Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лимитирующая стадия в последовательных реакциях

    В результате изучения кинетики этерификации салициловой кислоты метанолом установлено, что лимитирующей стадией является реакция между спиртом и промежуточным комплексом, образовавшимся путем присоединения противоиона смолы кислотой. Распространяя эти представления на реакцию этерификации вообще выразим ее механизм такой последовательностью превращений. [c.137]


    Вопрос о причинах селективного действия контактов до сих пор не решен, хотя и является одним из основных в промышленности органического синтеза. Согласно одной точке зрения, образование различных продуктов происходит по независимым, параллельным путям избирательность зависит от того, по какому пути катализатор направляет реакцию. В этом случае избирательность определяется химическим составом катализатора, соотношением адсорбционных характеристик компонентов реакции и составом реакционной смеси. Согласно другой точке зрения, продукты с более глубокой степенью окисления образуются путем последовательного превращения менее окисленных соединений селективность определяется соотношением скоростей лимитирующих стадий последовательных реакций. В этом случае селективность зависит не только от состава катализатора и реакционной смеси, но и от условий ведения процесса (время контактирования, температура и др.). Возможны случаи, когда протекание процесса по параллельной схеме осложняется вторичной реакцией окисления целевого продукта. Доля этого вторичного процесса может быть различной в зависимости от температуры, соотношения скоростей реакции, диффузии и теплопередачи, размеров реакционного сосуда и т. п. В результате истинная селективность катализатора данного химического состава может быть искажена чисто внешними условиями осуществления процесса. [c.71]

    Для многоступенчатых последовательных реакций выражение для скорости реакции часто включает лишь часть констант скорости, равновесия и концентраций реагентов, характеризующих стадии последовательной реакции. Причина — наличие лимитирующей, или скоростьопределяющей, стадии. Природа лимитирующей стадии очевидна из представления характеристического времени реакции Тр как суммы характеристических времен всех последовательных стадий Тр = Хт,. Если в этой сумме одно из слагаемых т, оказывается много больше остальных, т.е. Тр = т,, характеристическое время протекания этой стадии и будет определять скорость реакции. Последняя, очевидно, не будет зависеть [c.88]

    Большинство каталитических процессов протекает через ряд последовательных стадий. Часто общая скорость процесса определяется лимитирующей стадией, т. е. стадией, скорость которой является наименьшей. На стадиях, которые не лимитируют процесс, устанавливается квазиравновесное состояние. Можно выделить два принципиальных механизма каталитических реакций слитный и стадийный. Воспользовавшись положениями формальной кинетики, рассмотрим выражения для скорости простейших каталитических процессов, в которых принимает участие катализатор. Слитный механизм многих каталитических реакций может быть представлен схемой бимолекулярной реакции [c.620]


    Обрыв цепей на стенках происходит в результате двух последовательно происходящих процессов —диффузии свободных радикалов к поверхности реакционного сосуда и захвата свободного радикала этой поверхностью. В зависимости оттого, какой из процессов является лимитирующим, различают диффузионную и кинетическую область протекания реакции обрыва и цепной реакции в целом. В диффузионной области лимитирующей стадией является диффузия свободных радикалов к стенке сосуда. В кинетической области лимитирующей стадией является взаимодействие свободных радикалов со стенкой. [c.293]

    Обобщая результаты рассмотренных случаев, можно сказать, что нелинейные аррениусовские графики делятся на две категории выпуклые (или спадающие) кривые (рис. 5-2), соответствующие изменениям в лимитирующей стадии последовательности реакций, и вогнутые (или растущие) кривые (рис. 5-3), соответствующие параллельным реакциям с различной энергией активации. Иногда кривую можно разбить на две части, каждая из которых приближается к линейной зависимости, и таким образом получить приблизительные активационные параметры для разных стадий. Если разница энергий активации не столь значительна, чтобы кривую можно было разбить на две прямые линии, то отдельные активационные параметры можно рассчитать более сложным методом [115]. [c.151]

    Когда процесс состоит из нескольких последовательных стадий— будь то реакция или диффузия и т. д., — то часто говорят, что одна из них является лимитирующей. Парадоксально, чтобы все они протекали с одинаковой скоростью. Поэтому необходимо ясно понимать значение термина лимитирующая стадия . [c.37]

    В отношении последовательных этапов реакций окисления применим общий для случая сложных последовательных кинетических процессов принцип лимитирующей стадии. Отсюда следует, что в зависимости от величины скоростей составляющих стадий корреляция между активностью катализатора и такими его свойствами, как способность к комплексообразованию, электропроводность, величина хемосорбции кислорода, может наблюдаться или отсутствовать. В силу этого возникает кажущаяся неоднозначность связи каталитической активности твердого тела в реакциях окисления с вышеперечисленными его свойствами. [c.27]

