Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование С—Н-связей реакциями присоединения

    Углерод-кислородные связи довольно легко образуются посредством реакций замещения, в которых разрываются связи С—Н, а также в жестких условиях реакций деструкции с разрывом углерод-углеродных связей. Реакции присоединения, такие, как гидратация алкенов в спирты, не рассматриваются как окислительные, но присоединение к алкенам с образованием двух новых связей С—О относится к реакциям окисления. [c.429]


    Как показано в табл. 1, углеводороды с двойной связью способны активно участвовать в большинстве реакций присоединения, склонны к образованию [c.286]

    Сформулированное таким образом понятие о полимеризации, конечно, согласуется с имеющейся в настоящее время картиной других реакций присоединения олефинов и является, следовательно, основанием для включения ее в удобную общую систему органической химии. Это, по-видимому, единственная реальная возможность, так как ранее высказанные предположения [104], что реакции полимеризации протекают через образование энергетических цепей или активированных двойных связей , не получили достаточного подтверждения. [c.116]

    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]

    В случае распада изопропильных радикалов вычисленный тепловой эффект совпадает с вычислением его как разности энергий связей С—Н в изопропильных радикалах [132] и энергии активации реакции присоединения атомов Н к пропилену [62[. Теплота образования изопропил-радикалов, вычисленная на основании этого значения, согласно [c.249]

    Подобная закономерность в изменении s-факторов наблюдается-и для реакций радикальной полимеризации, но только при гораздо более низких температурах. Присоединение полимерного радикала ко второй молекуле мономера (этилена или пропилена) связано с резким уменьшением s-фактора, но при последующем присоединении третьей и четвертой молекул мономера к полимерному радикалу s-фактор практически не изменяется [273]. Постоянное значение стерических факторов реакций роста цепи можно рассматривать как обоснование эмпирического положения об относительно одинаковой реакционной способности полимерных радикалов различной длины, принимаемого в кинетике полимеризационных процессов [73]. В случае реакций присоединения непредельных молекул друг к другу, например при молекулярной полимеризации этилена, образование димера имеет сравнительно высокий s-фактор ( 0,1), но присоединение третьей молекулы к димеру, или образование тримера, сопряжено с резким уменьшением s-фактора на 3—4 порядка [273]. Это может объяснить задержку полимеризации на стадии димеризации [274]. В связи с этим роль катализаторов наряду с обычным понижением энергии активации состоит в устранении пространственных затруднений (на стадии образования тримера и далее) путем сильного увеличения стерического фактора. [c.181]


    Химический критерий ароматичности определяется также совокупностью ряда свойств I) легкость образования ароматических колец в различных реакциях 2) стабильность ароматических систем, в частности труднее протекают реакции присоединения по кратным связям 3) легкость замещения водорода на различные группы в реакциях электрофильного замещения 4) характерные свойства некоторых заместителей в аренах (кислые свойства ароматического гидроксила, ослабленная основность аминогруппы, малая реакционная способность галогена и др.). [c.236]

    Реакции присоединения с образованием поперечных связей (структурирование) имеют особенно важное значение, так как некоторые механические свойства мягких пластиков и резин зависят от расстояния между поперечными связями. Скорость структурирования в отсутствие кислорода — около 2 поперечных связей на 100 поглощенных эВ. [c.162]

    По тримолекулярному механизму протекают также реакции рекомбинации двух атомов и простейших свободных радикалов, а также некоторые реакции присоединения атомов по двойной связи, например, присоединение атома Н к Ог с образованием свободного радикала НОг- [c.98]

    ПО связи С—С (что должно привести к образованию кетонов). Напротив, можно думать, что оба эти направления изомеризации практически равноценны и вряд ли одно из них может преобладать над другим. Но в таком случае отсутствие кетонов свидетельствует о том, что реакция присоединения свободного радикала по месту двойной связи олефина играет лишь незначительную роль. Этим и вызвано ее отсутствие в схеме окисления пропилена С. С. Поляк и Б. Я. Штерна. [c.412]

    Водород действительно был обнаружен в продуктах этой реакции. В окислении водорода играет важную роль радикал ОН — свободный гидроксид-ион, обнаруженный спектроскопически. Таким образом, здесь имеет место не катализ в собственном смысле этого слова (ускорение реакции благодаря вхождению катализатора в активироваипый комплекс), а ускорение процесса по механизмам сопряженных реакций. Возможны и иные механизмы, например местное активирование. Возмомсно ускорение реакции переносом энергии с катализатора на субстрат, когда образование связи при присоединении катализатора к сложной молекуле снижает прочность соседних связей и облегчает их разрыв или миграцию. Обычно это фотоката- [c.287]

