Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые свойства и структуры

    Атомы всех элементов имеют по одному неспаренному электрону, что определяет их свойства типичных неметаллов. Будучи самым электроотрицательным элементом, фтор в соединениях всегда имеет степень окисления —1. Остальные галогены также имеют степень окисления —1, но для них возможны и положительные степени окисления +], +3, +5, +7. Этим они существенно отличаются от фтора. Астат может существовать во всех указанных степенях окисления — от —1 до +7, являясь типичным аналогом иода. В ряду F—С1—Вг—I—At значение сродства к электрону уменьшается. У фтора, как элемента второго периода, в электронной структуре атома нет d-орбитален. Некоторые свойства галогенов представлены в табл. 17.1. [c.337]


    Значение мицеллярных растворов ПАВ для биологических систем и практики определяется главным образом способностью мицелл солюбилизировать различные вещества. Кроме того, в настоящее время мицеллы рассматривают как модели биологических мембран благодаря сходству некоторых свойств структуры мембран и мицелл. Мицеллы солей желчных кислот играют важную роль в транспорте и адсорбции липидов, являются солюбилизаторами холестерина, обеспечивают вывод лекарств из организма. Примеры практического применения мицелл ПАВ многообразны. Мицеллярные системы обладают сильным моющим действием. При сухой химической чистке происходит солюбилизация обратными мицеллами полярных загрязнений с тканей прямыми мицеллами солюбилизируются жирные углеводородные загрязнения, на чем основано моющее действие ПАВ. [c.445]

    По структуре и некоторым свойствам боразол похож на бензол и поэтому его образно называют неорганическим бензолом . Объясните строение боразола и его свойства. [c.202]

    Некоторые свойства структуры оксидов вольфрама [1, 2] [c.178]

    СК Реальные кристаллы. Описанная в 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефектов ч их тип оказывают влияние на некоторые свойства кристаллических веществ. В ряде случаев эго влияние очень сильно, а некоторые из таких структурно-чувств и тельных свойств имеют очень большое практическое значение. [c.162]

    У всех элементов, находящихся в одной и той же подгруппе периодической системы, строение внешних электронных оболочек одинаково, поэтому в свойствах таких элементов наблюдается наибольшее сходство, хотя металлические свойства в группе сверху вниз нарастают. Характер изменения свойств в группах элементов в данном случае определяется главным образом изменением радиусов атомов. Однако необходимо обратить внимание на следующее. При переходе в группе от второго к третьему периоду свойства элементов меняются настолько резко, что объяснить это одним лишь изменением радиуса атома нельзя. Например, кислород бывает только двухвалентным, а сера и все остальные элементы данной подгруппы могут иметь валентность 2, 4 и 6. Для фтора характерна исключительно одновалентность, в то время как хлор и остальные галогены могут быть 1-, 3-, 5- и 7-валентными. Такое изменение свойств при переходе от второго к третьему периоду обусловлено некоторыми особенностями структуры внешних электронных оболочек атомов элементов второго периода, с [c.62]


    Что касается этих последних, то их значение, некоторые свойства и структура заставляют выделить их изучение в отдельную главу.  [c.150]

    Указанные два внешних признака кристаллического состояния — резко выраженная температурная точка перехода в жидкое состояние и определенная внешняя геометрическая форма — не всегда применимы для характеристики кристаллической, структуры. Более общим признаком может служить присущее кристаллам явление анизотропии, заключающееся в том, что некоторые свойства (например, теплопроводность) данного кристалла неодинаковы для разных направлений в нем это явление называют иначе векториальностью свойств. Векториальность свойств кристаллов является их общим признаком. Она не свойственна ни газам, ни большинству жидкостей в обычных условиях. [c.122]

