Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние поляризации на структуру кристаллов

    К четвертой группе примесей относятся клей, желатина, мыльный корень, ксантогенат и пр. К этой же группе можно отнести и ЗЮа. Часть из них (клей, желатина, мыльный корень) специально вводят в электролит. Примеси этой группы оказывают большое влияние на структуру катодного осадка цинка и таким образом отражаются на выходе по току. При неровном дендритном осадке на выступающих гранях кристаллов цинка наблюдаются локальные повышения плотности тока, вызывающие местную концентрационную поляризацию и приводящие к выделению водорода. Одновременно на большей части осадка, имеющего развитую поверхность, наблюдается понижение фактической плотности тока, что, как уже отмечалось, также ведет к снижению выхода по току. [c.60]


    С позиции электростатической теории, образование связи между иодид-ионом и молекулой иода можно объяснить поляризацией последней ионом иодида, возникновением диполя и дальнейшим ион-дипольным взаимодействием [37]. Это взаимодействие приводит к увеличению межатомного расстояния в молекуле иода с 2,67А до 2,82-2,9А. С позиции метода молекулярных орбиталей химическая связь в полииодидах определяется величиной интеграла взаимодействия при перекрывании р-орбиталей, вытянутых в направлении связей [38]. Большая величина интеграла взаимодействия, перпендикулярное расположение различных р-орбиталей одного атома иода по отношению к /7-орбиталям другого атома приводит к тому, что все валентные углы в полииодидах близки к 90 или к 180°. Отклонение в геометрии анионных комплексов от линейной симметричной структуры связывают с влиянием катионов. В кристаллах трииодида аммония [c.26]

    Разбирая типы структур, различных соединений, мы касались вопроса о влиянии поляризации на структуру кристаллов лишь попутно. Более детально это влияние можно проследить на схеме В. М. Гольдшмидта для соединений АХг. [c.148]

    Радиус действия атомов не строго постоянный, он зависит от структуры кристалла, соседних ионов, а также от температуры и давления. Особенно сильно из.меняются форма и радиус действия крупных атомов под влиянием противоположно заряженных ионов. При этом нарушается симметрия в строении атома, электроны смещаются относительно ядра в направлении мелких ионов с большим зарядом — происходит своеобразная деформация сферы действия. Изменение сферы действия иона в симметрии распределения электронов под влиянием внешних зарядов называется поляризацией. Чем больше радиус. действия иона и чем меньше его заряд, тем легче он поляризуется. Наибольшей поляризующей способностью обладают ионы с минимальным радиусом действия я большим зарядом (валентностью). [c.14]

    Влияние поляризации на структуру кристаллов [c.173]

Рис. 191. Влияние поляризации на структуру кристаллов Рис. 191. <a href="/info/376759">Влияние поляризации</a> на структуру кристаллов

    Большое влияние на структуру осадков при катодном выделении металлов оказывают поверхностно-активные вещества, содержащиеся в растворе, которые, адсорбируясь на растущих гранях кристалла, пассивируют их и приводят к возникновению новых многочисленных кристаллических зародышей, благодаря чему в этих условиях образуются плотные мелкокристаллические осадки. Часто органические добавки входят в состав катодных осадков. Получению мелкокристаллических плотных катодных покрытий способствуют и другие факторы, приводящие при данной силе тока к увеличению катодной поляризации, главным образом использование электролитов, содержащих комплексные ионы выделяемого металла. [c.161]

    Поскольку преломление света связано с поляризацией атомов (или ионов) под влиянием электрического поля световой волны, основную роль в формировании величины показателя преломления играет поляризуемость частиц вещества, т. е. строение электронных оболочек его атомов. Однако в кристалле эффект этим не исчерпывается. Дипольные моменты поляризованных атомов создают вторичные электрические поля, действующие на окружающие атомы и вызывающие их дополнительную поляризацию, а следовательно, и изменение показателя преломления. Дополнительный эффект поляризации зависит и от взаимного расположения атомов (структуры кристалла), и от направления внешнего поля. При изменении направления поля величина дополнительной поляризации (а с ней и показатель преломления) изменяются оптические свойства приобретают анизотропный характер. Величина и характер этой анизотропии определяются структурными особенностями кристалла. [c.218]

