной скоростью с нижнего конца колонки с помощью газлифта 8 в голову разделительной колонки. С помощью теплообменника 7 поддерживается желаемая рабочая температура. Собственно процесс разделения аналогичен экстракционной дистилляции. Поэтому часто для него используются обозначения и методы расчета, принятые при дистилляции. Подводимый в 5 продукт — газовая смесь, состоящая, например, из двух компонентов, — движется навстречу непрерывно падающей компактной фазе. Если бы компактная фаза поддержива- [c.388]

    Основным недостатком фракционирующего абсорбера являются 3 начительные затраты хладоагента не только на снятие тепла абсорбции,, но и на охлаждение паров, поступающих из фракционирующей части в абсорбционную. Этого недостатка лишена усовершенствованная конструкция абсорбера с разобщенными абсорбционной и фракционирующей секциями (рис. 43). В низ абсорбционной секции 1 поступает исходная газовая смесь. Несколько выше подаются жидкие виды сырья, которые одновременно являются легким абсорбентом. На верхнюю тарелку абсорбера подается тяжелый абсорбент. Температура абсорбции регулируется потоками промежуточных охлаждений. Насыщенный абсорбент с низа абсорбционной секции перетекает на верх1нюю тарелку фракционирующей секции 5. Здесь вместе с десорбцией сухого газа идет одновременно и стабилизация абсорбента. Необходимое для этих процессов тепло подводится из подогревателя 6 по обычной схеме. Пары из фракционирующей секции поступают в холодильник 7, охлаждаемый водой, и освобождаются от. конденсата в сепараторе 8. После сепаратора пары объединяются с потоком газового сырья, а конденсат — с потоком жидкого сырья. Периодически с пиза сепарато,ра выводится вода. Насыщенный абсорбент из подогревателя 6 выводится в узел разделения. [c.144]

    Компрессионный метод. Пропан, пзобутан и н-бутан иогут быть переведены из газообразного состояния в жидкое при обычной температуре путем сжатия их до давления насыщения. Из рассмотрения диаграмм состояния (см. рис. 2 3 и 4) следует, что, например, для конденсации пропана при температуре -f 20° С потребуется его сжать до 8,5 ата, изобутан — до 3,05 ата и н-бутан до 2 ата. Если газовую смесь, содержащую пропан и изобутан, сжать так, чтобы их парциальные давления достигли соответственно 8,5 и 3,05 ата, то при температуре -1-20° С эти компоненты начнут выпадать в виде жидкости. Если парциальное давление наров бутана в исходном газе велнко (жирный газ), то давление насыщения будет достигнуто при сравнительно небольшом сжатии и, следовательно, при небольшой затрате энергии. Тощий газ приходится сжимать до высоких давлений и затрачивать много энергии, поэтому компрессионный метод извлечения тяжелых углеводородов из их смеси с легкими применяется главным образом для предварительного разделения очень жирных газов с основной целью — выделение бензинов. П -этом попутно выделяются и жидкие газы. Схема компрессионной [c.32]

    Из предыдущего ясно, что для достижения высокой производительности аппарата процесс синтеза аммиака следует вести, не стремясь к получению равновесных выходов. Напротив, надо пропускать газ с такой объемной скоростью, при которой выходящая из аппарата газовая смесь далека от состояния равновесия и содержание аммиака в ней невелико. Поэтому необходимо, выделив аммиак из газа, вновь направить азотоводородную смесь на синтез, что может быть осуществлено двумя прием1ами. Можно соединить последовательно ряд агрегатов для синтеза аммиака, пропуская газ через все агрегаты (схема с открытой цепью). Каждый агрегат состоит из колонны синтеза, холодильника (в котором газ охлаждается и конденсируется аммиак) и газоотделителя для разделения газа и жидкого аммиака. Можно проводить процесс в одном агрегате, направляя азотоводородную смесь после выделения аммиака и добавки к ней соответствующего количества свежей смеси обратно в колонну синтеза. Такой циклический процесс благодаря своим преимуществам, прежде всего компактности и простоте регулирования, применяется в настоящее время почти на всех установках. [c.330]

