Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие определения с применением перманганата калия

    ДРУГИЕ ОПРЕДЕЛЕНИЯ С ПРИМЕНЕНИЕМ ПЕРМАНГАНАТА КАЛИЯ [c.408]

    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]


    Одним из наиболее важных практических применений перманганатометрии является определение железа. На анализ обычно поступают пробы, содержащие железо (И1), поэтому перед титрованием его необходимо восстановить до железа (П). Пробу, содержащую только железо (И), титруют в сернокислом растворе в соответствии с уравнением (13.2) до появления бледно-розового окрашивания раствора, вызванного избыточной каплей перманганата калия. Ионы Ре(П1), образующиеся при титровании, имеют желтый цвет, что несколько затрудняет фиксирование точки эквивалентности. Для более четкого обнаружения точки эквивалентности в пробу вводят фосфорную кислоту, образующую с ионами Ре (И ) бесцветный комплекс. Для восстановления Ре(П1) до Ре(П) можно использовать различные восстановители, необходимо лишь, чтобы восстановление шло достаточно быстро, никаких других продуктов восстановления, кроме Ре (И), в растворе не было, а избыток восстановителя мог быть количественно удален перед титрованием раствора. [c.274]

    Для определения содержания учебно-научной информации на основе банка данных, т. е. совокупности задач, тестов, анализа ошибок учащихся, введенных учителем в компьютер, машина составляет соответствующую программу (в виде вариантов) изложения материала, который следует предложить учащимся с данным уровнем обученности. В процессе реализации информационной функции дисплей компьютера может быть применен для создания проблемной ситуации. Например, на экране дисплея появляются схематические рисунки двух приборов для получения хлора в лаборатории и под ними текст Дайте обоснованный ответ, какой прибор и почему может быть использован для получения хлора, если исходные вещества для его получения а) перманганат калия и соляная кислота б) оксид марганца (IV) и соляная кислота . Проанализировав схематические рисунки, учащиеся должны вспомнить, в каком виде берутся исходные вещества, при каких условиях осуществляются эти реакции, на каких свойствах хлора основана конструкция данного прибора и пр. Эти и другие исходные данные являются базой (основой) для обоснованного ответа на поставленный вопрос. [c.31]

    Перманганатный мето д. — Перманганатный метод имеет преимущество, в смысле быстроты и недостаток— в отсутствии специфичности и трудности определения конечной точки титрования. При применении этого метода роданиды )сульфиты, сульфиды, тиосульфаты и другие восстановители должны отсутствовать. При отсутствии этих примесей титрование производится следующим образом. Количество вещества, содержащее около 1,0 г щелочного ферроцианида, растворяют в воде, раствор разбавляют приблизительно до 700 см и помещают в большую фарфоровую чашку. Раств<у подкисляют разбавленной серной кислотой и титруют 1/10 н. раствором перманганата калия, при постоянном помешивании, пока желтый цвет раствора не изменится в желтовато-красный. Конец реакции не легко установить нетренированному глазу, но со временем можно научиться титрование производить точно. [c.62]


    При определении больших содержаний титана находят применение титриметрические методы, основанные обычно на восстановлении Ti (IV) в ТЛ (III) с последующим титрованием его окислителями. Низкое значение нормального окислительно-восстановительного потенциала системы Ti (III)/Ti (IV), равное 0,04 в [82], обусловливает применение сильных восстановителей металлического цинка, кадмия, алюминия, железа, амальгам металлов. Титрование Ti (III) проводят перманганатом калия [83], бихроматом калия [84], ванадатом аммония [85], сульфатом ванадила [86], сульфатом церия [87], сульфатом железа (III) [88] в присутствии роданида калия [89—94], дифениламина [95], вольфрамата натрия [90], фенилантраниловой кислоты и других индикаторов [71] или потенциометрическим способом [91]. Для предотвращения окисления Ti (III) кислородом воздуха восстановленный раствор титана титруют в атмосфере СО2 или в присутствии трехвалентного железа раствором окислителя [92, 96]. Введение в раствор комплексообразующих веществ (сульфаты, ацетаты, фториды) увеличивает потенциал системы Ti (III)/Ti (IV) до 0,1—0,4 в и позволяет проводить определение более точно и надежно без применения инертного газа [93]. [c.59]