    ОД структурным анализом будем понимать получение некоторых свойств математической модели схемы исходя только из ее структуры, т. е. исходя лишь из уравнений связи [3, с. 23]. Используя методы структурного анализа, часто удается понизить размерность решаемых задач путем сведения одной задачи большой размерности к ряду взаимосвязанных задач меньшей размерности (если это, конечно, возможно). Структурный анализ вначале возник как средство повышения эффективности алгоритмов расчета с. х.-т. с. Однако методы структурного анализа, как видно из содержания последуюш их глав, имеют значение и для других разделов теории моделирования сложных схем — устойчивости, оптимизации и др. [c.44]

    Такая структура ядра основного кинетического уравнения определяет некоторые свойства его решения. Принцип детального равновесия обеспечивает в отсутствие реакции мономолекулярного превращения стационарность равновесной функции распределения, так как при подстановке в уравнение (8.13) больцмановской равновесной функции рас-, пределения первый и второй члены этого уравнения взаимно сокращаются [c.193]

    При изменении параметров состояния температуры и давления твердые вещества индивидуального состава могут переходить из одной структурной формы в другую без изменения стехиометрического состава. Примеры таких переходов — обратимые (энантиотропные) и необратимые (монотропные) превращения модификаций ряда простых веществ и соединений (разд. 33.2.2). Предпосылкой таких процессов является подвижность элементов решетки и перенос вещества, вызванный несовершенством строения твердой фазы. Некоторые свойства твердых веществ определяются не только их структурой и характером дефектов, но и строением микрокристаллитов, в том числе их формой, размерами и составом. Особенно большое влияние строение микрокристаллитов оказывает на механические свойства твердого тела, такие, как твердость, пределы пластической деформации. Проведением специально подобранной твердофазной реакции можно добиться направленного изменения структуры. В результате повышения температуры в достаточно длительного нагревания при постоянной температуре (отжига) можно ускорить рост отдельных кристаллических зерен до больших кристаллов и рекристаллизацию, что обеспечивает улучшение некоторых свойств материала. В отдельных случаях рекристаллизация играет отрицательную роль, например приводит к понижению активности некоторых катализаторов. [c.432]

    Параметру а можно придать следующий смысл. Изображающая точка, отвечающая активированному комплексу, лежит в области между исходными веществами и продуктами реакции. Поэтому можно предположить, что и некоторые свойства активированного комплекса являются промежуточными. Несмотря на то что свободная энергия активированного комплекса имеет экстремальное значение, есть основания считать, что изменения свободной энергии активации (например, при изменении структуры реагентов) носят промежуточный характер между изменениями, которые соответствуют исходным и конечным продуктам. Поэтому в (3.4) параметр а можно рассматривать как величину, определяющую степень отклонения активированного комплекса от исходных веществ при введении новых заместителей в реагент или при изменении среды, в которой протекает реакция. Если а 1, то активированный комплекс близок по свойствам к продуктам реакции, а если а О, то активированный комплекс имеет сходство с исходными веществами. [c.46]

    Наличие глубокого минимума потенциальной энергии в области малых расстояний характеризует образование уже механически прочного коагулята, Надмолекулярные структуры различного состава и строения для этой области связаны на малом расстоянии силами Ван-дер-Ваальса в агрегаты, которые обладают некоторыми свойствами твердого тела. Минимум потенциальной энергии в рассматриваемой области характеризует уравновешивание сил притяжения силой отталкивания электронных оболочек и отвечает физическому контакту частиц, В этом состоянии система наиболее устойчива. Следовательно, связи, которые создаются между макромолекулами, входящими в ассоциат или другую надмолекулярную структуру, определяют величину минимума потенциальной энергии, а следовательно, и устойчивость системы. [c.66]


    Ароматичность — это совокупность особых свойств, которыми обладают органические вещества, содержащие в молекуле бензольное кольцо или некоторые гетероциклические структуры. Эти свойства обусловлены равномерным распределением л-электронной плотности в кольце и плоскостным строением молекулы. Несмотря на формальную насыщенность, бензол и его производные более склонны к реакциям замещения, чем присоединения, и обладают высокой устойчивостью. [c.89]