    Для ацетиленовых углеводородов характерны реакции элек-трофилъного присоединения (Вгз, Н2, ННа1, Н2О), многие из которых могут протекать в две стадии. На первой стадии идет присоединение к тройной связи с образованием двойной связи, а на второй стадии — присоединение к двойной связи. Реакции присоединения к несимметричным ацетиленовым углеводородам протекают по правилу Марковникова. Многие реакции присоединения протекают в присутствии катализаторов. Так, присоединение воды к алкинам (реакция Кучерова) происходит в присутствии солей ртути (II) в кислой среде. На первой стадии реакции образуется непредельный спирт, в котором группа —ОН находится у атома углерода при двойной связи. Такие спирты неустойчивы, и в момент образования они изомеризуются в более стабильные карбонильные соединения (ацетальдегид или кетоны). [c.307]

    Хермане [342], на основании изучения полимеризационного равновесия при полимеризации е-капролактама в присутствии воды, отмечает, что с увеличением количества воды уменьшается выход полимера и растет содержание мономера и циклических олигомеров, Реакционноспособность концевых групп не зависит от величины молекулярного веса. Существенную роль, кроме гидролиза амидной связи и обратного ее образования, играет реакция присоединения е-капролактама к концам полимерной цепи. [c.91]

    Как указывалось выше, более вероятно промежуточное образование винильного катиона III, т. е. присоединение электро-фильного реагента к концевому атому. Если промежуточный катион обладает достаточно высокой энергией, то аллильный катион IV становится <более выгодным, в нем осуществляется поворот на 90° вокруг оси и открывается (за счет сопряжения с я-г дектронами двойной связи) возможность перехода к резонансно-гтабилизованному V. В этом случае присоединение Y- может протекать по обоим концевым атомам. Преимущественное образование в реакциях присоединения к алленам возможных промежуточных III, IV, V или VI, очевидно, будет зависеть от структуры алленового углеводорода и природы атакующего реагента. [c.28]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]


    Реакция с элементарным фтором. При смешении углеводорода с фтором могут происходить химические реакции нескольких типов. Их можно классифицировать следующим образом 1) замещение атома водорода фтором 2) присоединение фтора по непредельной с5 -.и 3) разрыв цепи по углерод-углеродной связи 4) образование высокомолекулярных соединений через свободные радикалы как промежуточные соедит1ения. Поскольку образование связи углерод — фтор является сильно экзотерми- [c.68]

    Некоторые g и углеводороды с сопряженной системой непредельных связей можно гидрировать при обычной температуре и атмосферном давлении, проводя реакцию последовательно через четыре ступени, с образованием триолефина, диолефина, моноолефина и парафина [147]. В присутствии платины непредельные углеводороды обычно гидрогени-зуются сразу до парафинов, но в присутствии никеля Реиея можно задержать реакцию на стадиях, соответствующих 1) частичн01Ч гидрогенизации тройной связи, 2) присоединению водорода к триепу в положение 1,6 и 3) присоединению к диену в положение 1,4  [c.245]

    Участие связывающих я- и разрыхляющих я -орбиталей мономера в образовании как а-, так и я-связей с металлом ослабляет двойную связь олефина. Квантово-химические расчеты, проведенные Косси [53], показали, что координация мономера с металлом может ослаблять также находящуюся в г ис-положении связь металл-углерод. Подобные изменения в л-комплексе подготавливают молекулу ненасыщенного соединения к реакции присоединения по связи металл— углерод. Превращение л-комплекса в ме-таллорганическое соединение является вероятной стадией многих каталитических превращений ненасыщенных соединений. Многократное повторение актов координации и внедрения обеспечивает рост полимерной цепи. [c.105]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Выступая в качестве донора электронной пары, атом азота может участвовать в образовании по донорно-акцепторному способу четвертой ковалентной связи с другими атомами или ионамн, обладающими электронно-акцепторными свойствами. Этим объясняется чрезвычайно характерная для аммиака способность вступать в реакции присоединения. [c.401]

    Многие реакции присоединения водорода, изотопного обмена, дегидрогенизации, селективного или полного окисления, присоединения окиси углерода и полимеризации углеводородов лучше всего удается объяснить, допустив существование радикалоподобных нейтральных промежуточных образований, связанных с активными центрами катализатора гсмеополярными связями. [c.25]

    Что же касается цис-транс-нзомеризацш, то, как видно из приведенных выше данных, энергия активирования этих реакций на один осциллятор близка к энергии разрыва я-связи алкена, что подтверждает рассматриваемый механизм. Другим его -косвенным подтверждением является влияние природы заместителей у двойной связи на кинетические параметры реакции (см. табл. 14) наличие заместителей препятствует внутреннему вращению и снижает ко. Кроме того, в работе [12] отмечено влияние поверхности реакционного сосуда и акцепторов радикалов (толуола и пропилена) на скорость цис-транс-изомеризаи яи хлоралкенов, обусловленное образованием продуктов их присоединения к акцептору. [c.58]