    Возникновение поляризации обусловлено замедлением в ходе электродного процесса. Поскольку скорость процесса, состоящего из нескольких последовательных стадий, определяется скоростью наиболее медленной (лимитирующей) стадии, то появление поляризации связано непосредственно с этой стадией. Если известна природа лимитирующей стадии, вместо термина поляризация употребляется, как правило, термин перенапряжение . Если наиболее медленной стадией является транспорт реагирующих веществ к электроду или продуктов, образовавшихся в результате электрохимической реакции от него, перенапряжение называется диффузионным (т]д). Когда наиболее медленно протекает стадия разряда или ионизации, возникает электрохимическое перенапряжение, называемое также перенапряжением (электронного) перехода (tin). Торможение в дополнительных стадиях сопровождается возникновением собственно фазового перенапряжения (т1ф) и перенапряжения реакции (г р). Каждый вид перенапряжения обусловлен специфическим механизмом его появления и описывается собственными кинетическими уравнениями. В общем случае электродная поляризация складывается из всех видов перенапряжения  [c.499]

    Предположим, что на электроде протекает многостадийная реакция, включающая последовательный перенос п электронов, с одной лимитирующей одноэлектронной стадией, причем этой стадии предшествуют пг стадий разряда — ионизации. Наличие одной лимитирующей стадии означает, что для всех других стадий наблюдается равновесие между вступающими и возникающими в результате протекания этих стадий веществами. Примем также, что медленная стадия должна повториться V раз, прежде чем образуется одна частица конечного продукта. Величина V для процесса с одной лимитирующей стадией называется стехиометрическим числом. Суммарную схему рассматриваемого процесса в общем виде можно представить следующим образом  [c.329]

    Реакции нулевого порядка встречаются обычно в гетерогенном катализе и всегда указывают на протекание сложной реакции, состоящей из нескольких последовательных стадий. В данном случае лимитирующей стадией, определяющей общую скорость процесса, является поверхностная реакция, сравнительно медленная и не зависящая от концентрации реагентов этим и объясняется нулевой порядок. Однако, если концентрация реагентов достаточно мала, то стадии, зависящие от концентрации, замедляются, так что их скорость будет меньше, чем скорость лимитирующей стадии. Тогда они становятся лимитирующими и порядок реакции начинает повышаться, заметно отличаясь от нуля. [c.68]

    В случае, если реакция состоит нз нескольких необратимых последовательных стадий, протекающих через активные промежуточные частицы, кинетическое уравнение может содержать только константу первой, лимитирующей, стадии и вообще не содержать констант скорости других стадий даже в виде их отношений. [c.230]


    Как и для любого многостадийного процесса, скорость электрохимической реакции лимитируется наиболее медленной из последовательных стадий. Это означает, что закономерности суммарного процесса определяются кинетическими закономерностями лимитирующей стадии. Зная последние, можно, во-первых, на основании экспериментальных данных для суммарного процесса выявить его лимитирующую стадию, а, во-вторых, изменяя условия проведения электрохимической реакции, изменять ее скорость. В дальнейшем мы рассмотрим кинетические закономерности лишь двух основных стадий электрохимического процесса стадии массопереноса и стадии разряда — ионизации, — предполагая, что все остальные стадии протекают практически обратимо. [c.212]

    В последовательности реакций (VIL 15) и (VII. 16) первая стадия является лимитирующей, поэтому скорость обрыва пропорциональна первой степени концентрации свободного радикала, т. е. обрыв является линейным. [c.298]

    Определение механизма многостадийных электродных реакций состоит в установлении последовательности стадий и выявлении лимитирующей стадии. Так как число стадий велико и возможны различные пути реакции, однозначное установление механизма оказывается весьма сложным. [c.333]

    Исследовались [51] превращения метилциклопентана в присутствии Pt/AljOa в условиях, близких к условиям риформинга (470—515°С, давление Нз 0,6—4,0 МПа). Полученные результаты объясняют [51] известной схемой последовательного дегидрирования метилциклопентана в метилциклопентен, изомеризацией последнего в циклогексен с последующим превращением его в бензол и циклогексан. При этом допускается, что а) присутствие водяного пара влияет только на кислотную функцию катализатора б) старение катализатора обусловлено главным образом снижением активности Pt-центров в) лимитирующей стадией реакции является стадия изомеризации метилциклопентена в циклогексен. [c.196]

