Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирование и очистка нуклеиновых кислот

    ФРАКЦИОНИРОВАНИЕ И ОЧИСТКА НУКЛЕИНОВЫХ КИСЛОТ [c.236]

    При очистке больших количеств макромолекул, где требуются различные виды фракционирования, часто бывает необходимо удалить соли, сменить буфер, сконцентрировать вещество, удалить вещества типа фенола и детергенты, используемые при выделении и очистке нуклеиновых кислот. Эти процедуры часто занимают много времени (например, осаждение или диализ) и поэтому могут приводить к потерям нестабильных веществ. Гель-проникающая хроматография позволяет быстро решить эти задачи. Например, соли и небольшие молекулы легко могут быть удалены, поскольку они задерживаются всеми гелями. [c.202]


    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Применяется для фракционирования и очистки белков, ферментов, вирусов, пептидов, нуклеиновых кислот, нуклеотидов и других веществ среднего и высокого молекулярного веса. Главная область применения — препаративная биохимия. [c.280]

    Начальным этапом в изучении структуры и функции нуклеиновой кислоты является ее выделение из клетки или субклеточных частиц и очистка от различного рода примесей. Заключительный этап — фракционирование для получения препаратов, гомогенных по химическому составу, молекулярному весу и надмолекулярной организации. Естественно, что схема выделения может существенно изменяться в зависимости от природы исходного материала. Подробное описание методик можно найти [c.66]

    Поскольку вирусы во многом сходны с нуклеиновыми кислотами, мы приведем здесь лишь несколько примеров их очистки или фракционирования. Вирусные частицы легко отделить от различных низкомолекулярных примесей [82, 83], в том числе и от протами-на, который используют для осаждения, например, вируса полиомы. После растворения в крепком растворе поваренной соли вирус можно отделить от белка на сефадексе 0-75 [84] (см. также [77, 78]). Однако для разделения различных вирусов ввиду их значительных размеров необходим гель с максимальными размерами пор (см. гл. И). Для этого может служить гранулированный [85] или сферический [86, 87] гель агара, а также специальное пористое стекло [88]. Палочкообразные вирусы в таком случае распределяются [c.223]


    Основные успехи разделения биополимеров в гетерогенных системах достигнуты при использовании равновесия между раствором и твердой фазой. Одними из наиболее ранних приемов, сохранивших свое значение и до настоящего времени, являются методы осаждения и кристаллизации. Еще большее значение в настоящее время играют процессы сорбции и их динамическая модификация — процессы хроматографии. Одноактная сорбция белков на окислах металлов и других минеральных сорбентах служит для очистки белков и ферментов уже несколько десятилетий. К этим процессам присоединилась избирательная сорбция белков ионообменными смолами. Одним из наиболее значительных достижений современной физической химии в области фракционирования сложных смесей веществ, в частности белков, нуклеиновых кислот, полипептидов, аминокислот и нуклеотидов, явилась хроматография, особенно в виде ее ионообменной модификации и гельфильтрации на сефадексах. [c.7]

    Одной из самых важных и трудных стадий в исследовании полисахаридов является их очистка и фракционирование с целью получения более или менее однородных индивидуальных веществ. До настоящего времени разделение проводилось главным образом фракционным осаждением производных полисахаридов в органических растворителях или избирательным осаждением из водных растворов различными электролитами [1, 2]. Из-за отсутствия подходящих адсорбентов хроматография полисахаридов не достигла больших успехов. Введение в практику Соберем и сотр. [3, 4] ионообменников на основе целлюлозы для колоночной хроматографии белков и нуклеиновых кислот привело к появлению новых адсорбентов, весьма удобных для разделения высокомолекулярных растворимых в воде веществ. [c.268]