    Практика работы с перманганатом калия заставляет пересмотреть само определение понятия катализатора в процессах окисления нефтяных углеводородов. Согласно классическому определению, катализатором являются вещества, изменяющие скорость химической реакции, причем катализатор после завершения реакции остается в массе неизменным. Между тем перманганат калия является нестойким веществом, при высокой температуре и в кислой среде особенно легко разлагающимся до двуокиси марганца с выделением свободных атомов кислорода. Несомненно, что разложение перманганата происходит в самом начале процесса (на что указывает потемнение окисляемого сырья непосредственно после введения раствора перманганата и быстрое осветление сырья в первые минуты начала реакции) и в то же время скорость реакции окисления особенно велика. Применение других химически более постоянных веществ, как, например, нафтената марганца, двуокиси марганца или же самих окисленных продуктов, не дает столь интенсивного развития реакции окисления. Эти обстоятельства указывают на цепной характер первоначальной стадии реакции окисления с образованием цепей активных атомов или возбужденных молекул кислорода. Сказанное позволяет более правильно рассматривать перманганат калия не как катализатор, а как инициатор процесса окисления. Развитие реакции окисления в последующей стадии процесса следует искать в явлениях автокатализа, может быть также имеющего цепной характер. [c.195]

    Подтверждается эффективность внешних поглотителей для окислов азота, однако быстрое разложение раствора, перманганата калия и серной кислоты вызывает необходимость его замены после каждых двух или трех сожжений. Это обстоятельство указывает на необходимость дальнейшего изучения вопроса о внешних поглотителях. Тот же метод сожжения в пустой трубке, но разработанный в других условиях [56], видимо, имеет лишь узкую область применения и неспособен стать универсальным. Поэтому были предложены некоторые усовершенствования навеска сжигается в 12-витковой кварцевой спирали (длиной 24 см и с внешним диаметром 4 см), нагретой до 800°, причем кислород пропускается со скоростью 40 см в минуту окислы азота улавливаются перекисью свинца, нагретой до 180°, галоиды и сера — гранулированным серебром при 600°. В работе приведены результаты сожжения 35 соединений, причем некоторые данные сопоставлены с данными, полученными по Преглю. Можно отметить некоторое завышение результатов для водорода по новому методу. Подчеркивается, что новый метод рассматривается пока только как пробный. Его преимущество заключается в быстроте для определения водорода и углерода достаточно 30—40 мин. [c.10]

    На рис. 45 цифрой 4 показана соединительная склянка, расположенная между исследуемым раствором и электродом сравнения. На первый взгляд может показаться, что введение такой склянки делает установку недостаточно компактной и что удобнее пользоваться, например, Н-образными сосудами, рекомендованными для полярографических определений в одном колене такого сосуда находится исследуемый раствор, в другом — непосредственно электрод сравнения, а горизонтальная соединительная трубка заполняется агаровым гелем или перегораживается перегородкой из пористого стекла. От подобных конструкций следует безоговорочно отказаться непосредственное соединение обоих растворов, даже через агаровый гель, недопустимо, так как приводит к их быстрому загрязнению и делает невозможным определение таких ионов, которые могут реагировать с ионами электрода сравнения, т. е. с хлорид-ионами при каломельных полуэлементах или хлорид- и иодид-ионами при меркур-иодидных электродах сравнения. Между тем амперометрическое титрование часто применяется для определения именно таких элементов — серебра, свинца, таллия, железа (П1), перманганата и т. д. Поэтому применение промежуточного сосуда, заполненного раствором индифферентной соли (лучше всего нитратом калия или аммония), совершенно необходимо. [c.140]


    Применение растворов перманганата чрезвычайно велико. Упомянем только определение железа, щавелевой кислоты и оксалатов, азотистой кислоты в серной кислоте и нитритах, калия железистосинеродистого, дубильных веществ, перекиси водорода косвенно, —для измерения обратным титрованием избытка примененного восстановителя, например, закиси железа при определении азотной кислоты и нитратов, хлорноватокислых солей, двуокиси марганца и других перекисей, хлорной извести и т. д. [c.408]