    Лимитирующая стадия. Если процесс включает ряд последовательных стадий и константа скорости одной из них много меньше, чем остальных стадий, то такая стадия лимитирующая и определяет скорость всего процесса. Например, для реакции типа [c.42]

    Скорость реакции, состоящей из ряда последовательных стадий, определяется в основном скоростью стадии с самой малой константой скорости. Такая стадия называется определяющей или лимитирующей. При установившемся стационарном состоянии процесса скорости всех последовательных стадий равны между собой, перепады концентраций на каждой его стадии становятся постоянными, и в единицу времени в каждой стадии на следующую переходит одинаковое количество вещества. Перепады концентрации на разных стадиях остаются различающимися между собой, но постоянными, что, как и равенство скоростей последовательных стадий, является признаком стационарности процесса. Кинетическое уравнение стадийной реакции отражает в первую очередь кинетические закономерности лимитирующей стадии, и ее установление является од- [c.243]

    Кинетические уравнения сложных (последовательных) реакций содержат несколько констант скоростей. Суммарная скорость реакции лимитируется скоростью самой медленной стадией, следовательно, может быть описана кинетическим уравнением именно этой реакции. [c.17]

    Топохимическую реакцию, как и всякую другую, можно рассматривать как систему последовательных стадий разной физической природы (адсорбция, электронные переходы, перестройка кристаллической решетки и т. д.). Скорости этих стадий существенно различны и можно предполагать наличие лимитирующей стадии. Такой стадией, например, может явиться акт перестройки элемента кристаллической решетки, связанной с перемещением тяжелых частиц. [c.166]

    В случае последовательных реакций скорость превращения исходных веществ, очевидно, определяется самой медленной стадией, в случае параллельных — самой быстрой. Это следует учитывать при попытках управления скоростью реакции направлять усилия иа изменение лимитирующей стадии. [c.224]

    Скорость реакции в целом определяется скоростью самой медленной, лимитирующей стадин последовательных реакций. Если предположить, что первая стадия лимитирующая, то реакция будет проходить как реакция второго порядка по пероксиду водорода и первого —по дихромату калия. Если же предположить, что вторая стадия является лимитирующей, то реакция процесса будет первого порядка. [c.147]

    Химизм термоокислит1ельного С. твердых полимеров описывается такой же последовательностью элементарных реакций, как и жидкофазное окисление, однако специфика твердой фазы приводит к определенным кинетич. особенностям этих реакций. В жидкой фазе присоединение кислорода к алкильным радикалам (реакция 1) происходит без энергии активации в твердых полимерах лимитирующая стадия этой реакции — микродиффузия кислорода с энергией активации 34—42 кдж моль (8—10 ккал/молъ). Продолжение кинетич. цепей по реакции 2 в твердых полимерах приводит к пространственному перемещению свободной валентности. Мигрирующая свободная валентность оставляет за собой вдоль пути миграции цепочку продуктов окисления (в основном гидроперекисей). Случайная встреча мигрирующих валентностей приводит к обрыву кинетич. цепей, т. е. в отличие от жидкой фазы в твердых полимерах лимитирующей стадией обрыва является химич, эстафета. Такая ситуация реализуется при С. полимеров ниже темп-ры стеклования. Выше темп-ры стеклования существенный вклад в перемещение свободной валентности и в обрыв кинетических цепей вносит также сегментальная диффузия макрорадикалов и макромолекул. [c.242]

    Таким образом, сопоставление кривых указывает на протекание процесса дегидрохлорирования ПВХ в условиях эксперимента по схеме варианта I. Полученные результаты подтверждают известный факт, что Na l и K I инертны по отношению к реакции дегидрохлорирования ПВХ и что скорости накопления П не зависят от константы скорости взаимодействия ТС с НС1. Отмеченные факты, так же как независимость скорости образования П от степени дисперсности (меняется лишь абсолютное число а), и величина температурного коэффициента (2,5) свидетельствуют о протекании процесса в кинетической области, причем значения констант скоростей накопления П и (табл. 41) соответствуют и чистого ПВХ. Следовательно, в условиях эксперимента лимитирующей стадией является реакция элиминирования НС1 из ПВХ. В этом случае к системе последовательных реакций можно применять метод стационарных концентраций, что приводит к следующему уравнению для скорости накопления П  [c.236]