    Температура электролита. Повышение температуры при прочих постоянных условиях (состав электролита и плотность тока), как правило, снижает катодную поляризацию, способствуя образованию крупнозернистых осадков. В связи с этим допустимая плотность тока и, следовательно, скорость процесса при повышении температуры могут быть соответственно увеличены. Повышение же плотности тока, как было указано выше, способствует уменьшению размеров кристаллов и, таким образом, как бы компенсирует обратное влияние температуры на структуру осадка. [c.348]

    Кроме размера кристаллов, большое влияние на характер получаемых покрытий оказывают их форма и ориентация, т. е. взаимное расположение. Система кристаллов, в которой один или два кристаллографических Направления являются доминирующими, называется текстурой. Чем больше отношение количества кристаллов, имеющих определенное направление роста, по отношению к общему количеству кристаллов, тем выше степень ориентации или степень совершенства текстуры. Текстура электролитических покрытий зависит от величины катодной поляризации, кристаллической структуры металла-основы, скорости осаждения металла и наличия в электролите добавок. И текстура, и размер кристаллов влияют на свойства покрытий — блеск, чистоту поверхности и т. д. [c.216]

    Происхождение наведенной резкой поляризации полос спектра в напряженных кристаллах пока остается невыясненным не только для бензола, но и для других исследованных кристаллов [46, 73]. Однако исследование влияния деформирования на спектры кристаллов может быть плодотворным методом изучения энергетической структуры и механических свойств кристалла. В частности следует упомянуть, что анализ спектров термически деформированных кристаллов нафталина позволил сделать заключение о том, что тонкие полученные сублимацией кристаллические пленки этого соединения обладают повышенным модулем упругости [73]. [c.76]

    Вероятность образования новых зародышей зависит от того, насколько прикатодный слой раствора насыщен ионами и насколько электрод насыщен электронами. Накопление электронов эквивалентно перенапряжению — чем оно больше, тем больше может образоваться новых зародышей кристаллов. По Фольмеру малый кристалл обладает большей свободной энергией и потому для его образования требуется затратить дополнительную энергию, т. е. добавочную катодную поляризацию — перенапряжение. Фишер показал, что работа, затрачиваемая на образование зародышей, часто обратно пропорциональна квадрату катодной поляризации однако от этой закономерности известны многочисленные отклонения, зависящие от наличия или отсутствия в электролите поверхностно-активных веществ, от влияния структуры исходного катода и т. д. [c.155]

    В рассмотренном в предыдущем разделе фотохимическом низкотемпературном гидробромировании олефинов смеси олефинов и бромистого водорода обычно конденсировались в поликристаллическом состоянии. Это обстоятельство наряду с комплексообразо-ванием могло оказать сильное влияние на протекание реакции при низких температурах. Поэтому интересно выяснить особенности цепных реакций фотохимического гидробромирования не в кристаллическом, а в стеклообразном состоянии. Стеклообразное состояние, как известно [393], представляет неравновесный раствор переохлажденных структур, переходных между жидкостью и кристаллом. Под температурой стеклования обычно понимают температуру, при которой равновесие ближнего порядка не успело установиться и структура системы в целом остается фиксированной при дальнейшем понижении температуры. Введение в молекулу олефина гидроксила или атомов галогенов повышает способность соединения конденсироваться в виде стекла. Кроме того, введение атома галогена в олефин, как известно, уменьшает реакционную способность двойной связи, и из-за поляризации двойной связи нельзя точно предсказать природу образующихся продуктов [394]. В связи с этим были проведены исследования с бромистым и хлористым аллилом, которые при низких температурах наиболее хорошо стеклуются [390, 395]. [c.110]


    Температура электролита. Повышение температуры электролита так же, как и перемешивание, способствует интенсификации процесса электроосаждения металлов. При нагревании электролита возрастают катодный и анодный выходы по току (устраняется пассивирование анодов), увеличивается растворимость солей металлов и электропроводимость растворов, улучшается качество осадков вследствие снижения внутренних напряжений. В ряде случаев при комнатной температуре компактные, доброкачественные осадки вообще не образуются (станнатные) или качество осадков существенно ухудшается (пирофосфатные электролиты), поэтому электролиты нагревают до 50—80 °С. При этом появляется возможность работать при более высоких плотностях тока. Вместе с повышением температуры обычно снижается катодная поляризация, а в этих условиях скорость роста кристаллов преобладает над скоростью возникновения активных, растущих кристаллов, что должно приводить к образованию крупнозернистых и более пористых осадков. В то же время в горячих электролитах можно значительно увеличить допустимую плотность тока и как бы нейтрализовать отрицательное влияние температуры на структуру осадков. [c.252]

