Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины как кислоты и основания

    В разд. Ш-Е, посвященном биотехнологии, рассказывалось о том, как природа кодирует в полимерных молекулах ДНК информацию, необходимую для создания живого организма. Цепочка из повторяющихся сложноэфирных фосфатных связей между сахарами образует жесткий скелет ДНК, на котором информация может быть записана с помощью особого алфавита из четырех аминов — аденина, тимина, цитозина и гуанина (А, Т, С и О). Эти циклические амины, каждый из которых содержит несколько атомов азота, ковалентно связаны с фрагментами сахаров. Их последовательность и кодирует информацию. Эти амины называют основаниями , но в действительности способность образовывать водородные связи, выступая в роли доноров электронов ( оснований ), у них сочетается со способностью участвовать в образовании этих связей и в качестве акцепторов, т.е. доноров протона , или кислот . Водородные связи играют важную роль в механизме репликации. Двойная спираль ДНК держится на водородных связях между аминами — кислотами/ основаниями в одной из нитей ДНК с дополнительными (комплементарными) аминами — основаниями/кислотами во второй нити. Поэтому информацию, записанную в молекуле ДНК, легко прочитать, просто разрывая и вновь создавая эти относительно слабые водородные связи, совсем не затрагивая более прочные связи сахар—фосфат в цепочке-матрице. [c.171]


    Гидроаммонолиз карбоновых кислот основан на двух реакциях— образования амидов кислот при действии аммиака и гидрирования амидов в амины  [c.510]

    Как основания магнийорганические реагенты взаимодействуют с веществами, содержащими подвижный атом водорода, например с водой, спиртами, меркаптанами, аминами, кислотами и т. п.  [c.218]

    Метод анализа смеси уксусного ангидрида и уксусной кислоты основан на реакции ангидридов с первичными аминами (см. стр. 445). [c.454]

    Поэтому аминокислоты природных белков можно рассматривать как производные Ь (+)-аланина, у которого водородные атомы при р-углероде замещены различными группами. На этом основании все а-аминокислоты белков с асимметрическим углеродом являются соединениями -ряда (стр. 204), независимо от того, в каком направлении они вращают плоскость поляризации. О-Изомеры а-амино-кислот в природных белках не встречаются и животными организмами не усваиваются. [c.280]

    В воде растворяется большинство неорганических кислот, оснований и солей. Из ковалентных водородных соединений в воде хорошо растворяются те, которые подвергаются электролитической ионизации с образованием гидратированных ионов (например, НС1) и способны давать межмолекулярные водородные связи с молекулами воды (например, NH3). Из органических веществ растворимы в воде те, молекулы которых содержат полярные функциональные группы многие кислоты, спирты, амины, сахара и т.д. С другой стороны, практически все вещества, с которыми мы имеем дело, содержат следы воды. Например, температуры кипения ртути, брома, этилового спирта и т.п. после тщательного высушивания повышаются на десятки градусов. [c.300]

    Отверждение эпоксидных смол может происходить в результате взаимодействия с веществами щелочного или кислотного характера. В первом случае это главным образом амины, амиды, основания Льюиса, во втором — ангидриды кислот, фенолы, кислоты Льюиса. [c.34]

    Влияния растворителя на силу основания не наблюдали даже для такого сильного основания, как пиперидин. Так как нитрометан содержит подвижный водород, вероятно, нивелирующее действие проявляется только при высоких значениях pH. Все амины, гетероциклические основания и производные гуанидина имеют кривые титрования, качественно подобные приведенным на рис. 11.8 для этих типов соединений. Участки кривых титрования оснований с р/Са менее 8 (в воде), соответствующие расходу кислоты между 20 и 80%), необходимого для нейтрализации, прямолинейны и имеют наклон 1,1 0,1 мВ на 1% кислоты. Пиридин, который в воде является более слабым основанием, чем N,N-диэтиланилин или Ы-метил-Ы-этиланилин, в нитрометане оказывается более сильным основанием, чем производные анилина. Мочевина в этом растворителе более сильное основание, чем дифениламин, что не согласуется с известными из литературы значениями рКа [8, 9]. [c.423]