    Приготовление пробы. Обычно препаративный электрофорез в полиакриламидном геле не используют в качестве одного из начальных этапов в очистке белков и нуклеиновых кислот. Для предварительного грубого фракционирования компонентов омесей применяют методы хроматографии, высаливания или осаждения. Чтобы провести электрофоретическое разделение, пробу необходимо сконцентрировать до 5 мл для однородной системы и до 10—20 мл для неоднородной. От избытка солей можно избавиться при помощи диализа или гель-фильтрации. Концентрация солей в исследуемом растворе должна быть такой же, как в буфере концентрирующего геля. Если же этот гель не попользуется, то пробу диализуют против буфера разделяющего геля, разведенного в 5 раз. Медленное вхождение пробы в гель во время электрофореза свидетельствует о слишком высокой концентрации солей. Любой осадок, присутствующий в пробе, следует удалять центрифугированием или фильтрованием через миллипоровый фильтр, так как он может закупорить разделяющий гель. [c.117]

    Рассмотрение различных вариантов иммуноэлектрофореза естественным образом завершает начатое еще в предыдущей книге изложение методов фракционирования белков и нуклеиновых кислот в электрическом поле. В любом из вариантов иммуноэлектрофореза обязательно имеет место явление иммунопреципитации. Это явление широко используется и само по себе — как плодотворный способ высокоизбирательной очистки белков, а также для обнаружения иммуноспецифических продуктов фракционирования, проведенного с помощью обычного электрофореза или ИЭФ. Поэтому представляется целесообразным предварить рассмотрение собственно иммуноэлектрофореза описанием механизма и особенностей метода иммунопреципитации. Однако многие из этих особенностей, в частности очень важные явления неоднозначности иммунного ответа и полиморфизма иммунных реакций, нельзя понять без хотя бы беглого, но не слишком поверхностного знакомства С механизмом выработки иммунитета, строением я функцией иммуноглобулинов, природой сил взаимодействия между антителами и антигенами и т. д. Эти же представления окажутся необходимыми в следующей части книги при рассмотрении радиоиммунных методов исследования. Между тем в большинстве случаев биохимики и молекулярные биологи довольно плохо знакомы с современной иммунохимией, претерпевающей к тому же пору бурного развития. [c.81]

    Обсуждаемому способу удаления нуклеиновых кислот характерен ряд недостатков. Гельфильтрация практически применима при работе с небольшими количествами биомассы. Высокая ионная сила в этих опытах применяется с целью диссоциации комплекса нуклеиновых кислот и рестриктаз. Однако, в этих условиях диссоциируют и неспецифические нуклеазы, которые, учитывая специфику осуществления экспериментов по отделению нуклеиновых кислот методом гельфильтрации, ориентированных на грубое фракционирование, могут в значительной мере загрязнять целевые ферменты. О низком уровне очистки в таких опытах вообще говорилось выше. [c.149]

    В 1978 г. Грин с соавт. [109] предложил методику очистки рестриктаз, включающую последовательное хроматографическое фракционирование на ФРИ и ГАП. Бесклеточный экстракт на первый сорбент наносили без предварительного удаления нуклеиновых кислот. После проведения очистки по обсуждаемой схеме в 13-ти случаев из 16-ти испытанных были получены функционально очищенные препараты исследуемых ферментов, пригодных для использования в качестве аналитических реагентов. [c.159]


    Зональное центрифугирование часто используют для очистки ж фракционирования вирусов и их компонентов [230, 421, 471, 582, 607]. Но наиболее широкое распространение этот метод центрифугирования получил для анализа нуклеиновых кислот (см. раздел Метод фракционирования компонентов вирусных частиц ), а для очистки вирусов используют в основном равновесное центрифугирование. [c.61]

    Разработаны методы выделения ядерной ДНК из каллуса, листьев, протопластов и отдельных клеток. В каждой лаборатории используют определенные варианты методик, которые обычно -подразумевают разрушение свежего растительного материала, удаление неразрушенной ткани фильтрованием, фракционирование клеточных компонентов дифференциальным центрифугированием, обработку ядер ДНКазой, лизис, депротеинизацию и последующую очистку нуклеиновых кислот в градиенте плотности s l/БЭ [6, 16]. В данном разделе изложены методики, которые можно взять за основу при разработке способов выделения ядерной ДНК из различного растительного материала. Кроме того, ядра, выделенные, как указано ниже, могут исполь- [c.254]

