Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение для других физико-химических исследований

    Применение комплекса современных физических и химических методов исследования (молекулярная перегонка, хроматография, кристаллография, инфракрасная спектроскопия и масс-спектроскопия, комплексообразование с карбамидом и тиокарбамидом) к изучению строения высокомолекулярных парафинов позволило сделать новый шаг к более глубокому познанию химической природы этого важного и широко распространенного в природе класса углеводородов. Полученные новые экспериментальные данные не только не поколебали, но еще более подкрепили некоторые из основных положений о химической природе парафинов и церезинов, к которым пришли различные исследователи на основании применения других, преимущественно химических и физико-химических методов. [c.107]


    Рассмотрены общие положения проблемы повышения нефтеотдачи пласта основные понятия, используемые для характеристики полноты выработки запасов факторы, влияющие на конечный коэффициент нефтеотдачи пласта и точность оценки его текущего и конечного значений по промысловым данным. Приведены методики и результаты лабораторных исследований процессов вытеснения нефти из моделей неоднородных пластов, а также промысловых экспериментов по оценке эффективности применения новых физико-химических методов повышения нефтеотдачи пластов в различных геолого-физических условиях. Затронуты теоретические аспекты проблемы обеспечения полноты выработки запасов нефти. Рассмотрены научно-практические основы проблемы выбора нефтевытесняющих составов на основе ПАВ и других химических реагентов. [c.4]

    Две основные области применения метода, интересующие химика-аналитика, — это качественный и количественный анализ веществ. Многие другие аспекты применения ИК-спектроскопии, например изучение строения молекул, кинетики реакций и другие физико-химические исследования, обычно не встречаются в промышленных лабораториях. [c.203]

    Очевидно, что систематически изучать эти вопросы можно только сопоставлением данных по составу сырья й полученных из него гидрогенизатов. Такого рода исследования начались относительно недавно, когда были разработаны хроматографические методы анализа полукоксовых смол и сходных с ними по составу продуктов Широкое применение хроматографических методов в сочетании с экстракцией, ректификацией, спектральными и другими физико-химическими методами позволило идентифицировать в составе угольных, полукоксовых и сланцевых смол большое число индивидуальных соединений Так, например, только в углеводородных фракциях эстонской сланцевой смолы идентифицировано 288 индивидуальных углеводородов и 8 сопутствующих им соединений, содержащих серу [c.164]

    В различных химических и физико-химических исследованиях иммерсионный метод находит применение при изучении компонентов равновесных систем, при исследовании продуктов химической технологии, при качественном микроскопическом анализе и т. п. Требуя очень мало вещества (несколько миллиграммов), он особенно удобен при анализе взрывчатых и ядовитых веществ. Большим преимуществом иммерсионного кристаллооптического метода по сравнению со всеми другими методами исследования является непосредственное наблюдение объекта исследования под микроскопом в виде отдельных зерен, что особенно важно при анализе смесей двух или нескольких химических соединений. Этот метод позволяет определять состав отдельных твердых фаз, кристаллизующихся совместно (эвтектики, эвтоники), легко отличать двойные и тройные соли от механических смесей, различать в смеси вещества одинакового состава (изомеры, полимеры, модификации) и т. д. [c.282]


    Широкое применение хронопотенциометрия находит для исследования кинетики электродных процессов [17] и особенно для изучения химических реакций, осложняющих электродные процессы. Большие возможности хронопотенциометрии для электрохимических и физико-химических исследований обусловлены относительно простой по сравнению с другими [c.14]

    Современные методы анализа азотистых соединений, так же как и других нефтяных компонентов, базируются па применении комплекса физико-химических измерений, сложность которого определяется глубиной исследования и сте- [c.131]

    Хроматография. В последние годы интенсивно развиваются методы применения газовой хроматографии для неаналитических целей. Хроматографические измерения используют для получения термодинамических функций при исследовании сорбционных и каталитических процессов, для получения данных по давлению пара и теплоте парообразования и в различных других областях физико-химических исследований [134]. Хроматографический метод привлекает своей универсальностью, сравнительной простотой исследований, удовлетворительной точностью измерений. Одновременно удается избежать искажения результатов за счет примесей. [c.97]