    Анализ по второму способу проводят при определении диэтиланилина, этиланилина, анилина и этанола при совместном их присутствии. Все три амина — слабые основания и могут быть оттитрованы в смеси гликоля и изопропанола. В результате реакции пробы с уксусным ангидридом анилин и этиланилин превращаются в соответствующие анилиды, не обладающие основными свойствами, и в реакционной смеси можно оттитровать диэтиланилин кислотой в смеси изопропанола и гликоля. Таким образом, устраняют мешающие примеси химическим способом, [c.618]

    Соли органических оснований, например такие, как соли алифатических и ароматических аминов, гетероциклических оснований и другие, в среде уксусного ангидрида, спиртов, пиридина, этилендиамина, ацетона, метилизобутилкетона и других растворителей проявляют кислые свойства и могут быть оттитрованы как кислоты растворами различных оснований. [c.148]

    Реакции конденсации между соединениями, имеющими активированные атомы углерода, и карбонильными производными, катализируемые основаниями (см. стр. 250) или кислотами (см. стр. 228), могут протекать более легко благодаря механизму синхронного перехода, если их осуществлять в присутствии пары кислота — основание (Н — В). Так, каталитическое действие некоторых аминов заметно возрастает в присутствии небольшого количества соли этих оснований (а) [c.334]

    В сильно загрязненных сточных водах производят две перегонки в щелочной и кислой среде. Таким образом, отделяют метиловый спирт оТ фенолов, органических кислот, аминов, пиридиновых оснований и других соединений, мешающих определению. [c.102]

    Правило одинаково справедливо для ассоциатов любой кратности и строения — будь то бинарные комплексы кислота—основание, разные димеры, полимерные цепи и циклы, трехмерные сетки воды и льда. Оно распространяется, помимо реакции (1) ассоциации свободных молекул, на другие процессы изменения (замены, перестройки и пр.) любых межмолекулярных ВС, что было показано, в частности, на процессах конденсации и разбавления воды, спиртов, аминов. [c.143]

    Подобным же свойством обладают и водные растворы аминов они также окрашивают лакмус в синий цвет. Водным раствором амина, как и раствором аммиака, можно нейтрализовать кислоту. Значит, и в растворе амина содержится основание — продукт соединения амина с водой  [c.98]

    Гидроксид железа имеет значительные основные свойства, что обусловливает положительный заряд его поверхности вплоть до нейтральной области pH. Особенно заметно сказывается pH среды на изменении знака и величины заряда поверхности амфотерных оксидов. Нанример, оксид алюминия в кислой среде имеет иоло жительно заряженную поверхность, а в щелочной среде она заряжена отрицательно. Подобным образом возникает двойной электрический слой и на поверхности между водой и органическими жидкими электролитами, которые могут быть кислотами (органические кислоты), основаниями (амины, четвертичные аммониевые основания) или иметь те и другие функциональные группы (ам-фолиты). [c.63]

    Исследователи, занимающиеся изучением этого важнейшего процесса, считают, что -высокополимерная, линейная микросомная РНК является матрицей. На этой матрице аминокислоты располагаются в определенной Последовательности, которая, по-ви димому, определяется чередованием оснований в полимерной РНК, и затем из активиро ванных аминоки слот образуются пептиды. Во зможно, что амино кислоты не переносятся на высоксполимерную РНК, а остаются на растворимой, низкомолекулярной РНК, которая реагирует с линейным уча-стком высокополимерной микросомной РНК, образуя водородные связи за счет оснований. [c.265]