    Ознакомившись достаточно подробно с используемой техникой, перейдем к рассмотрению основных методов ультрацентрифугирования, применяемых для очистки и фракционирования белков, нуклеиновых кислот и субклеточных органелл дифференциального, зонально-скоростного и равновесного (изопикни-ческого). Они будут рассмотрены в этом же порядке. Под частицами будем, как и прежде, понимать не только молекулярные агрегаты, но и макромолекулы. [c.199]

    Препаративные центрифуги, В настоящее время имеется большое количество превосходных препаративных ультрацентрифуг, способных развивать ускорение до 420 ООО . Они применяются для выделения, очистки и концентрирования вирусов и субклеточных частиц, фракционирования белков, нуклеиновых кислот, линопро-Т0ИДОВ и других макромолекул. Наиболее популярны следующие ультрацентрифуги Спинко модель Л и Л2 (США) Судер-Спид-40 ж 50 (Англия), ВАК-40 и ВАК-60 (ГДР) и Хитачи 55Р (Япония). В нашей стране выпускаются препаративная ультрацентрифуга типа УЦП. [c.192]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Всякому структурному исследованию ДНК или РНК предшествуют выделение их из клеток, очистка и фракционирование. Поскольку в клетке нуклеиновые кислоты практически всегда находятся в комплексес белками (т. е. в вил, нуклеопротеидов), их выделение сводится в основном к очистке от белков (депротеинизации). Чаще всего нуклеиновые кислоты экстрагируют из гомогенатов клеток или очищенных клеточных органелл смесью фенол — вода В присутствии ионных детергентов (например, додецилсульфата натрия). При этом белки (и ряд других клеточных компонентов) переходят в органическую фазу, а нуклеиновая кислота остается в водной фазе. Из водного раствора ДНК или РНК осаждают спиртом. [c.10]

    Из-за относительно малого размера пор болынинстиа продажных модифицированных силикагелей традиционной областью приложения обратнофазовой гидрофобной ЖХВД для интересующих нас объектов было фракционирование и очистка сравнительно низкомолекулярных компонентов белков и НК аминокислот, пептидов, нуклеозидов и коротких олигонуклеотидов. Мы начнем с анализа опыта, накопленного в этой области, чтобы далее обратиться к рассмотрению возможности использования такого типа ЖХВД для исследования самих белков и нуклеиновых кислот. Но сначала сделаем несколько практических замечаний общего характера, относящихся к планированию и подготовке хроматографического эксперимента. [c.192]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]

    Для иллюстрации изложенных в предыдущем разделе обш их соображений и возможностей использования различных аффинных сорбентов рассмотрим определенное число примеров, отобранных из периодической научной литературы последних трех лет. Большая их часть относится к очистке ферментов клеточного метаболизма (и отдельно — белков, регулирующ,их активность нуклеиновых кислот). Далее будут приведены примеры аффинного фракционирования и очистки самих нуклеиновых кислот, в том числе на иммуносорбентах. Основное внимание уделим более простому и универсальному методу — неспецифической элюции, однако био-снецифическая аффинная элюция белков тоже будет представлена несколькими типичными примерами. Рассмотрение начнем с использования сорбентов с индивидуальной специфичностью, ограничившись здесь тремя примерами, поскольку нет смысла пытаться сколько-нибудь полно иллюстрировать бесчисленное разнообразие возможных сорбентов этого типа. Аффинная хроматография белков клеточного метаболизма на сорбентах с групповой специфичностью будет иллюстрирована подробнее, а затем последуют два примера использования ковалентной хроматографии. [c.412]