    Большинство других методов определения ванадия основано на титровании его перманганатом после восстановления различными способами. Из этих методов можно указать 1) метод, в котором ванадий восстанавливают до четырехвалентного выпариванием с соляной кислотой, лучше в присутствии железа (III) и серной кислоты. После этого к раствору прибавляют, если это нужно, серную кислоту, выпаривают до появления паров последней и титруют ванадий в сернокислом растворе 2) метод, основанный на восстановлении ванадия в редукторе Джонса до двухвалентного состояния и вливании этого раствора в раствор, содержащий избыточное количество сульфата железа (III) (стр. 127) 3) восстановление ванадия до четырехвалентного сероводородом, избыток которого удаляют кипячением, нри непрерывном продувании через раствор тока углекислого газа 4) восстановление ванадия до четырехвалентного встряхиванием со ртутью солянокислого или сернокислого анализируемого раствора, содержащего достаточное количество хлорида натрия, чтобы связать образующуюся ртуть (I). Раствор затем фильтруют и титруют перманганатом 5) восстановление перекисью водорода в горячем сернокислом растворе . Интерес представляет также метод, основанный на восстановлении пятивалентного ванадия до четырехвалентного титрованным раствором соли Мора с применением гексацианоферрата (III) калия илн дифенил- [c.474]

    Другие определения с применением перманганата калия. В нашу задачу не входит подробный обзор всех областей применения нерманганатометрии. Читатель может найти эти сведения в монографии Кольтгофа и Белчера [46] и в оригинальных статьях. Прежде всего перманганат пригоден для определения всех указанных выше исходных веществ, применяемых для установки его титра. Другие восстановители, которые можно определять титрованием перманганатом — это 5Ь , Мп", 11 , Т1 , Сг и Се ". Многие металлы могут быть легко восстановлены и до низшей валентности при пропускание их соединений через соответствующий редуктор, однако титрование их затруднено в связи с крайне большой чувствительностью восстановленного раствора к окислительному действию воздуха. [c.364]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    Содержание лигнина в древесине и другом растительном сырье определяют преимущественно прямыми способами, основанными на количественном выделении лигнина, после предварительного удаления экстрактивных веществ соответствующей экстракцией, полным гидролизом полисахаридов концентрированными минеральными кислотами с последующим гравиметрическим определением количества лигнинного остатка [30]. Преимущественное применение получил сернокислотный метод. При анализе технических целлюлоз прямые методы используют главным образом в научно-исследовательской практике, а в производственном контроле обычно применяют косвенные методы, основанные на расчете содержания лигнина по расходу окислителя (чаще всего перманганата калия) на окисление остаточного лигнина. К косвенным методам относят также УФ-спектрофотометрический метод (см. 12.7.4). УФ-спектрофотометрию используют и для определения кислоторастворимого лигнина, переходящего в раствор при определении лигнина сернокислот- [c.374]

    В определенных условиях (при воздействии озона) из хлоратов образуется небольшое количество перхлоратов однако работы в этой области еще не закончены, и такой процесс кажется весьма неэффективным. По данным Беннета и Maкa некоторые довольно сильные окислители, такие, как перманганат калия и перекись натрия, не оказывают воздействия на водные растворы хлоратов. В то же время другие реагенты (например, персульфат натрия) окисляют хлораты в перхлораты. Эрхардт" сообщил, что применение двуокиси свинца в среде крепкой серной кислоты дает высокие выходы перхлоратов. Он приводит подробные данные, относящиеся к этому процессу, и рассматривает возможные методы регенерации двуокиси свинца из образующегося сульфата свинца. Описанный процесс предполагалось использовать в Германии во время второй мировой войны. В настоящее время внедрение этого метода в промышленность нерентабельно вследствие невысоких технико-экономических показателей стадии регенерации РЬО-2. Кроме того, Шлахтер указал на трудности аппаратурного оформления обеих ступеней процесса—окисления и регенерации. Однако возможно, что применение средств новой техники снова привлечет внимание к данному методу. [c.97]