    Тетрагидро-1,3-оксазины получают взаимодействием первичных или вторичных 7-аминоспиртов с альдегидами или эквивалентными реагентами (ацетилен под давлением или простые виниловые эфиры с диацетатом ртути в качестве катализатора). В случае первичных аминов в продукте реакции может присутствовать ациклическое основание Шиффа. Кетоны обычно дают с 7-амино-спиртами основания Шиффа, но в некоторых случаях, например с циклогексаноном, образуются 1,3-оксазины. Конденсация 1,1-ди-замещенных олефинов с формальдегидом и хлоридом аммония или гидрохлоридом первичного амина приводит к тетрагидро-1,3-окс-азинам (39) (схема 12) в случае монозамещенных олефинов двойная связь должна быть активирована арильной группой или сопряженной двойной связью. Метанолиз тетрагидро-1,3-оксазн-нов действием метанола и хлороводородной кислоты сопровождается удалением С-2 в виде метилаля и представляет собой путь получения 7-аминоспиртов [18]. Первичные нитроалканы при взаимодействии с формальдегидом и аминами дают тетрагидро-5-нитро- [c.570]

    Внутримолекулярная нуклеофильная атака амидной группой играет важную роль в процессах рацемизации оптически активных аминокислот. Амидный зтом кислорода (1) Ы-ацил.амино-кислот внутримолекулярно. атлкует карбонильный атом углерода (5) с отщеплением НХ, приводя к оксазолону 10.18 [схема (10.28)]. Оксазолон 10.18 под действием основания легко теряет протон при атоме углерода С-4, превращаясь в соответствующий анион, который дополнительно стабилизирован за счет резонанса, как показано на схеме (10.29). Рацемизация аниона,, таким образом, протекает весьма легко. Образование омсазоло Иов было доказано различными методами и является важней шим маршрутом рацемизации аминокислот. Следует отметить что к рацемизации также приводит и непосредственный отрыв [c.267]


    Растворители, такие, как ледяная уксусная кислота, выравнивают силы оснований, и большинство аминов в этой системе становятся одинаковыми по силе. Как видно из рис. 3, основания с рЛГи(Н20) более 4,8 (пиридин) в этой среде одинаковы по силе однако уксусная кислота не выравнивает все основания и даже в этой среде возможна некоторая дифференциация. В уксусной кислоте основания с р)(Г (Н20) менее 0,8 и более 4,8 должны проявлять достаточно различные силы, так что оказывается возможным прямое титрование каждого основания. Однако определение более слабых оснований нецелесообразно, поскольку получаются плохо определяемые конечные точки. Следовательно, уксусная кислота не является очень хорошим дифференцирующим растворителем, так как полезная область растворителя ограничивается эффектом выравнивания. [c.21]

    Характер групп, находящихся у атома азота, оказывает большое влияние на основность амина. Обычно алифатические амины, являются сильными основаниями, обладают щелочной реакцией на лакмус и но влажном состоянии поглощают двуокись углерода. Низшие алифатические амины являются, более сильными основаниями, чем аммиак, и титруются кислотами в присутствии метилоранжа или бромфенолблау в качестве индикатора. При наличии ароматического остатка основность аминоз выражена значительно слабее например, анилин и его гомологи, хотя и образуют соли с разбавленными минеральными кислотами, однако не дают щелочной реакции на лакмус и не поглощают двуокись углерода из воздуха. Титрование таких аминов кислотой в присутствии обычных индикаторов не дает удовлетворительных результатов. Напротив, солянокислые соли ароматических аминов легко титруются води лм раствором щелочи в присутствии фенолфталеина, т. е. ведут себя -н этих условиях, как свободные [c.340]