    Разделение коксового газа. На рис. 2 приведена схема блока разделения коксового газа под давлением 21 ат для получения водорода, метана и этилена. Выбор рабочего давления определяется гл. обр. назначением агрегата и принятыми холодильными циклами. В случае получения азотоводородной смеси и использования для получения холода эффекта Джоуля—Томсона рабочее давление сжатого азота равно 13—15 ат. При постепенном охлаждении коксового газа в теплообменниках , 2 и л и в змеевике куба метановой колонны 6 из него выделяются углеводороды (С,, Сг, С., и выше), к-рые вместе с растворившимися в них газами образуют -тиленовую и метановую фракции, собираемые в отделителях 15 и 4 (соответственно). Ректификация этих фракций производится соответственно в колоннах в и 7. После отделителя 4 газовая смесь проходит азотный испаритель 6а и поступает в колонну 5, где жидким азотом отмываются остаточные количества СН , СО и др. неконденсирующихся в данных условиях газов (А1 , О2). Кубовый остаток этой колонны составляет фракцию окиси углерода. Отводимая сверху колонны смесь Нг и N2 проходит конденсатор-дефлегматор 56, в к-ром охлаждается кипящим под вакуумом азотом (64° К) при этом получают 98%-ный Нг. Рекуперация холода водорода осуществляется в змеевике. 5в и теплообменниках 3, 2 и 1. Метановая фракция дросселируется до 1,3 ат и разветвляется на три потока один поток проходит теплообменник 3, второй — теплообменник 14, а третий — соединяется с двумя остальными потоками перед входом в отделитель а, откуда жидкость подается в колонну в в качестве флегмы, а пары идут на разделение. Фракция окиси углерода дросселируется на 1,5 ат и частично подается в качестве флегмы в колонну 6, а частично в теплообменники з и 9. Из куба колонны в отводится жидкий СН4, холод к-рого используется в теплообменниках i2 и 2, а сверху отбирается смесь Нг и СО, направляемая для рекуперации холода в теплообменники з и 9. ЭтИле- [c.377]

    В колонне 3 можно получить смесь компонентов сжиженного газа (верх колонны) и газового бензина (низ колонны). В колонне 4 продукты разделения колонны 3 можно разделить на коммерческие сорта пропана и бутана. Подобная схема ректификации применяется в тех случаях, когда потребность в сжиженных газах имеется только в отдельные месяцы. В это время колонна 4 отключается, а сжингенный газ поступает к потребителю в виде верхнего продукта колонны 3. [c.137]

    Пуск реактора по данной схеме производится следующим образом. На предварительно разогретый слой катализатора исходная реакционная смесь с низкой входной температурой подается через заслонку 2 (заслонка 1 закрыта). В центральной части слоя (А1) и в крайней части (А2) возникают тепловые волны (О] и Ь соответственно), которые движутся в направлении фильтрации реакционной смеси. Направления газовых потоков в частях слоя указаны непрерывными стрелками (см. рис. 6.21, а). Через некоторое время (время полуцикла) тепловая волна щ займет положение 02, а волна 1 - положение 2 (см. рис. 6.21, б). В это время заслонка 1 открывается, а заслонка 2 закрывается. Это приводит к разделению теплового пика Д2 на две тепловые волны. Одна из них будет распространяться по центральной части слоя (/ 1), а вторая - по крайней части (слой А ). Направления распространения тепловых волн совпадают с направлениями фильтрации смеси в слоях и показаны стрелками (см. рис. 6.21, б). Через время полуцикла тепловая волна 02 займет вновь положение О) (см. рис. 6.21, а). После этого цикл повторяется. При такой организации процесса центральная часть слоя работает в режиме переменных направлений фильтрации реакционной смеси, а тепло, вьщеляющееся в этой части, служит для попеременного нафева слоев А2 и Ау Крайние части слоя работают периодически в режиме нафева или формирования и вытеснения тепловой волны. Через несколько переключений во всех частях слоя устанавливаются периодически повторяющиеся температурные и конценфационные поля. [c.321]

    Технологическая схема, в которой имеется фракционирующий абсорбер, лшжет включать не только газоразделение, но и стабилизацию бензина. При этом (рис. 103) на разделение поступают жирный газ (из газосепараторов крекинг-установок) и нестабильный бензин. Жирный газ компримируется одно- или двухступенчатыми компрессорами. В последнем случае на первой ступени газ сжимается до 3—4 ат. В результате компрессии и охлаждения в холодильнике часть газа выпадает в виде конденсата. Несконденсировавшаяся часть газа сжимается во второй ступени компрессии до 12—20 ат, после очередного охлаждения и отделения конденсата газовая фаза поступает на смешение с нестабильным бензином, который подается насосом 7 в выкидную линию компрессора. Последующее охлаждение газожидкой смеси в холодильнике 8 в1,1зывает частичное поглощение тяжелых углеводородов газа бензином. Охлажденная смесь поступает в приемник — газосепаратор 2, называемый обычно контактором, из которого газ и жидкость аиравляются во фракционирующий абсорбер 3. [c.311]


Смотреть страницы где упоминается термин Схемы для разделения газовой смеси: [c.48]    [c.227]    [c.90]    [c.377]    [c.181]    [c.205]   
Основные процессы и аппараты химической технологии (1983) -- [ c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Смеси разделение



© 2025 chem21.info Реклама на сайте