    Сведений об эффективности применяемых способов очистки воды от пестицидов очень мало. Это обусловлено пренаде всего трудностями определения малых концентраций ядохимикатов. Однако имеющихся данных достаточно для того, чтобы сделать вывод о довольно высокой эффективности коагулирования но сравнению с другими методами обработки воды, например окислительными. Как показали Робек и др. [129], двукратное хлорирование воды и добавление перманганата калия не дают результатов. Лишь озон в высоких концентрациях (35—38 мг л) снижает содержание пестицидов примерно наполовину. В то же время применение коагуляции с последующим фильтрованием воды обеспечило уменьшение концентрации линдана (гексахлорана) на 10, алдрина — на 35, дилдрина — на 55, бутоксиэтилового эфира — на 65, паратиона — на 80 и ДДТ — на 98%. Сходные результаты по перечисленным пестицидам получены в другой работе [130]. [c.226]

    Хемосорбционное концентрирование акрилонитрила при определении его в воздухе рабочей зоны в присутствии H N не требует дополнительной идентификации. Воздух пропускают через абсорбер со щелочным раствором КМПО4 [38] или через два последовательно расположенных поглотителя, один из которых со щелочным раствором перманганата калия, а другой — с 40%-ным раствором К2СО3 [39]. Предел обнаружения акрилонитрила в виде соответствующего производного (см. гл. VII) с ЭЗД составляет 0,02 мг/м Применение ТИД дает возможность определять ацетонциангидрин с С 0,2 мг/м после улавливания этого опасного соединения в 0,1 н водный раствор серной кислоты [40]. [c.107]

    О ТОМ давно прошедшем времени, ко1да применяли не кристаллический,., едостуиный тогда чистый перманганат калия, а растворы сырого, содержащего манганат препарата, выделяющие перекись марганца. Теперь дело обстоит иначе (чистый перманганат Кальбаума, по На с к Гю, дает растворы, постоянные в течение нескольких лет), и если раствор перманганата защищен от испарения, пыли и восстанавливающих паров и т. д., то нет никакого основания ему не быть постоянным. Проверка титра через большие промежутки времени все же здесь необходима для уверенности, как и для всякого нормального раствора, так как никогда нельзя знать точно, не являются ли значительные ошибки в результате накопления малых незаметных ошибок. Нейтральные растворы всегда более постоянны. Принимая все это во внимание, нет никаких оснований устанавливать перманганат, как это было принято прежде, на любой эмпирический титр, требующий каждый раз применения коэффициента пересчета здесь так же, как при нормальной кислоте, растворе иода и тому подобных нормальных растворах, можно приготовлять растворы по эквивалентным отношениям или, если они должны служить только для одного рода определений, например, для определения железа, таким образом, что каждый миллилитр отвечает 0,010 г железа или любому другому количеству его. [c.397]

    В Наиболее простых случаях для разложения борсодержащих материалов достаточно обработать их водой или разбавленными кислотами. При необходимости длительного кипячения с кислотами применяют обратный холодильник, чтобы избежать потерь борной кислоты. Выбор кислоты для растворения зависит от намеченного метода отделения мешающих компонентов. Для отгонки бора в виде борнометилового эфира следует применять при разложении только серную или фосфорную кислоту. В большинстве случаев недопустимо присутствие азотной кислоты, часто мешает и хлористоводородная кислота поэтому при растворении металлов для определения бора применяют обычно серную кислоту, а в качестве окислителя вводят перекись водорода или перманганат калия и т. п. Только в том случае, если в дальнейшем намечается определять бор с применением куркумина или других реагентов в нейтральном или слабощелочном водном растворе, рекомендуют использовать для разложения материала хлористоводородную кислоту. [c.49]

    Фотометрические методы часто рекомендуются для определения общего железа. Однако получаемой при этом точности едва достаточно для основных пород и пород, богатых закисным или окнспым железом. Вместо фотометрических для этих пород можно использовать тнтриметрический метод с применением раствора бихромата калия, перманганата калия или сульфата церия (IV). Для пород, содержащих лишь небольшие количества железа, фотометрические методы с 2,2 -дипиридилом или 1,10-фенантролином предпочтительнее методов, в которых используются тиогликолевая кислота [13], соляная кислота [2], тайрон, салициловая кислота и другие реагенты. Для определения железа вместо фотометрического метода можно использовать атомпо-абсорбционную спектроскопию, хотя в случаях, когда железо присутствует в больших количествах, отдается еще предпочтение титриметрическому методу. Атомно-абсорбционную спектроскопию можно применять и для определения малых количеств марганца. [c.58]