    Реакциями присоединения являются также следующие процессы. Цимеризация - присоединение, при котором взаимодействие по крайней мере двух одинаковых молекул, содержащих кратные связи, приводит к образованию молекулы нового соединения. [c.79]

    Характер промежуточных соединений с катализатором различен. Для кислотно-основных реакций, когда электронные пары перемещаются без разобщения электронов (гетеролитический разрыв валентных связей) — это комплексы типа солей для окислительно-восстановительных реакций, когда электронные пары разделяются (гомолити-ческие или радикальные реакции), это, как правило, комплексы с участием молекул или ионов, содержащих металлы переменной валентности. К первой группе относятся процессы, в которых катализатором служат кислоты или основания это реакции присоединения (отщепления) полярных молекул. Ко второй группе относятся процессы, в которых катализаторами служат ионы -элементов или образованные ими комплексы (в частности, реакции с участием атомов И или О). В последних перенос электрона [c.123]

    В активный каталитический центр входят группы, которые могут ориентировать молекулы субстрата в определенном положении по отношению к активному центру. Активный центр фермента имеет строго определенную структуру. Он подобен матрице, в которую может войти молекула только определенного строения. Обычно в ферменте на участок цепи с молекулярной массой 30 000—80 ООО приходится один активный центр. В настоящее время известно около тысячи ферментов. Отдельные группы ферментов катализируют окислительно-восстановительные реакции (оксидоредуктазы) реакции с переносом групп (трансферазы) реакции гидролиза (гидролазы) реакции отщепления групп атомов негидролитическим путем с образованием двойной связи или присоединением по двойной связи (лиазы) реакции изомеризации (изомеразы) реакции присоединения двух молекул (синтетазы). Приведенный перечень реакций, катализируемых ферментами, показывает, что при температурах 0—40° С в живом организме синтезируются высокоэффективные катализаторы практически для всех реакций, связанных с жизнедеятельностью организма. [c.632]

    В основу процессов первой группы положена реакция присоединения этилена по связи А1—С (открытая Циглером), осуществляемая обычно при температурах выше 90 °С в присутствии триалкилалюминия. В результате многократного повторения этого акта происходит увеличение длины алкильных радикалов — реакция роста , или достройки . Затем происходит вытеснение высшего олефина из алкила с образованием гидридного производного алюминия, вновь превращающегося в этилалюминиевый активный центр после присоединения молекулы этилена  [c.322]

    Инертность парафинов к реакциям присоединения объясняется тем, что все свободные связи углеродных атомов насыщены в них до предела водородом, т. е. вся свободная энергия связи в молекуле использована на образование связей С—Н. Химическая пассивность парафинов объясняется также и тем, что все связи в их молекулах являются гомеополярными. Парафины разветвленного строения, имеющие в молекуле один или несколько третичных атомов углерода, более реакциопноспособны, чем нормальные парафины, они пегко вступают в реакции замещения с азотной и серной кислотами л другими реагентами. [c.54]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Теплота обратимой реакции распада винил-радикалов на атомарный водород и ацетилен вычисляется по теплотам образования винил-радикалов и ацетилена, равным 64,0 и 54,19 ккал [64, 332 , что дает для теплового эффекта реакции величину 42,09 ккал. Для теплоты образования винил-радикалов в литературе [333] приводится также значение 15 ккал, резко отличаюшееся от принятого, что даст для теплового эффекта реакции распада винил-радикалов значение порядка 90 ккал. Это приводит к заключению-о необычайной устойчивости винил-радикалов и стабилизирующему влиянию двойной связи на термическую устойчивость их. Располагая знанием энергии С—Н связи в винил-радикале, можно вычислить тепловой эффект Ор как разность энергий С—Н связи в винил-радикале и энергии образования тройной связи из двойной, пренебрегая энергией активации реакции присоединения Н к ацетилену. Если принять для энергий связей двойной Q . и тройной <3с=с значения 159 и 187 ккал [64], а для энергии С—Н связи в винил-радикале (Сс-н)с,н, величину примерно 103 ккал, то получим для теплоты реакции величину 75 ккал. При расчетах использовано значение 42 ккал. [c.250]

    Конденсация. Для конденсации так же, как и для присоединения, характерно образование С—С-связи. Конденсация ароматических углеводородов, даю-, шая соединения с более высокой молекулярной массой, вплоть до кокса [1, 10, 22], характерна для каталитического крекинга. При этом ароматический карбе-ний-ион вступает в последовательные реакции присоединения к ароматическим углеводородам и Н-переноса. Процесс конденсацин вследствие высокой стабильности многоядерного ароматического карбений-иона может продолжаться дальше до элиминирования протона. [c.82]