    Уравнение (262) в общем можно применять для качественной оценки некоторых факторов, оказывающих влияние на процесс зародышеобразования, однако для сложных процессов уравнение непригодно. Это объясняется тем, что рост кристаллов определяется не только диффузионными процессами, происходящими в жидкой фазе, но также свойствами структуры растущих кристаллов, как, например, дефектами кристаллической решетки, внедрением в нее ионов из добавляемых растворов и т. д. [c.202]

    Специфическим свойством коагуляционных структур является тиксотропия (от греч. — тиксо — прикосновение, тропе—поворот, изменение) — способность структур после их разрушения в результате какого-нибудь механического воздействия самопроизвольно восстанавливаться во времени. Иначе говоря, тиксотропия представляет собой способность к изотермическому обратимому превращению золя в гель. Сущность тиксотропии заключается в том, что связи, которые были разрушены при механическом воздействии, восстанавливаются в результате случайных удачных соударений частиц, находящихся в броуновском движении. Такое постепенное восстановление структуры и, следовательно, нарастание ее прочности происходит не только, когда система находится в покое, но и при течении системы со скоростью меньшей той, которая обусловила данную степень разрушения первоначальной структуры. Существенно, что при переходе от одного режима течения к другому с большей скоростью обычно, но не всегда, наблюдается дополнительное разрушение структуры, что понижает эффективную вязкость и прочность структуры. Наоборот, при переходе от установившегося режима течения к течению с меньшей скоростью, как правило, происходит некоторое восстановление структуры и, соответственно, эффективная вязкость и прочность системы увеличиваются. [c.317]

    Характер взаимодействий может быть различным в зависимости от расстояния между частицами. Для относительно удаленных друг от друга частиц характер взаимодействия преимущественно электростатический, для сближенных — химический. Рассмотрение взаимодействий одного типа и использование упрощенных представлений о структуре раствора и строении его частиц может быть полезным для получения приближенных результатов, справедливых для некоторых свойств в ограниченной области концентраций определенных растворов электролитов. [c.209]

    Вопрос о том, какая гибридизация возникает при введении атома в ту или иную молекулу или кристалл, решается таким же путем, какой мы продемонстрировали, рассматривая зр2-гибридизацию. Если предполагается, что данное вещество может иметь несколько структур, то вопрос о том, какова она, решается лишь при расчете энергии состояния системы. При этом следует учитывать, что в вырожденном электронном состоянии конфигурация нелинейной молекулярной системы изменяется так, что вырождение оказывается снятым (теорема Яна—Теллера). Теорема Яна—Теллера помогает понять связь некоторых свойств молекул и кристаллов с их симметрией. Так, например, ионы переходных металлов, орбитальное состояние которых является вырожденным вследствие их симметрии, в октаэдрических полях образуют комплексы не с октаэдрической, а с более низкой симметрией, например тетрагональной. Вследствие снятия вырождения у иона в кристалле его энергия уменьшается, что обеспечивает комплексу большую устойчивость. [c.92]

    Не следует думать, что теории и теоретические методы, используемые в физической химии, являются соверщенно законченными и неизменными. Наоборот, они развиваются и совершенствуются. Так, на смену теории кристаллического поля, позволившей объяснить некоторые свойства комплексных соединений, но не учитывающей структуру лигандов, пришла теория поля лигандов вслед за классической термодинамикой получила свое развитие статистическая термодинамика вместо кинетической теории активных столкновений развилась теория активного комплекса и т. д. Процесс углубления теорий, их взаимопроникновения продолжается, возникают новые разделы и науки — термодинамика неравновесных процессов, электрохимия полупроводников, газовая электрохимия и т. п. [c.365]