    Одним из аспектов коллоидной химии является также разработка методов регулирования адсорбционных и других физико-химических свойств минеральных сорбентов. Как показали проведенные исследования, наиболее перспективными методами являются модифицирование минералов органическими катионами и кислотная активация [9—13]. При замене неорганических обменных катионов на органические внутренняя поверхность минералов с расширяющейся решеткой становится доступной не только для молекул воды и спиртов, но и для неполярных алифатических углеводородов, азота, кислорода и др. Эффективная удельная поверхность по отношению к адсорбции последних увеличивается для монтмориллонита, например, с 30 до 300 м 1г. Параметр с решетки органофильного монтмориллонита и вермикулита определяется размерами органических катионов и их расположением в межпакетном пространстве. Поэтому модифицированные глины, подобно цеолитам, являются селективными сорбентами и должны найти широкое применение в газовой хроматографии. [c.5]

    Монография предназначена для работников научно-исследовательских институтов и предприятий нефтеперерабатывающей, химической и других отраслей промышленности, занимающихся физико-химическими исследованиями растворов органических и неорганических веществ, изучением и практическим применением адсорбентов и катализаторов, а также для преподавателей, студентов и аспирантов соответствующих специальностей химических и технологических вузов. [c.2]

    В настоящее время для исследования и анализа органических соединений широко применяются физико-химические методы, и в частности, в контроле производства и при исследовании органических веществ все чаще находит применение полярографический метод. Об этом говорит, в первую очередь, большое число печатных работ в области полярографии органических соединений, составляющее, по-видимому, самое значительное количество публикаций по сравнению с другими методами Последнее можно связать с основными особенностями этого метода, выгодно выделяющими его среди других физико-химических методов  [c.5]

    III.9. ДРУГИЕ ОБЛАСТИ ПРИМЕНЕНИЯ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ ДЛЯ ФИЗИКО-ХИМИЧЕСКИХ ИССЛЕДОВАНИЙ [c.187]

    Решающее значение для организации производства и внедрения люминофоров имели работы ФИАНа (В. Л. Левшин) и ГИПХа (Л. М. Марковский). В 1964 г. был создан специализированный научно-исследовательский институт — ВНИИ люминофоров — для разработки методов производства люминофоров, получения для них исходных материалов особой чистоты, разработки процессов изготовления высокоэффективных люминофоров для черно-белого и цветного телевидения, ламповой промышленности, локационной и другой вакуумной техники. Важнейшей задачей являлось также проведение физико-химических исследований люминофоров для установления областей их применения и создания единой системы стандартизации люминофорных материалов и их характеристик. Работа ВНИИ люминофоров проводилась при постоянной помощи со стороны ФИАНа и ГИПХа и при содружестве со вновь созданным Ставропольским заводом химических реактивов и люминофоров и ленинградским заводом Красный химик . [c.327]

    Число существующих руководств по рентгеновской спектроскопии очень невелико. В то же время интерес к этой сравнительно молодой области физико-химического исследования вещества непрерывно возрастает. Увеличивается круг лиц, непосредственно занимающихся рентгеновской спектроскопией, расширяется область применения рентгено-спектро-скопических методов исследования. В связи с этим ощущается большая потребность в обобщении и систематизации уже накопившегося опытного материала и в разработке путей дальнейшего развития этой области знания. С другой стороны, необходимо предоставить специалистам по рентгеноспектральному анализу достаточно полную сводку опытных данных и основных постоянных, необходимых в повседневной практической работе. [c.3]


    Широко используют в коррозии также различные аналитические методы — электрохимические (кулоно-метрию, электрометрическое титрование, полярографические определения) и ряд других — хроматографию, спектрографию, ядерный магнитный резонанс и даже построение спектров Мессбауэра. По существу, почти все методы физико-химических исследований металлов и особенно касающиеся изучения свойств, состава и строения их поверхности находят применение и в коррозионных исследованиях. [c.6]

    В 1934 г. А. И. Бродский заинтересовался новыми в то время проблемами химии изотопов. Развивая новое направление, Александр Ильич все больше переходил от исследований в области получения, анализа, физико-химических свойств, распространения изотопов в природе к их применению для изучения реакционной способности и механизма химических реакций. Эти проблемы в течение длительного времени решались только с помощью изотопов, но в последние 10—12 лет изотопные методы все чаще сочетались и дополнялись другими физико-химическими методами исследования — кинетическим, спектроскопическим, масс-спектрометрическим, методом электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), квантовомеханическими расчетами и постепенно из главных сделались подчиненными. В связи с этим уместно отметить, что А. И. Бродский всегда придавал большое значение применению и развитию новых методов исследования. [c.12]