    Исследование дифракции рентгеновских лучей на реальных кристаллах, занимающих промежуточную область между совершенным идеально мозаичным состоянием, представляет большой интерес как для анализа мозаичности структуры их, так и для определения структурных факторов, монохро-матизации рентгеновского излучения и решения других вопросов. До последнего времени изучение дифракции рентгеновских лучей на реальных кристаллах касалось главным об-разо.м вопросов, связанных с влиянием плотности дислокаций на полуширину (форму) кривой рассеяния и в некоторой мере интегральную интенсивность рассеяния. Вопросы поляризации рентгеновского излучения, рассеянного от кристаллов с различной плотностью дислокаций, не получили должного внимания. Исследовапия кремния [1] показали, что плотность дислокаций в кристалле оказывает существенное влияние на поляризацию рассеянного рентгеновского изл че-ния. [c.56]

    Поскольку сегнетоэлектрические свойства триглицинсульфата проявляются в направлении полярной оси кристаллов, перпендикулярно которой проводилось декорирование, то можно прийти к заключению, что активные центры на поверхности триглицинсульфата являются полярными. Ориентация активных центров вдоль полярной оси кристаллов выше точки Кюри представляет собой весьма неравновесное состояние. Дальнейший прогрев кристаллов при 100—120° С приводит уже к равномерному зародышеобразованию серебра, которое обусловлено, вероятно, дезориентацией активных центров. При охлаждении кристаллов ниже точки Кюри дефектная структура поверхности триглицинсульфата восстанавливается постепенно, тогда как доменная структура образуется сразу. Старение кристаллов при комнатной температуре сопровождается как изменением доменной структуры, так и новым распределением активных центров. Взаимодействие доменной и дефектной структур включает ориентацию активных центров под влиянием электрической поляризации доменов, а сами активные центры в свою очередь предопределяют возникновение той или иной доменной структуры. [c.246]

    Для выделения хлора на графите (на истинной поверхности кристаллов) определен ток обмена, имеющий порядок коэффициенты уравнения Тафеля а = 0,75 и 6== 0,15. Эти величины для разных сортов графита очень мало различаются, что свидетельствует об одинаковой микрокинетике разряда хлор-иона на разных графитах. Различия в поляризационных характеристиках для графитов разных сортов обусловлены влиянием макрокинетических факторов, определяемых пористой структурой графита. На пористых электродах из-за поляризации наружных слоев процесс разряда распространяется в глубину, постепенно затухая с глубиной вследствие влияния сопротивления электролита в порах электрода. [c.824]

    Метод изображения кристаллических структзф шарами разных размеров 141 7. Геометрические пределы устойчивости структзф с различными координационными числами 141 8. Поляризация ионов 144 9. Зависимость размеров атомов и ионов от координационных чисел. Структурный тип перовскита 145 10. Слоистые структуры 146 11. Влияние поляризации на структуру кристаллов 148 12. Факторы, определяющие структуру кристаллов (правило Гольдшмидта) 148 [c.397]

    По Фоксу и Хекстеру, в уравнении (9) имеется два члена, отвечающих за сдвиг частоты перехода при конденсации один из них зависит от структуры кристалла и не зависит от формы кристаллита, а другой (новый член) наоборот —зависит только от формы кристалла. Таким образом, сдвиги-и расщепления полос могут зависеть как от формы, так и от структуры кристалла. В теории используется модель Лоренца, представляющая сферу в поляризованном континууме, и член, зависящий от формы кристалла, связан с поверхностной поляризацией. В работе подробно обсуждены кубические кристаллы и показано, что, во-первых, их спектры могут определяться новыми правилами отбора и, во-вторых, что вследствие снятия вырождения может появиться больше линий, чем следует из рассмотрения фактор-группы (раздел П,Д). Для некоторых кристаллов (МгО, СО2, 81 4, ЫаСЮз и СН4) было проведено сравнение с экспериментальными данными. Хотя для окончательного подтверждения влияния формы кристалла еще необходимы специальные экспериментальные исследования, однако интенсивные полосы, по-видимому, уже достаточно ясно показывают, что такое влияние существует. [c.606]

    Книга посвящена рассмотрению новой, бурно развивающейся в настоящее время области исследования взаимодействия каналиро-ванных частиц больших энергий с кристаллами. Подробно излагается теория образования квазимонохроматических уквантов при радиационных переходах быстрых частиц между уровнями поперечного движения в кристаллах. Рассматриваются явления радиационной самополяризации и вращения спина, проблемы исследования эффектов поляризации вакуума в таких процессах, влияние кристаллической структуры на протекание ядерных реакций в кристаллах. [c.2]