    Координационное число — одна из важнейших количественных характеристик внутренней структуры кристалла. С этим числом связаны некоторые свойства кристаллических образований (твердость плотность и т. д.). Антураж оказывает также значительное влияние на размеры эффективных радиусов частиц в кристаллах, а также на величину энергии кристаллической решетки. [c.126]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Метод молекулярных орбит не противоречит рассматривавшемуся выше методу валентных связей, а скорее дополняет его. Для трактовки одних свойств молекул (например, пространственного строения) пригоднее метод валентных связей, других (например, электронных спектров) — метод молекулярных орбит. Последний менее нагляден, но легче поддается математической обработке, а потому более удобен для попыток теоретического расчета некоторых свойств, характерных для молекул в целом (например, энергий возбуждения). Вместе с тем один из главных недостатков орбитальной модели состоит в том, что она не в состоянии правильно — в количественном отношении — предсказать прочность химической связи (У о л). Метод молекулярных орбит более гибок в смысле возможности введения тех или иных специальных допущений (например, трехцентровых орбит), предназначенных для истолкования частных особенностей некоторых молекулярных структур. Однако общей теоретической основой химической практики был и остается метод валентных связей, наглядным выражением которого являются структурные формулы веществ. Только с их помощью удавалось и удается успешно решать задачи целенаправленного химического синтеза. [c.233]

    Свойства полипронплена в большой степени зависят от молекулярного веса, молекулярно-весового распределения и кристаллической структуры полимера. Поэтому продукты, полученные в различных условиях, обладают и разными свойствами. Ниже приведены средние показатели некоторых свойств полипропилена  [c.300]

    Рассмотренные выше положения и закономерности в связях между некоторыми свойствами углеводородов и их химической структурой, несмотря на известную их приближенность, позволяют сделать ряд выводов, имеющих важное прикладное значение при процессах депарафинизации. Так, для получения низкозастывающих масел необходимо подбирать сырье высокого индекса вязкости и достаточно глубоко очищать его, чтобы удалить из него компоненты низкого индекса вязкости, имеющие повышенные температуры вязкостного застывания. В этом случае при депарафинизации из низкозастываюпщх фракций высокого индекса вязкости остается удалять только такие же компоненты, но способные кристаллизоваться. Из сырья же низкого индекса вязкости и недостаточно глубоко очищенного нельзя получить путем депарафинизации, как бы глубоко она ни проводилась, такие низкозастывающие масла, которые могут быть изготовлены из высокоиндексного хорошо очищенного сырья. [c.39]

    Такие системы иногда называют также и пенами. Хотя в обычных пенах дисперсную фазу образует газ, а в эмульсиях — жидкость, ио и в пенах и а концентрированных эмульсиях частниы дисперсной фазы отделяются одна от другой только - тонкой пленкой жидкой дисперсионной среды этой однотипностью структуры объясняется близость некоторых свойств. [c.539]

    Блочно-функциональная форма фрейма представляет собой иерархическую блочную структуру, состоящую из упорядоченной совокупности блоков двух видов блоков-вопросов и блоков-ответов. Блоки-вопросы содержат разнообразные вопросы, которые необходимо задать ЛПР для установления смысла и сущности некоторых свойств рассматриваемого стереотипного понятия. Блоки-ответы раскрывают смысл определенных свойств этого понятия. С каждым блоком-вопросом может быть связано произвольное число незаполненных, или пустых, блоков-ответов, называемых слотами. Слоты заполняются ЛПР и принципиально позволяют ему использовать свои интеллектуальные способности для углубления и расширения знаний о рассматриваемом объекте. С учетом ситуатив-ности отношений между знаниями выбор ЛПР среди множества ответов определенного ответа на тот или иной вопрос фрейма может изменяться в зависимости от ответов на предыдущие вопросы ФР. В качестве блоков-ответов мо1уг быть использованы другие ФР, что обеспечивает классификационные взаимосвязи и определенные ситуационные отношения между различными ФР. Взаимосвязанную совокупность ФР будем называть сетью фрейшов. [c.65]