    Наиболее широкое применение метод физико-химического анализа гомогенных систем получил при исследовании комплексообразования в растворах, которое производится с использованием для установления состава существующих в растворе химических соединений кривых состав — свойство, построенных по определенной методике. Предметом исследования комплексообразования, кроме определения состава соединений и констант равновесия, служит строение комплексов и другие свойства. По этой причине некоторые исследователи изучение гомогенных систем не относят к разделу физико-химического анализа, связывая с последним только гетерогенные равновесия. [c.13]

    Другие характеристики эффективности люминофора. При физико-химических исследованиях и техническом применении фосфоров следует учитывать, что выходящий с поверхности люминофора и реально используемый или регистрируемый приборами лучистый поток зависит не только от энергетического выхода люминесценции, но и от ряда других факторов. Прежде всего нужно иметь в виду, что поглощение возбуждающего излучения может быть неполным. Кроме того, значительная часть излучаемого света теряется в слое люминофора (люминесцентном экране). Это обусловлено реабсорбцией излучения в фосфоре и поглощением его в связующем материале и рефлектирующей подложке (если используется экран). Величина этих потерь зависит от толщины возбуждаемого слоя, зерен люминофора, их однородности, плотности упаковки, технологии изготовления экрана и т. д. В частности, вследствие отражения и преломления света на границах зерен, оптический путь его в слоях поликристаллических люминофоров возрастает по мере уменьщения размера зерен, что приводит к уменьшению интенсивности свечения люминофора. С другой стороны, в монокристалле следует считаться с потерями света при многократных отражениях его от внутренних поверхностей кристалла. Недооценка влияния подобного рода факторов приводит к ошибкам в интерпретации результатов измерений. [c.76]

    Влияние структурных превращений в пограничном слое на свойства системы обычно оценивается по изменению структурномеханических свойств растворов полимеров, механических свойств наполненных систем, набухаемости и других физико-химических характеристик. Однако не всегда на основании данных таких косвенных методов можно составить правильное представление о процессах, происходящих в пограничном слое. Ответ на эти вопросы может быть, вероятно, дан при комплексном исследовании влияния структурных превращений в пограничном слое на структуру полимеров с применением методов структурного анализа, при одновременном изучении механических и других физико-хи-мических свойств таких систем. [c.39]

    В различных химических и физико-химических исследованиях иммерсионный метод находит применение при изучении компонентов равновесных систем, при исследовании продуктов химической технологии, при качественном микроскопическом анализе и т. п. Требуя очень мало вещества (несколько миллиграммов), он особенно удобен при анализе взрывчатых и ядовитых веществ. Большим преимуществом иммерсионного кристаллооптического метода по сравнению со всеми другими методами исследования является непосредственное наблюдение объекта исследования под микро -скопом в виде отдельных зерен, что особенно важно при анализе [c.261]

    Физико-химический анализ имеет бесчисленные приложения в научных исследованиях. По замечанию Н. С. Курнакова, физикохимический анализ вырос из запросов практической металлографии . Его роль как теоретической основы производства новых жароупорных, коррозионноустойчивых и других специальных сталей авиационных, магнитных, полупроводниковых и других сплавов особенно велика. Исключительное значение физико-химический анализ имеет для галургии, занимающейся исследованием равновесий в водно-солевых системах. Применение методов физико-химического анализа способствует усовершенствованию технологии силикатных материалов. [c.143]

    Изучение электромиграционного поведения Ри (IV) показало, что в НС1 образуются как катионные, так и анионные формы хлоридных комплексов Ри (IV), причем соотношение между отдельными формами комплексных ионов зависит от концентрации комплексообразователя [58]. При концентрации НС1 выше 6 — 7 М преобладают отрицательно-заряженные ионы, по-видимому, такие как РиС1Г и Pu l - Поскольку спектральные характеристики ряда последовательно образующихся комплексов заметно не отличаются, трудно вычислить константы устойчивости хлоридных комплексов Ри (IV). Вполне определенные сведения о составе и прочности их могут быть получены с применением других физико-химических методов исследования, таких как ионный обмен, экстракция и нр. [59—60]. [c.65]