    В дальнейшем в работе [104] был предложен и проверен метод определения лимитирующей стадии ряда параллельно-последовательных каталитических реакций. Метод заключается в сравнении наблюдаемого распределения О-атомов в продуктах - реакции и состава этих продуктов с теоретически рассчитанными для того или иного механизма реакции, проводимой в атмосфере Ог либо в смеси Нг и Ог. Возможности этого метода продемонстрированы на примере реакции дейтеролиза гем-диметилциклопропана в присутствии пленок Р1, Р(1, 1г и тех же металлов, нанесенных на АЬОз. Оказалось, что только две из семи обсуждаемых моделей согласуются с экспериментальными результатами по распределению продуктов реакции. Наибольшее предпочтение авторы отдают механизму, при котором происходит одновременное присоединение двух Н-атомов к адсорбированной на катализаторе молекуле гем-диметилциклопропана. Для уточнения предложенной [104] кинетической модели [c.107]

    Эти различия можно отнести за счет небольших различий в энергиях активации если ехр = 20 при 550° С, то АЕ = = 3,5 ккял/мэль (14,6 10 Дж/моль), что гораздо меньше разности межцу энергиями образования третичного и первичного карбоний-ионов (разд. 1У.1), оцененной в 21 ккал/моль (87,8 10 Дж/моль). В основе этих расчетов лежит гипотеза, согласно которой отщепление гидрид-иона от парафина является стадией, лимитирующей скорость этой последовательности реакций. [c.128]

    Указанные относительные скорости приводят к правильному распределению продуктов, содержащих и 1, и отщепление первого атома Н должно быть лимитирующей стадией в этой последовательности реакций. Действительно, была составлена таблица относительных скоростей реакций по опытам с конкурирующим окислением [83] на катализаторе В1—Мо—О при 460° С в смесях бутена-1 с различными олефинами. Оказалось, что найденные таким путем относительные скорости отщепления аллильных атомов Н превосходно коррелируют с относительными скоростями отщепления Н свободными радикалами в газофазных реакциях. с СНд или в жидксфазных реакциях с трет-С,Н,  [c.163]

    Она совпадает с последовательностью увеличения энергии связи кислорода на поверхности окисла. Эта простая корреляция пе может претендовать на универсальность, так как энергия активного комплекса лимитирующей стадии реакции окисления зависит не только от энергии связи кислорода с катализатором. Существенное значение могут иметь и энергии связей с катализатором других участников реакции. Для более точного предвидения каталитического действия необходимо изучить закономерностп изменения н других связей активного комплекса. [c.465]

    Скоростьонределяющая (лимитирующая) стадия (разд. 13.5) химической реакции-самая медленная стадия реакции, протекающей через ряд последовательных элементарных стадий от реагентов к продуктам. [c.34]

    Скорость процесса, состоящего из ряда последовательных стадий, определяется скоростью самой медлен- уд Гидродинамическая мо-ной стадии. Это нетрудно понять, дель многсктадийной электрохими-если воспользоваться следующей ческой реакции гидродинамической моделью. Предположим, что два сосуда, заполненных водой, сообщаются между собой через систему последовательно соединенных трубок разного диаметра (рис. 70). Условием равновесия такой системы является равенство уровней воды в сосудах А я Б. Если поднять уровень в сосуде А, то возникает перепад давления Лр и вода из сосуда А начинает перетекать в сосуд Б. Величина перепада давления Ар аналогична поляризации электрода АЕ в электрохимической системе, а скорость перетекания воды — скорости электродной реакции . Каждая из соединительных трубок при этом моделирует определенную стадию электрохимического процесса. Скорость перетекания воды из сосуда А в сосуд Б определяется пропускной способностью самой узкой трубки, а перепад давления Др, который складывается из перепадов на каждой из трубок, в основном сосредотачивается также на этой лимитирующей трубке Ар Дрл . Аналогичным образом общая скорость электродного процесса определяется скоростью лимитирующей стадии, а общая поляризация АЕтнАЕ . [c.171]

    Порядок реакции имеет несколько разный смысл для простых и сложных реакций. Порядок простой реакции равен числу частиц, участвующих в элементарном акте, он всегда положителен и целочислен (п 1, 2, 3). Если сложная реакция представляет собой ряд последовательных стадий, из которых только одна лимитирует весь процесс (см. гл. П1), то порядок суммарной реакции обычно равен порядку этой лимитирующей стадии. В общем случае порядок сложной реакции может быть любым целочисленным, дробным, переменным и даже отрицательным (для автокаталитических и цепных автоинициированных процессов). Например, для цепной реакции распада, протекающей по схеме  [c.16]

    Простые и сложные реакции. Если процесс протекает в одну стадию в соответствии со стехиометрическим урайнением, т. е. отвечает одному этапу, его называют простым. Сложные процессы — это совокупность простых, поэтому их кинетические уравнения содержат несколько констант скорости. Сложными реакциями являются обратимые, параллельные, последовательные и другие реакции. Для каждой стадии сложной реакции применимы уравнения простых реакций. Суммарная скорость процесса определяется (лимитируется) скоростью самой медленной стадии и может быть описана кинетическим уравнением этой простой реакции. [c.140]