    Программа на ПРОЛОГе состоит из двух основных конструкций фактов и правил. Факт — это структура, завершающаяся символом точка . Факты представляют собой те данные, с которыми оперирует программа. Совокупность фактов, относящихся к некоторой задаче ПРОЛОГа, называется базой данных ПРОЛОГа. С помощью фактов описываются свойства объектов и отношения между ними. Факт, состоящий из структуры с одним элементом, обычно описывает некоторое свойство, например факт трубопровод (Р) определяет, что объект Р имеет свойство быть трубопроводом . Этот факт можно интерпретировать на естественном языке так Р есть трубопровод , или более строго так Высказывание Р есть трубопровод истинно . Факты с более чем одним элементом описывают взаимосвязи объектов (отношения между ними) [6]. Рассмотрим пример сложного предикатного выражения состояние (вентиль 4, открыт), трубопровод (трубопровод 5). источник (вх поток, вентиль 4, он есть 3). температура (вх поток, вентиль 4, нормальный). [c.219]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    В химии твердых топлив особое внимание уделяется оценке их пригодности в качестве сырья для деструктивной гидрогенизации. Действие водорода на угольное веш,ество помогает выяснить некоторые особенности структуры и свойств твердых топлив. Например, Молдавский и Кумари гидрировали воздушно-сухой торф в лабораторных условиях при 450 °С и давлении водорода 7,35 МПа выход жидких продуктов (масел) составил 14% от органической массы торфа. В присутствии катализатора никеля выход масел увеличивался до 31%- При обработке украинских бурых углей водородом при 450 °С в присутствии окиси железа выход масел достигал 50%. Фишер и Фрай гидрогенизацией землистых бурых углей при 360—500 °С и давлении от 7,0 до 12,0 МПа получали 30—40% масел [3, с. 356]. [c.178]

    В настоящее время уже имеется некоторое количество надежных данных о свойствах синтетических индивидуальных высокомолекулярных углеводородов (С22—Сво) гибридной структуры. На основании этих данных можно с достаточной степенью достоверности сделать заключение и об отдельных закономерностях, связывающих некоторые свойства этого типа углеводородов с их химическим строением. В табл. 24 приведены основные свойства некоторых синтетических углеводородов 22—Сво. зависящие от степени цикличности их, т. е. от доли атомов углерода, входящих в состав циклических элементов структуры молекулы. В этой таблице даны лишь три углеводорода (один а-гексадецилгидринден и два докозилтетралина), молекулы которых содержат структурные элементы всех трех основных гомологических рядов углеводородов. [c.118]

    По мнению А. Д. Петрова [12], суждение о строении изопарафиновых углеводородов, получаемых полимеризацией этилена, может быть лишь гипотетическим, так как еще отсутствуют экспериментальные данные о строении низших полимеров этилена, а возможности получения разнообразных форм очень велики (димером может быть как н-бутилен, так и изобутилен, углеводородами состава Сд—сополимеры н-бутилена и изобутилена и т. д.). Несомненно лишь, что эти полимеры характеризуются асимметричными структурами, так как они застывают в виде стекол и среди них нет твердых кристаллических парафиновых углеводородов. Некоторые свойства масел, полученных полимеризацией этилена, рассмотрены в работе Г. Гейзелера и его сотрудников [27]. Свойства типичных масел, полученных полимеризацией этилена, приведены в табл. 150. [c.398]

    ИЫХ закономерностях, связывающих некоторые свойства этого типа углеводородов с их химическим строением. В табл. 28 дана сводка основных свойств нескольких десятков синтетических углеводородов С22 — Се о в зависимости от степени цикличности их, т. е. от доли атомов С, входящих в состап циклических элементон структуры молекулы. В этой таблице содержится лишь три углеводорода (а-гексадецилгидриидеи и два докозилтетралииа), молекулы которых содержат структурные элементы всех трех основных гомологических рядов углеводородов. [c.136]