    Шведский ученый Пер-Оке Альбертсон предложил использовать для разделения бактерий, вирусов, фрагментов клеток, мембран, ядер, белков, нуклеиновых кислот и любых других частиц биологического происхождения двухфазные водные растворы полимеров — иолиэтиленгликоля, декстрана и их производных [2, 279, 280]. Фракционирование в двухфазной водной системе основывается на избирательном распределении частиц между этими фазами, аналогичном распределению растворимых веществ. Метод Альбертсона получил широкое распространение и используется во многих биохимических и микробиологических лабораториях, так как позволяет в мягких условиях, без нарушения структурной целостности и изменения нативных свойств осуществлять выделение и очистку лабильных биологических объектов, а также дать определенную информацию о их строении. Реализация этого метода в промышленном масштабе, например, для выделения вирусов или получения чистых ферментов, не встречает, по мнению автора, принципиальных трудностей, однако в очистке воды он не может быть использован. Очевидно, и любая другая модификация экстракции жидкость — жидкость неприменима при микробной очистке промышленных сточных вод и, конечно, такой метод совершенно непригоден для водоподготовки. [c.194]

    Гидроксилапатит применяют главным образом в препаративной биохимий, для фракционирования и очистки белков, ферментов, вирусов, нуклеиновых кислот, полинуклеотидов, пептидов, полярных липидов. Емкость загрузки колонок по белку составляет 1—5 мг/см и больше. Элюирование адсорбированных веществ и регенерацию колонок осуществляют фосфатными буферными растворами (градиентно, от 0,001 до 0,4 М) или 1 М Na l. [c.32]

    В настоящее время при помощи хроматографии производят полное удаление солей из воды (получение дистиллированной воды без перегонки), разделение сложных смесей аминокислот и гидролизатов белков (см. рис. 56), разделение сложных смесей фосфоса-харидов, пуриновых и пиримидиновых оснований (рис. 57), фракционирование белков (цитохрома, рибонуклеазы, инсулина и др.), фракционирование нуклеиновых кислот и различных полимеров, отделение пепсина, трипсина, алкогольдегидрогеназы, очистку антител, выделение стрептомицина, хлортетрациклина, полимиксина и других антибиотиков, а также алкалоидов, гормонов, антигиста-минных веществ. Большой интерес представляет также терапевтическое использование ионообменных смол для регулирования состава ионной среды в желудочно-кишечном тракте и для диагностических целей. [c.116]

    Значительные трудности возникают при необходимости удаления высокомолекулярных примесей, например, нуклеиновых кислот и полисахаридов. Вообще говоря, все описанные ниже приемы фракционирования белков используются и для отделения их от этих биополимеров. Кроме того, нуклеиновые кислоты и полисахариды могут быть разрушены с помощью соответствующих гидролитических энзимов. Лилиды при выделении и очистке водорастворимых белков обычно не следуют за ними, особенно при многостадийной очистке. Однако их удаление в тех случаях, когда они образуют с белком прочный комплекс, чрезвычайно затруднительно, ибо экстрагенты липидов — органические растворители — могут денатурировать белок. [c.14]

    Получение ультрафиолетовых спектров поглощения вирусов — метод в наши дни весьма доступный, так как регистрирующие спектрофотометры имеются сейчас почти во всех лабораториях. Для регистрации спектра требуется всего лишь 0,05—0,2 мг вируса, причем материал этот может быть использован повторно. По характеру кривой поглощения можно судить о содержании в вирусе белков и нуклеиновых кислот. Отношение величины поглощения при 260 и 280 нм ( 260/ 280)1 а также отношение ыакс/ мин характеризует относительное содержание нуклеиновых кислот и белков в пробе, а отсутствие изменений в характере спектра после дальнейшей очистки и фракционирования препаратов вируса служит дополнительным указанием на чистоту выделенного вируса (см. гл. IV, разд. В). [c.48]