    Ниже представлены результаты исследований с применением принципов физико-химической механики нефтяных дисперсных систем, итогом которых явился новый подход к разработке депрессоров и ингибиторов парафиноотложения для высокозастывающего нефтяного сырья, создание рецептуры черной печатной газетной краски на основе недефицитного нефтяного сырья, а также смазочной композиции с улучшенными эксплуатационными характеристиками. Предложен возможный вариант объяснения аномалий в процессах высокотемпературной парофазной сорбции нормальных парафинов на цеолитах. Несмотря на различную направленность в исследованиях просматриваются некоторые общие подходы при их постановке и анализе результатов, которые могут быть с успехом распространены на другие подобные испытуемые системы. [c.239]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Для обнаружения паранитрофенола — второго продукта разложения ФОС — переводят его в пикриновую кислоту ил.и восстанавливают в парааминофенол. Исследования ФОС в химико-токсикологическом отношении с применением новейших физико-химических методов (хроматография, оптические методы анализа) в СССР ведутся в Научно-исследовательском институте судебной медицины (Н. А. Горбачева), в Ташкентском фармацевтическом институте (Л. Т. Икрамов и др.), в Республиканском бюро судебно-медицинской экспертизы Узб. ССР (Р. В. Мишина), в Донецком областном бюро судебно-медицинской экспертизы и других учреждениях. [c.266]

    Лаборатория,предназначенная для выполнения практикума, должна быть соответствующим образом оборудована. В ней необходимо организовать специализированные участки вакуумный участок с газовой горелкой для стеклодувных и кварцедувных работ участок травления с местной вытяжной вентиляцией термический участок, в котором сосредоточены печи для одно- и двухтемпературного синтеза, диффузии и других работ, требующих применения высоких температур участок механической шлифовки и полировки образцов участок физико-химических методов анализа, где расположены пирометрические установки, аппаратура для изучения давления диссоциации и т. п., а также участок физико-химических исследований и электрофизических измерений, где проводится изучение микроструктуры, измерение микротвердости, определение удельного сопротивления, термо-э.д.с., изучение вольт-амперных, вольт-емкостных характеристик и т. п. [c.4]

    Другим чрезвычайно эффективным способом упрощения спектров является метод двойного резонанса (ДР). Этот метод был предложен еще в 1954 г. Блохом и успешно реализуется в последние годы. ДР быстро получил распространение и наряду с монорезонансом применяется как для структурных и физико-химических исследований, так и для изучения фоцессов релаксации. Помимо ДР находит применение тройной резонанс, в котором одновременно используют три высокочастотных поля. Отдельно нужно выделить гомоядерный двойной резонанс, при котором оба высокочастотных поля соответствуют резонансу ядер одного изотопа, и гете-роядерный двойной резонанс, при котором два высокочастотных поля соответствуют резонансным частотам различных изотопов. [c.83]

    Получаемые тем или иным способом газы всегда бывают загрязнены примесями сопутствующих газов, которые могут попасть в чистый газ вследствие протекания побочных реакций или загрязнений извне. Чистота газа и соответственно выбор метода его очистки определяются е зависимости от намечаемого применения газа. В большинстве случаев при использовании газов для препаративных работ наличие небольшого количества примесей не мешает и применения специальных методов очистки, кроме высушивания и удаления основных примесей, не требуется. Значительно более строгие требования к чистоте газов предъявляются при проведении различных физических и физико-химических исследований. Во многих слуузлх наличие незначительного количества примесей, порядка десятых, сотых или даже тысячных долей процента, уже может оказать специфическое влияние на течение газовых реакций (в частности, каталитических), при-проведении термодинамических и других исследований свойств газов и т. д. [c.43]

    Широкое применение хронопотенциометрия находит для исследования кинетики электродньк процессов и особенно для изучения химических реакций, осложняющих электродные процессы. Большие возможности хронопотенциометрии для электрохимических и физико-химических исследований обусловлены относительно простой по сравнению с другими вольтамперны-ми методами математической обработкой хронопотенциограмм. [c.137]

    Подробному изучению был подвергнут алкилат, полученный при алкилировании фенола цетеном-1 с применением в качестве катализатора бензосульфокислоты. Исследование проводилось методами инфракрасной и ультрафиолетовой спектроскопии с привлечением данных, полученных другими физико-химическими методами. [c.168]