    Влияние природы и концентрации ионов металлов. Как известно, ионы РЬ, 8п, В1, Те, Сс1, Си, Ag и других металлов восстанавливаются на катоде из растворов простых солей в отсутствие специальных добавок при сравнительно малой, а некоторые из нух (РЬ, 5п, Ад) при едва заметной, катодной поляризации. Образующиеся осадки этих металлов имеют крупнозернистую структуру или растут в виде отдельных изолированных кристаллов (или агрегатов кристаллов), ориентированных по линиям поступления ионов, как, например, осадки свинца, серебра из азотнокислых растворов, олова из сернокислых растворов и др. Только в присутствии определенных для дачного электролита поверхностно-актий-ных вендеств (ПАВ), вызывающих сильное торможение процесса, некоторые из этих металлов образуют мелкозернистые осадки, часто с ориентированными субмикроскопическими частицами. Наоборот, металлы группы железа, платины, а также хром и марганец выделяются из растворов простых солей даже в отсутствие ПАВ с высоким перенапряжением и образуют очень мелкозернистые осадки с волокнистой структурой. [c.340]

    Среди материалов, обладающих электрическими свойствами, обычно рассматр йвают проводники, полупроводники и диэлектрики. Различия между ними определяются характером химической связи и структурой энергетических зон, возникающих в результате взаимодействия атомов или ионов, составляющих кристаллическую решетку. Энергетическая диаграмма полупроводникового кристалла в отличие от диэлектрика характеризуется более узкой полосой запрещенных энергий. Некоторые важнейшие полупроводниковые материалы для электронной техники уже были рассмотрены (германий, кремний, арсенид галлия). В то же время существует много перспективных соединений типа А В (А —Оа, 1п В -8Ь, Аз, Р) и А В1 (А11-2п, Сс1, Hg В -5, 8е, Те). Первые из них обладают исключительно высокой подвижностью носителей заряда, а вторые позволяют в широком интервале изменять ширину запрещенной зоны. Среди диэлектриков со специальными свойствами в первую очередь следует выделить сегнето- и пьезоэлектрические материалы для квантовой электроники, включая активные среды лазеров и мазеров. Первые из них склонны к поляризации только пол влиянием внешних механических воз- [c.164]

    Большое влияние на степень поляризации ионов оказывает изменение температуры кристаллов. С повышением температуры возрастает амплитуда колебаний ионов в кристаллической структуре, что способствует сближению ионов и увеличению эффекта поляризации. Изменение степени поляризации может вызвать переход кристаллического вещества в другой структурный тип (полиморфизм) либо привести к изменению окраски кристалла. Например, бесцветный кислород осле нагревания приобретает желтую окраску, красный 5Ыз при температуре выше 114°С становится желто-зеленым, желтый In ls при 120 °С превращается в красный, а красный Hgl2 при 127 °С меняет окраску на желтую. [c.208]

    Хемосорбция — это образование достаточно прочного мономо-лекулЯ рного слоя реагирующих веществ на поверхности катализатора. Хемосорбированные молекулы качественно отличны от молекул, находящихся в диффузионном слое. Хемосорбция протекает за счет валентных сил катализатора и имеет характер, близкий к настоящей химической реакции. Она характеризуется определенной энергией акгивации и ее следует отличать от обычной физической сорбции (адсорбции или абсорбции), которая не оказывает заметного влияния на прочность связей а томов в молекулах сорбированных веществ. Хемосорбция, наоборот, приводит к значительному ослаблению связей в реагирующих молекулах. Различные теории катализа стремятся объяснить сущность хемосорбции и характер изменений, происходящих в хемосорбированных молекулах. Интересно вспомнить, что еще Менделеев в 1886 г. писал о том, ЧТ9 на поверхности катализатора происходит деформация молекул реагирующих веществ, повышающая их реакционную способность. Именно этот принцип деформации молекул и положен в основу многих современных теорий катализа. В результате деформации происходит поляризация молекул и разрыхление связей в них, иногда вплоть до полного их разрыва и образования радикалов или атомов. Во многих случаях в результате хемосорбции образуются нестойкие промежуточные соединения между молекулами катализатора и сорбированного вещества. В этих случаях механизм гетерогенного катализа аналогичен механизму гомогенного катализа. Активированная адсорбция молекул реагирующих веществ происходит не на всей свободной поверхности твердого катализатора, а только на так называемых активных центрах, где запас свободной энергии больше. Это могут быть острые углы, пики, различные неровности поверхности, ребра кристаллов, химически неоднородные поверхности и т. д. В целом, чем сильнее развита общая поверхность, тем больше на ней активных центров. Поэтому повышение активности катализаторов часто связано с его высокой степенью измельчения и хорошо развитой пористой структурой. [c.197]