    Другие растворы окислителей. Перманганат, бихромат калия и другие окислители сколько-нибудь широкого применения в ультрамикроанализе не получили. Судя по имеющимся данным, методика приготовления растворов этих окислителей при ультрамикроаналитических работах не отличается от методики их приготовления для обычных аналитических целей. Перманганат калия [9 ] может быть использован в ультрамикроанализе для определения оксалатов, а также для титрования растворов солей двухвалентного железа и других аналогичных восстановителей. При работе с перманганатом калия следует соблюдать обычные предосторожности. Так, например, из титрованного раствора предварительно следует удалить небольшие примеси двуокиси марганца, которые могут попасть в него при фильтровании через стеклянный фильтр, а также убедиться в полном отсутствии органических веществ в титруемом растворе. Следует заметить, что при ультрамикротитровании перманганатом требуется индикатор, так как при его отсутствии избыток перманганата, необходимый для того, чтобы можно было заметить окраску при работе с небольшим объемом раствора, настолько велик, что ошибка титрования становится очень большой. [c.152]

    Для определения камфена в смесях, содержащих пинен, предложены два пути [-I9], приг одные лишь в тех случаях, когда других терпенов, кроме пинена и камфена, смесь ие содержит. При открытии непредельных соединений с помощью перманганата калия этиловый 96-процентный или абсолютный спирт более пригоден, чем ацетон [40]. В сообщении о различном поведении -оцимена и его изомера мирцена [132] указывается, что при определении бромного числа -оцнмен присоединяет 6 атомов брома, в то время как МИ) цен — 4. Существует мнение, что применение диенового числа по Дильсу и Альдеру с малеинопым ангидридом или л-бензохиноном непригодно в том числе и для эфирных масел [129], [c.136]

    Наиболее сильным окислителем в кислой среде является марганцево-кислый калий. Тем не менее опыт показывает, что нельзя ограничиться применением только одного этого рабочего раствора. Высокий окислительный потенциал системы Мп07/Мп "" (в кислой среде) является иногда недостатком, так как способствует образованию активных промежуточных продуктов в результате возникают сопряженные реакции окисления. Поэтому в ряде случаев вместо марганцевокислого калия удобнее пользоваться двухромовокислым калием (с дифениламином или фенилантраниловой кислотой в качестве индикатора) или ванадиевокислым аммонием. В других случаях реакция между определяемым веществом и ионом перманганата идет не стехиометрически. Так, в реакции со многими органическими веществами перманганат может, при длительном взаимодействии, окислить их полностью, например до СО и Н О. Однако реакция идет довольно медленно, а образование промежуточных стадий не имеет резкого ступенчатого характера. Поэтому при определении некоторых органических соединений вместо марганцевокислого калия применяют бромноваго-кислый калий, йод или другие окислители. Эти окислители имеют более низкий потенциал и окисление не идет так далеко, как при действии перманганата. Однако бром илн йод взаимодействуют с молекулами мног их органических веществ довольно быстро и в точных стехиометрических отношениях. Таким образом, ряд обстоятельств обусловливает необходимость применения различных окислителей в зависимости от конкретных условий. [c.365]

    Из других методов определения свинца могут быть упомянуты 1) молибдатный метод 2, по которому уксуснокислый раствор ацетата свинца титруют титрованным раствором молибдата аммония, применяя таннин в качестве внешнего индикатора 2) гексацианоферратный метод , по которому уксуснокислый раствор соли свинца титруют титрованным раствором гексацианоферрата (И) калия с применением ацетата уранила в качестве внешнего индикатора 3) перманганатный метод в котором свинец осаждают в уксуснокислом растворе р виде оксалата, затем осадок растворяют в серной кислоте и титруют раствором перманганата. [c.267]


Смотреть страницы где упоминается термин Другие определения с применением перманганата калия: [c.85]    [c.510]    [c.400]    [c.438]    [c.138]    [c.435]    [c.90]   
Смотреть главы в:

Химический анализ -> Другие определения с применением перманганата калия




ПОИСК





Смотрите так же термины и статьи:

Калий перманганат

Калия перманганат, определение

Перманганаты



© 2025 chem21.info Реклама на сайте