    Подобно другим методам физико-химического анализа, кулономет-рия применяется не только в аналитической химии, но и вообще в различных физико-химических исследованиях. Кинетика и механизм реакций, каталитические процессы, комплексообразование, химическое равновесие и т. д. являются теми областями, в которых применение кулонометрии оказывается весьма плодотворным. [c.289]

    За последнее время в практику работы лабораторий прочно входят новые методы физико-химического исследования. К таким новым методам можно отнести и масс-спектрометрический анализ, без применения которого немыслима работа, связанная со стабильными, а также радиоактивными изотонами. Построенный, в основном, для целей изотошюго анализа масс-спектрометр с успехом применяется в ряде других областей исследования. При помощи масс-спектрометра проводят анализ различных газовых смесей, исследуют строение и энергетические уровни молекул, определяют состав паров различных веществ, исследуют кинетику химических превращений, обнаруживают промежуточные продукты реакций. Масс-спектрометр применяется при изучении каталитических процессов, проводимых с веществами, меченными какими-либо атомами [1—4]. Этот новый метод исследования был нами применен для изучения некоторых новых сво11ств алюмосиликатных катализаторов, а именно, их эмиссионных свойств. [c.378]

    По своему характеру химические лаборатории очень разнообразны. Они могут предназначаться для органических синтезов, аналитических работ, физико-химических исследований. Многие лаборатории имеют специальный профиль работы. Например, есть лаборатории, ведущие исследования в области химии бериллия, химии кремния, химии фтора, лаборатории, занимающиеся рентгеноструктурным анализом, изучением фосфорорганических соединений, специализирующиеся на органическом и неорганическом катализе, лаборатории, изучающие полупроводниковые материалы и т. д. Дать какие-либо общие рекомендации по их устройству невозможнр. Можно сделать только несколько общих замечаний. С точки зрения безопасности постоянно ведущихся работ с вредными, ядовитыми, огнеопасными, взрывчатыми, радиоактивными веществами, а также безопасности работ, связанных с применением высоких давлений, высокого вакуума, высокого напряжения, необходимо, чтобы все исследования такого рода проводились в лабораториях, специально для этого оборудованных. В лабораториях, предназначенных для работы с газами высокой токсичности или имеющими неприятный запах, должна быть более мощная вентиляция. В таких лабораториях следует сделать приток воздуха несколько меньше, чем отток вытягиваемого воздуха при этом создается небольшой вакуум, недостающий воздух будет посту-пать-в лабораторию из коридора и этим исключается возможность проникновения токсических газов в другие помещения. [c.19]

    При изучении фазовых равновесий в среде сжиженных газов и при количественных анализах ИК-спектроскопия обнаруживает ряд преимуществ по сравнению с другими методами физико-химических исследований. Во-первых, спектроскопия дает возможность непосредственно в растворе обнаруживать присутствие как растворенного вещества, так и его кристаллической фазы, поскольку спектры веществ в различных фазовых состояниях, как правило, сильно отличаются друг от друга. Во-вторых, спектроскопический метод позволяет одновременно регистрировать большое число индивидуальных примесей, т. е. обладает избирательностью. В-третьих, высокая чувствительность метода, которая практически ограничивается только прозрачностью растворителя, позволяет обнаруживать весьма малые концентращш растворенного вещества (порядка 10 мол. дол). Все эти соображения свидетельствуют о перспективности применения ИК-спектроскопии в физико-химических исследованиях низкотемпературных систем и в задачах, представляющих интерес для промышленной криогеники. В настоящей статье обобщаются результаты исследований спектров растворов различных соединений, многие из которых встречаются в виде примесей к техническим сжиженным газам — кислороду, аргону, азоту. [c.82]

    Изучение природы активных центров, а также строения и свойств поверхностных соединений, образующихся при взаимодействии молекул с поверхностью катализатора, позволяет глубже проникнуть в механизм гетерогенного катализа и ближе подойти к решению задачи научного подбора катализаторов. Широко используемые в настоящее время кинетические методы исследования каталитических реакций не могут дать прямую информацию о промежуточных стадиях каталитического процесса. Многие детали каталитических реакций не удается выяснить также при помощи других физико-химических методов исследования, например применением изотопов. В ряде случаев эта задача может быть успешно решена применением инфракрасной спектроскопии, которая позволяет следить за превращением молекул непосредственно на поверхностж катализатора, что открывает большие возможности для изучения промежуточных стадий каталитических реакций [1, 2]. [c.253]