    Смектические фазы обладают структурой, состоящей из параллельных плоскостей, которые скользят друг по другу они не подвержены ВЛИЯНИЮ магнитного поля. Жидкокристаллические фазы этого типа не находят еще практического применения. Нематические фазы очень напоминают обычные анизотропные жидкости, однако обладают низкой ВЯЗКОСТЬЮ и хорошей текучестью. Они могут изменять поляризацию света и подобны двулучепреломляющим кристаллам, но направление двойного лучепреломления в них может изменяться под действием электрического или магнитного поля. В достаточно толстом слое у этих фаз также обнаруживаются параллельно-игольчатые структуры нематические фазы используются как растворители при исследовании ЯМР для получения информации о структуре растворенного вещества. Эфиры холестерина и некоторые другие оптически активные соединения образуют холестерические фазы. Они обладают свойствами, подобными свойствам нематических фаз, но, кроме того, могут резко изменять окраску даже при незначительных изменениях температуры и в зависимости от направления света. [c.59]

    Перемену цвета, вызванную изменением состояни электронов и связанную с перестройкой структуры, можн объяснить колебательным движением в кристалле. Дону стим, что частицы в кристалле закреплены неподвижнс В таком случае каждая из них испытывала бы строго сим метричное влияние (рис. 26, а). Появляющаяся деформа ция от разных соседей компенсировала бы друг друга В действительности же в кристалле непрерывно соверша ются колебательные движения. Расстояния между части цами при таких колебаниях меняются, вызывая соответ ственно изменение распределения зарядов — поляризаци (рис. 26, б). Если поляризующее действие соседей и соб ственная деформируемость ионов или атомов достаточны то это скажется на состоянии электронов, которые буду уже воспринимать кванты видимого света. [c.64]

    Пьезоэлектрические преобразователи занимают центральное место в большинстве акустических методов. Пьезоэлектричество было открыто братьями Кюри в 1880 г. Это явление связано с генерацией электрических диполей в природных анизотропных кристаллах, подвергаемых механическому напряжению [26]. В таких материалах обнаруживается также обратный эффект, а именно изменение размеров под влиянием электрического поля. Некоторые пьезоэлектрики являются и пироэлектриками, поляризация в которых обуславливается поглощением тепла [12]. Все материалы, проявляющие способность к пьезоэлектричеству, анизотропны, т. е. их кристаллические структуры не имеют центров симметрии. Все такие кристаллы относятся к одной из 32 точечных групп симметрии (кристаллографических классов). Из этих 32 классов 20 проявляют пьезоэлектрические, в том числе десять - пироэлектрические свойства. Из распространенных в природе кристаллов лишь немногие (например, кварц, турмалин, гегнетова соль) являются пьезоэлектриками [12]. На практике чаще всего применяют искусственные керамические пьезоэлектрики [83]. Однако в последнее время все 5ольше используют полимерные пьезоэлектрики [52]. Поскольку полимеры обычно не удается получить в виде монокристаллов нужного размера, в таких материалах пьезоэлектрические эффекты наблюдаются в состоянии, когда все молекулы ориен-гированы вдоль одной оси. Различным состояниям ориентации соответствуют четыре гипа симметрии [34]. Некоторые анизотропные биологические структуры (например, ЦНК, белки) также можно рассматривать как пьезо- и пироэлектрики [33, 34], что может оказаться важным в исследованиях, связанных с молекулярными биосенсорами. [c.441]


Смотреть страницы где упоминается термин Влияние поляризации на структуру кристаллов: [c.59]    [c.177]    [c.122]    [c.394]    [c.274]    [c.24]    [c.143]    [c.23]    [c.85]    [c.522]    [c.37]    [c.2]   
Смотреть главы в:

Кристаллохимия Издание 2 -> Влияние поляризации на структуру кристаллов




ПОИСК





Смотрите так же термины и статьи:

Кристалл влияние поляризации

Кристалл структура

Поляризация и структура



© 2025 chem21.info Реклама на сайте