    Для крекинга низкомолекулярных парафинов характерны реакции присоединения с последующим разрывом связи С—С или образованием продуктов полимеризации/[ 12, 19]. Последовательное протекание реакции присоединение — расщепление видно, например, из состава продуктов крекинга Н-С5Н12 (см. табл. 4.2). Высокий выход углеводородов С4 — результат реакций присоединения и расщепления, так как их образование из М-С5Н12 путем разрыва концевдк связи С—С энергетически маловероятно. [c.90]

    Реакции присоединения и циклизации с участием олефинов при определенных условиях приводят к образованию коксосмолистых веществ на поверхности. Была установлена [12] связь между скоростью дезактивации, цеолитсодержащих катализаторов при крекинге парафинов и содержанием в продуктах изобутилена, наиболее легко подвергаемом ионной полимеризации (рис. [c.91]

    Вследствие дегидрохлорирующего действия катализатора вначале нроисходит отщепление хлористого водорода с образованием додецена-1 такое отщепление происходит по правилу Бутлерова [43] так, что хлор отщепляется вместе с атомом водорода от соседних атомов углерода. Однако при этом еще не происходит перемещение вновь образовавшейся олефиновой двойной связи. Но поскольку дегидрохлорирующий катализатор ускоряет и обратную реакцию присоединения хлористого водорода к олефину 44], то может пемедленно снова произойти присоединение хлористого водорода теоретически это может протекать следующим образом  [c.676]

    Непосредственное наблюдение за продуктами гидратации на ранних стадиях процесса затруднено, поэтому обычно о кинетике этих реакций судят по кинетике сопутствующих явлений, например тепловыделения. Кривая тепловыделения при гидратации портландцемента приведена на рис. IV.5. Короткая начальная стадия / интенсивного тепловыделения связана с присоединением воды на поверхности и образованием аквакомплексов. Затем наступает более или менее продолжительный инкубационный период II, в течение которого тепловыделение происходит очень медленно. Природа существования этого периода окоича-тсльпо не выяснена. Многие ученые связывают наступление инкубационного периода с образованием блокирующих пленок продуктов гидратации вокруг зерен исходного цемента, препятствующих поступлению к ним воды. По другим представлениям, инкубационный период необходим для превращения аквакомплексов в зародыши новой кристаллической фазы. Его [c.103]

    Реакции хлоргидринирования достаточно хорошо изучены и освещены в литературе, однако в понимании их механизма долго не существовало единого мнения. Вначале предполагали, что хлоргидринирование протекает путем присоединения НСЮ по двойной связи. Позднее такое представление было опровергнуто. Е. А. Шилов считает, что сама молекула НСЮ малоактивна в реакции присоединения по двойной связи в водной среде [79]. Это объясняет образование хлоргидринов превращением НСЮ сначала в окись хлора или в элементарный хлор. Кинетические данные говорят о том, что I2O в реакции присоединения по двойной связи в 4.2 раза активнее, чем молекулярный хлор. [c.22]

    Одна из самых важных реакций с использованием карбонильных соединений как электрофи.тов — реакция Гриньяра — присоединение магнийоргапических соединений ио карбонильной группе. Ре.зультат этих реакций — образование связи С—С и превращение карбонильной функции в спнртоиую. [c.85]

    Переходные состояния в реакциях присоединения и отщепления (элиминирования) определяются геометрией ти-электронных облаков двойных связей. Как уже ранее отмечалось, и-электронные облака образуются в результате перекрывания коиланарных р-орбит и расположены симметрично над и под плоскостью двойной связи. Поэтому атака тт-связи или отщепление заместителей с образованием и-связи должны происходить в направлениях, лежащих в плоскости этой связи. Если такие процессы происходят по обе стороны электронного облака, то их называют транс-реакциями, если же они происходят на одной стороне [c.807]

    В настоящее время принимается, что все подобные реакции присоединения моновалентного радикала по двойной связи хотя обладают малым стерическим фактором (10 — 10 ), однако осуществляются с очень небольшой энергией активации порядка 2—3 ккал молъ [15]. Поэтому, с энергетической точки зрения, образование перекисного радикала (ВСНз + Оз- ВСНзОО) при газофазном окислении углеводородов является вполне возможным. [c.116]


Смотреть страницы где упоминается термин Образование С—Н-связей реакциями присоединения: [c.82]    [c.139]    [c.118]    [c.9]    [c.349]    [c.92]    [c.35]    [c.244]    [c.335]   
Смотреть главы в:

Методы эксперимента в органической химии Часть 2 -> Образование С—Н-связей реакциями присоединения




ПОИСК





Смотрите так же термины и статьи:

Реакции образования связей

Реакции присоединения



© 2025 chem21.info Реклама на сайте