    Физико-химическое исследование системы кремнезем — глинозем и полиморфизма простого силиката алюминия АЬОз ЗЮг первыми произвели Шеперд и Ранкин. Вследствие высоких температур плавления смесей (1600—2100°) они пользовались оптическим пирометром системы Хольборн-Курльбаум и печью сопротивления с иридиевой обмоткой. Кроме корунда (а-глинозем, температура плавления 2035 10°С)2 и модификаций кремнезема, эти авторы определили еще только одно соединение, которое они описали как силлиманит с конгруентным плавлением при 1810 10°С. Кристаллизационная способность этого соединения была столь велика, что даже при мгновенной закалке не удалось получить силлиманитового стекла . Эвтектика кристобалита с силлиманитом кристаллизуется при температуре 1600°С (содержит глинозема около 11101%) вторая эвтектика— между корундом и силлиманитом — при температуре в 1810° и содержит окись алюминия около 64%. Шеперду и Ранкину не удалось синтезировать ни одного из других природных силикатов алюминия, а именно андалузита и кианита (дистена) даже с применением минерализаторов. По-видимому, эти опыты подтверждают результаты более ранних экспериментов [c.457]

    Физико-химические исследования показали, что триглицериды могут кристаллизоваться в нескольких кристаллических формах (модификациях). Такое явление носит название полиморфиз-м а. Особенно четко оно проявляется у глицеридов высокомолекулярных жирных кислот. Однокислотные глицерил,ы существуют преимущественно в трех полиморфных формах. При охлаждении расплавленный глицерид кристаллизуется. Сначала образуется наименее устойчивая, обычно наиболее легкоплавкая (ме-тастабильная), кристаллическая форма. Эта форма через некоторое время переходит в наиболее устойчивую, обычно с наимень- шей температурой плавления, кристаллическую форму. Изучать полиморфизм можно с помощью рентгеноструктурного анализа, микроскопическим методом с применением поляризационного микроскопа и термическим методом, используя дифференциальный пирометр акад. Курнакова. Термический метод основан на том, что при переходе одной кристаллической формы в другую происходит выделение или поглощение тепла. Поэтому на кривой охлаждения или нагревания вещества появляются изломы, соответствующие переходу одной кристаллической формы в другую- [c.80]

    В НИФХИ им Л. Я- Карпова разработан также интегратор, предназначенный для широкого круга физико-химических исследований (электрохимии, хроматографии и т. д.) с использованием пересчетного устройства ПП16-1 с отсчетом количества пропущенного электричества по показанию декатронов. С интегратором могут быть использованы другие пересчетные устройства, напр1Л,1ер, ПП-15, при применении которого вывод информации производится непосредственно на цифропечать. [c.93]

    Кратко изложенный здесь принцип независимости поверхностного действия является для коллоидов очень важным практическим правилом, предохраняющим от возможных ошибок при исследовании их свойств. Особенно широкое прилтенение этот принцип находит при исследовании лиофильных систем, основные проблемы которых (сольватация, набухание, растворение, мицеллооб-разование, застудневание и др.) могут быть правильно решены только на основе этого принципа. Это объясняется тем, что лио-фильиые коллоиды состоят из дифильных молекул сложных органических веществ высокого молекулярного веса. Этот принцип находит себе применение при решении и других физико-химических проблем (испарения, растворения). На этом принципе, в частности, построена очень интересная теория растворов Лангмюра. [c.120]

    Определенный прогресс достигнут в понимании действия и применении старых сульфирующих агентов. Физико-химические исследования дали более точное значение состава олеума, а работа с комплексом 80з—пиридин привела к новым и распшрила старые области применения этого комплекса для сульфирования красителей, углеводов и стероидных спиртов, а также полициклических соединений и чувствительных к действию кислот гетероциклических соединений. Комплекс ЗОд—диоксан, полученный в 1938 г., является одним из наиболее часто применяемых сульфирующих агентов в лабораторных условиях, особенно для сульфирования алкенов. Недостатком сульфаминовой кислоты, выпускаемой промышленностью с 1936 г., являлась ее высокая стоимость и низкая реакционная способность по сравнению с другими реагентами, но второй недостаток был частично преодолен, когда было найдено, что реакционная способность этой кислоты может быть значительно повышена до-бавлениел различных органических оснований. [c.12]