    Любая электрохимическая реакция протекает на поверхности раздела фаз электрод — раствор и является гетерогенной. Как гетерогенная химическая реакция она также является стадийной, текущей через ряд последовательных стадий 1) транспорт вещества к электроду — к зоне реакции 2) собственный электрохимический акт взаимодействия реагирующей частицы с электродом (стадия разряда — ионизация) 3) отвод образовавшихся продуктов реакции от поверхности электрода. Первая и третья стадии имеют одни и те же закономерности и. чазываются стадиями мас-сопереноса, осуществляемыми за счет малых коэффициентов миграции и конвекции. Для всех электродных процессов наличие этих трех стадий обязательно. Однако наряду с этим ряд электрохимических процессов может осложняться предшествующими и последующими химическими реакциями, протекающими в объеме раствора или на поверхности электрода. Кроме того, в ходе электрохимической реа1 ции может происходить передвижение частиц по поверхности электрода (стадия поверхностной диффузии). Скорость электрохимического процесса, состоящего из ряда последовательных стадий, определяется наиболее замедленной, лимитирующей стадией. Для установления природы лимитирующей стадии, скорости ее течения, механизма электродного процесса, необходимо знать закономерности, которым подчиняются поляризационные характеристики / и Л . [c.458]

    В отличие от нее молекулярность реакццй описывает действительное протекание отдельных или элементлрных реакций на молекулярном уровне и указывает число частиц, участвующих в одном эффективном соударении. Скорость сложной реакции определяется наиболее медленной промежуточной лимитирующей стадией. Если скорости последовательных реакций незначительно различаются, то в совокупности они определяют скорость всей сложной реакции. Это приводит к появлению дробных показателей порядка реакции. Особый тип последовательных реакций представляют цепные реаки/ии. Образование активных частиц при каждом элементарном акте взаимодействия приводит к повторению серии протекающих реакций. Для аналитических целей цепные реакции имеют очень небольшое значение. [c.46]

    В процессе превращения субстрата в молекулу 6 лимитирующей стадией может быть либо отрыв протона, либо последующая потеря галогенид-иона. Необычная последовательность реакционной способности уходящих групп (Вг>1>С1) объясняется тем, что меняется стадия, определяющая скорость. Когда уходящей группой является Вг или I, лимитирующей стадией будет отрыв протона, и порядок скорости для этой стадии соответствует последовательности Р>С1>Вг>1. Когда же уходящей группой является С1 или Р, лимитирующим становится расщепление связи С—X, и порядок скорости для этой стадии соответствует последовательности 1>Вг>С1>Р. Подтверждение последнему факту было найдено при изучении конкурентных реакций. жега-Дигалогенобензолы с двумя различными атомами галогена обрабатывали ЫНг [29]. В таких соединениях наиболее кислый водород расположен между двумя атомами галогенов когда он отрывается, остающийся анион может терять любой атом галогена. Поэтому, изучая, какой из атомов галогена отщепляется предпочтительно, можно получить [c.11]

    Сложные реакции могут быть совокупностью параллельно или последовательно протекающих процессов. Закон действую щих масс справедлив для каждой отдельной стадии реакции, но не для всего взаимодействия в целом. Та стадия процесса, скорость которой минимальна, лимитирует скорость реакции в общем. Поэтому математическое выражение закона действующих масс, записанное для самой медленной (лимитирующей) стадии процесса, приложимо одновременно и ко всей реакции в целом. Если в приведенном примере стадия (1) является само и медленной, лимитирующеи скорость всего процесса, то в применении к этой сУадии реакции закон действующих масс (У.З) запишется как и = йСАСв Это соотношение представит зависимость от концентрации реагентов А и В не только скорости первой стадии реакции, но и всего процесса. [c.110]


Смотреть страницы где упоминается термин Лимитирующая стадия в последовательных реакциях: [c.32]    [c.163]    [c.95]    [c.56]    [c.328]    [c.14]    [c.328]    [c.42]    [c.116]   
Смотреть главы в:

АБВ химической кинетики -> Лимитирующая стадия в последовательных реакциях




ПОИСК





Смотрите так же термины и статьи:

Лимитирующая

Лимитирующая стадия

Лимитирующая стадия реакции

Последовательные стадии

Реакции лимитирующие

Реакции последовательные

Реакции с последовательными стадиями



© 2024 chem21.info Реклама на сайте