    Исследование структуры полученных сверхтонких слоев различной химической природы, а также их некоторых свойств позволило установить тот принципиально важный факт, что сплошной равномерный слой твердогб вещества, си нтезированный методом молекулярного наслаивания при, толщине в 4—6 монослоен структурных единиц, когда становится возможным образование кристаллических ячеек (рис. 62), образует поверхность, по свойствам соответствующую поверхности массивного твердого вещества данного состава. [c.215]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    В свободнодисперсных системах частицы дисперсной фазы не связаны мелсду собой и способны независимо перемещаться в дисперсионной среде. Такие бесструктурные системы проявляют способность к вязкому течению и качественно ведут себя как чистая дисперсионная среда (жидкость или газ). Сюда относятся разбавленные эмульсии и суспензии, коллоидные растворы (золи). В связнодисперсных системах частицы дисперсной фазы образуют непрерывные пространственные сетки (структуры) они теряют способность к поступательному движению, сохраняя лишь способность к колебательному движению. К ним относятся гели, студни, концентрированные суспензии (пасты) и эмульсии, а также пены и порошки. Такие системы проявляют некоторые свойства твердых тел — способны сохранять форму при небольших нагрузках, обладают прочностью, часто упруги. Однако вследствие малой прочности связей между отдельными элементами сетки такие системы легко разрушаются — обратимо (приобретая способность течь) и необратимо (проявляя хрупкость). Существует также ряд переходных систем, получивших название структурированные жидкости . В структурированных жидкостях частицы дисперсной фазы склонны к сильному взаимодействию, но концентрация их недостаточна для создания единой пространственной сетки. Эти системы способны течь, имеют малый модуль упрз гости, но течение их не подчиняется законам течения идеальных жидкостей, а период релаксации велик и приближается к значениям, характерным для твердых тел- [c.429]

    Рассмо фенные структуры являются примером геометрической изомерии, или цис-транс-изомерии. Метод валентны.х связей позволяет предсказывать строение комп.лексных соединений, число ожидаемых изомеров и их некоторые свойства. [c.140]

    В Практикуме большое внимание уделено также современным физическим и физико-химическим методам исследования химических превращений твердых веществ в процессе синтеза, определения их состава, строер ия и некоторых свойств, важных,, для практического использования. Среди этих методов особенг ио важная роль принадлежит спектроскопии при исследований состава и структуры продуктов синтеза, а также эллипсомет-рии, позволяющей установить толщину синтезированных слоев (пленок). [c.3]

    Нахождение волновых функций молекул является весьма сложнопй и далеко не всегда удовлетворительно решаемой задачей. В то же время есть свойства молекул, которые могут быть описаны без использования явного вида волновых функций. Например., оптические спектры двухатомных молекул успешно классифицируются с учетом того, являются они гомо- или гетероядерными, независимо от вида составляющих их атомов некоторые свойства кристаллов, состоящих из разных атомов, оказываются похожими лишь потому, что имеют решетку одинаковой структуры и т. д. В приведенных и многих других случаях идентичность свойств разных веществ обусловлена сходством их геометрии. Поэтому в квантовой химии важную роль играет описание свойств симметрии молекул и кристаллов. Для такого олисания применяется теория групп, элементарные сведения [c.67]

    Для успешного развития органической химии необходимо было ввести однозначный способ наименования органических соединений. Образование таких названий прошло историческую эволюцию. Сначала терминология состояла из тривиальных названий, которые сохранились и по сей день для многих простых соединений. Тривиальные названия не отражают структуру соединения, а указывают чаще всего на некоторые свойства этих соединений или на их происхождение (например, дульцит от лат. dul is — сладкий, пикриновая кислота от греч. nikpos — горький, муравьиная кислота впервые была обнаружена в муравьях, а мочевина —в моче). [c.31]

    Если бы структура бутадиена-1,3 соответствовала формуле СН2 = СН—СН=СН2, то это можно было бы объяснить образованием двух я-связей при перекрывании негибридизованных 2р-ор-биталей атомов С(1) и С(2) (одна связь) и атомов С(з) и С(4) — вторая связь. Но поскольку некоторые свойства бутадиена-1,3 ие вполне согласуются с рассмотренной структурой, квантовая [c.64]


Смотреть страницы где упоминается термин Некоторые свойства и структуры: [c.300]    [c.19]    [c.34]    [c.356]    [c.132]    [c.17]    [c.195]    [c.96]    [c.177]    [c.183]   
Смотреть главы в:

Химия малоорганических соединений -> Некоторые свойства и структуры




ПОИСК







© 2025 chem21.info Реклама на сайте