    Литература, посвященная исследбваник свойств стекол в зависимости от состава, многочисленна. Особенно бурный рост числа соответствующих исследований наблюдался в последние четыре десятилетия. К настоящему времени накопилось множество диаграмм, графиков, таблиц, так или иначе выражающих связь свойств стекла с составом. Часть из них обобщена в справочнике [1] в монографиях [241, 242, 243] и других книгах, ссылки на которые даны в главе И. Выполнено также немало работ, в которых ставилось целью разработать методы расчета свойств различных по составу стекол. Однако выявление наиболее общих закономерностей изменения свойств стеклообразных систем остается и сейчас главнейшей задачей физико-химического анализа. Применение мётодов физико-химического анализа к исследованию сплавов, растворов, расплавленных солей (школа И. С. Курнакова) привело, как известно, к весьма плодотворным результатам. Эти же методы имеют важное значение при исследовании стеклообразных систем. [c.128]

    Отсюда вытекает простой метод определения состава химического соединения, образующегося в двойной системе. Он был предложен И. И. Остромысленским [23] и Жобом [24] еще до того, как были выведены уравнения изотермы свойства, и называется методом изомолярных серий. Метод изомолярных серий Остромысленского — Жоба получил широкое применение в физико-химическом анализе жидких систем. Экспериментально при исследовании гомогенных систем методом Остромысленского — Жоба изомолярные серии составляют смешением растворов компонентов А и В одинаковой концентрации. Измеряется величина какого-либо свойства соединения А Вт, пропорционального его концентрации. Наиболее часто прибегают к измерению оптической плотности раствора, которая согласно закону Ламберта — Вера (см. главу И) прямо пропорциональна концентрации поглощающего его компонента. При этом, если светопоглощение раствора вызвано при данной длине волны только присутствием соединения АпВ , на ординате диаграммы состав — свойство (изомолярной серии) откладывают величину оптической плотности О. Если же свето-поглощением обладают и компоненты А и В, тона ординате откладывают отклонение оптической плотности от аддитивности АО, т. е. разницу АО = О — где Во — сумма оптических плотностей компонентов А и В при данном содержании их в растворе. Кроме оптической плотности для построения изомолярных серий используются и другие физические свойства, например вязкость, электропроводность, показатель преломления, средняя молекулярная масса, понижение температуры замерзания раствора и т. д., которые применяются вообще в физико-химическом анализе для построения физико-химических диаграмм состав — свойство. Об образовании химического соединения судят по наличию экстремума на изотермах. Положение экстремальной точки на диаграмме указывает соотношение компонентов в образующемся химическом соединении. [c.142]

    В книге рассмотрены основные положения физической химии кристаллофосфоров и лишь попутно, в порядке иллюстрации упомянуты некоторые ее практические (Применения. Следует иметь в виду, что физико-химическое исследование является весьма важным в практическом отношении даже тогда, когда оно ведется безотносительно к конкретным проблемам утилитарного характера, ибо оно вооружает нас арсеналом средств, которые необходимы для наиболее рационального решения технических и технологических задач. Сознательное применение этих средств становится возможным лишь в том случае, если технолог достаточно хорошо знаком с ними, а исследователь постоянно держит в поле зрения прикладные задачи, чтобы не пройти мимо возможности использования для их решения обнаруживаемых явлений и закономерностей. Конечно, эмпирический путь по-прежнему играет важную роль, однако в основе его в большинстве случаев лежат знания, приобретенные в ходе систематического изучения физико-химической природы кристаллофосфоров и процессов их образования, хотя используются эти знания часто подсознательно. Так или иначе, на протяжении последних десятилетий затраты усилий на изучение кристаллофосфоров не раз окупались не только улучшением их качества, но и обнаружением новых областей их применения, а также установлением закономерностей, распространение которых на другие классы твердых тел значительно расширило наши возможности управления их свойствами. Таким образом, физическая химия кристаллофосфоров прямо или косвенно играет большую роль в материаловедении в целом, т. е. в науке, изучающей основы получения 1Н0ВЫХ материалов для современной техники.  [c.318]


Смотреть страницы где упоминается термин Применение для других физико-химических исследований: [c.167]    [c.2]    [c.162]    [c.209]    [c.2]    [c.59]   
Смотреть главы в:

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) -> Применение для других физико-химических исследований




ПОИСК







© 2025 chem21.info Реклама на сайте