    В процессе работы над книгой мы вскоре поняли, что критическая оценка преимуществ и недостатков отдельных методов принесет читателю больше пользы, чем простое перечисление лабораторных прописей. Тем не менее некоторые наиболее важные процедуры описаны весьма детально, что позволит легко воспроизвести их в экспериментальной работе. Для специальных же методик указаны лишь самые существенные моменты, а подробности читатель сможет найти в соответствующих оригинальных работах. В главах, посвященных методам выделения различных групп белков, нуклеиновых кислот и глпкоз-аминогликанов, мы стремились показать, что применение того или иного приема фракционирования обусловлено свойствами разделяемых макромолекул данного типа. Во многих случаях выбор электрофоретического метода зависит от способов выделения и очистки анализируемого образца а стадиях, предшествующих электрофорезу, так как именно эти стадии сущест- [c.8]

    Создается впечатление, что для фракционирования белков метод изотахофореза если и привлекателен, то скорее всего не в сфере научных исследований, а как метод рутинного контроля за сохранением пропорций уже известной белковой Ьмеси. Сюда относятся такие важнейшие сферы деятельности, как технологический контроль в пищевой промышленности или диагностика заболеваний по белковому составу физиологических жидкостей организма [Ое1тойе, 1977]. Немалые возможности открывает изотахофорез и для анализа смесей определенных низкомолекулярных веществ, например, в фармакологии—для контроля синтеза или очистки биологически активных пептидов, при изучении реакций метаболизма, а также в пищевой индустрии—для обнаружения примесей органическйх кислот и других ингредиентов в пищевых продуктах. Такого рода приложения выходят за рамки этой книги, поэтому изложенным выше мы ограничим свое знакомство с методом изотахофореза, по крайней мере до тех пор, пока он не продемонстрирует более убедительно свою пригодность для исследования белков и нуклеиновых кислот. [c.78]

    При очистке ДНК и РНК в основном используются одни и те же приемы [62]. Различия в методах их фракционирования определяются значительно большей чувствительностью молекул РНК к гидролитическому расщеплению из-за присутствия у ри-бонуклеотидов, входящих в состав РНК, свободных 2 -ОН групп, их более низкой молекулярной массой и наличием у одноцепочечных молекул характерной (компактной) пространственной структуры. Все современные методы выделения нуклеиновых кислот состоят из трех этапов разрушения клеток, инактивации нуклеаз и собственно очистки. Для выделения нуклеиновых кислот в нативном состоянии необходимо соблюдать, по крайней мере, две предосторожности следует использовать мягкие условия разрушения тканей биологического объекта и инактивировать гидролитические ферменты (ДНКазы или РНКазы) до того, как [c.40]

    Основными этапами выделения любой рестриктазы является получение бесклеточных экстрактов и собственно очистка целевых ферментов, осуществимая с применением традиционных приемов препаративной биохимии белковых соединений (высаливание, хроматографическое фракционирование и т. д.). Вместе с тем следует отметить, что процессам выделения рестриктаз, как и других ферментов нуклеинового обмена, характерен ряд специфических особенностей. В первую очередь это замечание относится к тому вниманию, которое уделяется разделению целевых ферментов и нуклеиновых кислот, в принципе способных влиять на перераспределение как рестриктаз, так и нуклеаз между фракциями, получаемыми в результате применения различных методов выделения целевых ферментов. Поэтому этот этап является одним из ключевых в схемах выделения рестриктаз, от результатов проведения которого во многом зависит успех дальнейшей их очистки. [c.143]

    Ранее обсуждался пример многократной очистки рестриктазы E oR I после проведения стадии удаления нуклеиновых кислот при помощи ПЭИ [48, 263]. Скорее всего такая эффективность данной стадии в отношении очистки целевого фермента является исключением. Учитывая то, что фракционированию подвергается сложная смесь клеточных компонентов, содержащихся в грубых экстрактах, а используемые методы не являются избирательными, следует предположить, что в большинстве случаев достигается только эффективное удаление нуклеиновых кислот без сколько-нибудь значительной очистки рестриктаз. Поэтому те немногочисленные примеры работ, в которых приведены количественные данные относительно степени очистки рестриктаз обсуждаемыми способами [13, 127], не противоречащие выше указанному предположению, думается являются типичными. [c.148]

    В завершение обсуждения методических приемов, используемых для разделения нуклеиновых кислот и рестриктаз, хотелось бы обратить внимание на некоторые вопросы. Взаимодействие рестриктаз и нуклеаз — основных интересующих исследователя компонентов грубого экстракта, с нуклеиновыми-кислотами, вносит ощутимый вклад в результаты экспериментов. Использование высокой ионной силы позволяет исключить-этот фактор в случае гельфильтрации и высаждения нуклеиновых кислот при помощи ПЭИ. Однако в этих условиях в общем случае должен наблюдаться переход во фракцию, содержащую рестриктазы, неспецифических нуклеаз. Поэтому, если цель эксперимента сводится не просто к разделению нуклеиновых кислот и рестриктаз, а к определенной функциональной очистке целевого фермента, более привлекательным является использование таких приемов, которые позволяют варьировать ионную силу. Перспективным в этом отношении является применение катионитов. При взаимодействии грубых экстрактов с катионитами нуклеиновые кислоты в общем случае должны оказаться в несорбированной фракции. Проведение процесса в условиях низкой или умеренной ионной силы призвано обеспечить удаление вместе с нуклеиновыми кислотами и определенной части иеспецифических нуклеаз. Хотя это специально и не оговорено, данные об эффективной функциональной очистке более десяти рестриктаз по схеме, разработанной Грин с соавт. [109], прошедших, вслед за стадией фракционирования грубых экстрактов на ФРП, хроматографию на ГАП, косвенно подтверждает это предположение. [c.153]

    Третий физический метод — электрофорез, не получил такого широкого распространения в исследовании вирусов, как ультрацентрифугирование. Классический метод Тизелиуса (фронтальный электрофорез) для очистки и фракционирования вирусов непри-годен. Более удобен зональный электрофорез в градиенте плотности, предложенный в 1953 г. Брекком [217]. Для препаративной очистки вирусов животных этот метод стали применять с 1958 г. после работ Крамера с сотр. [271]. Очень широкое распространение для фракционирования белков и нуклеиновых кислот получил метод дискового электрофореза в полиакриламидном геле, предложенный в 1962 г, Рейсфельдом с сотр, [684]. [c.44]

    Ионообменные целлюлозы. После синтезирования ионообменных целлюлоз Петерсоном и Собером в 1956 г. (636] они получили необычайно широкое применение при очистке и фракционировании вирусных препаратов. Ионообменные целлюлозные колонки позволяют отделить вирусные частицы от невирусного материала, а также инфекционный вирус от неинфекционных вирусных антигенов и от свободных нуклеиновых кислот. [c.121]

    Выделение вирусных белков так же, как и очистка вирусов, представляет отдельную проблему. Относительно легко удается выделение белков из тех вирусов, которые содержат только белок и нуклеиновую кислоту. Причем предпочтительнее иметь дело с теми вирусами, оболочка которых построена из идентичных белковых субъединиц. Гораздо труднее выделять гомогенные препараты вирусных белков из сложноорганизоваппых вирусов, Так, в обо-лочке бактериофагов доказано существование нескольких белков, различных по своим свойствам. Еще сложнее рабо тать с вирусами животных и человека, а особенно с миксовирусами. Перспектива достичь выделения всех составных субъединиц оболочки в виде препаратов, пригодных к исследованию, еще более ограничена. К сказанному следует добавить, что возникает еще проблема фракционирования вирусных белков, [c.168]


Смотреть страницы где упоминается термин Фракционирование и очистка нуклеиновых кислот: [c.161]    [c.286]    [c.79]    [c.48]    [c.19]    [c.42]    [c.187]    [c.149]    [c.151]    [c.152]    [c.146]    [c.15]   
Смотреть главы в:

Хроматография белков и нуклеиновых кислот -> Фракционирование и очистка нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Очистка и фракционирование



© 2025 chem21.info Реклама на сайте