    Дегидрирующая способность. В 1862 г. Штреккер нашел, что аллоксан в водной среде окисляет а-аминокислоты с образованием альдегидов двуокиси углерода и аммиака [804, 805]. Позднее Траубе показал, что этот распад происходит не только в присутствии аллоксана аналогично действует также и изатин, в присутствии которого а-аминофенилуксусная кислота и бензиламин распадаются с образованием бензальдегида [806]. На основании этих ранних исследований установлено, что реакция Штреккера имеет для а-амино-кислот типа R H(NH2) 00H достаточно общий характер и происходит в присутствии веществ, содержащих в своем составе группировку —СО(СН=СН) СО— [807, 808]. В каждом случае аминокислота распадается с образованием альдегида, содержащего на 1 атом углерода меньше [807, 808]. Несмотря на то, что амины, подобные бензиламину и 1-аминометилнафталину, при взаимодействии с изатином расщепляются с образованием соответствующих альдегидов [806, 809], для чисто алифатических аминов такой распад не имеет места [806]. Известно далее, что распад аминов типа бензиламина ограничивается стерическими факторами так, 2,4,6-триметил- и 2,6-дихлорбензил-амины устойчивы к действию изатина [809, 810]. [c.171]

    В образцах гидроксильных соединений, содержащих амины, методами, основанными на этерификации, определяются суммарно гидроксил и первичная или вторичная аминогруппа. Прямым титрованием отдельной пробы кислотой в водной или неводной среде можно определить амины. Содержание гидроксильной группы находят по разности результатов анализа этерификацией и кислотным титрованием. Поскольку данные ацетилирования и титрования амина очень точны, содержание гидроксила, определяемое по разности, также весьма точно. Следует иметьгВ виду, что если содержание амина в смеси увеличивается, а гидроксильного соединения уменьшается, то разность результатов ацетилирования и титрования уменьшается и тем самым понижается точность анализа. [c.40]

    Было обнаружено, что в известных условиях дитиокарбамино-вые кислоты могут быть количественно оттитрованы раствором гидроксида натрия. Этот принцип положен в основу анализа смесей алифатических аминов, неорганических оснований с амином, кислоты с амином или карбоновой кислоты с ангидридом. [c.451]

    При потенциометрическом титровании по способу А не удается различить основание Шиффа и родственный ему амин (рис. 12.1). Это вызвано, вероятно, выравнивающим действием уксусной кислоты [2]. Пользуясь методом Пифера, Уоллиша и Ш малля (способ Б), алифатические амины удается количественно определить при анализе соответствующих оснований Шиффа (рис. 12.2). Однако различить количественно анилин и N-бен-зилиденанилин удалось лишь методом Фрица (способ В) (рис. 12.3). Примеси аминов в основаниях Шиффа в количествах до 1 % можно определить способами Б и В, увеличив размер пробы. [c.494]

    Другой метод синтеза алкиловых эфиров iV-арилкарбамино-вых кислот основан на реакции алкилхлоркарбонатов с ароматическими аминами в присутствии органических или неорганических акцепторов хлороводорода  [c.276]

    Замещение амино- или карбоксильной группы или одновременно той и другой превращает аминокислоты в кислоты, основания или нейтральные вещества. При этом теряются амфотерные свойства. В зависимости от природы заместителя производные остаются в той или иной мере полярными. Это необходимо учитывать при выборе растворителя. Продукты замещения, имеющие одну свободную карбоксильную и одну свободную амино-группу, например моноацилпроизводные оснбвных аминокислот, монозфиры кислых аминокислот или эфиры оксиаминокислот, в хроматографии ведут себя подобно свободным аминокислотам. [c.413]

    Вейган и его сотрудники [1, 4, 5] применили катали-метрический метод для определения третичных аминов и солей органических кислот, использовав в качестве титранта хлорную кислоту. Основания растворяли в ледяной уксусной кислоте, содержащей небольшие количества воды (2% объемн.) и уксусного ангидрида (8% объемн.). При прибавлении стандартного раствора хлорной кислоты, изменение температуры титруемого раствора, обусловленное реакцией небольшого количества присутствующего основания, идет медленно до эквивалентной точки. После достижения эквивалентной точки в растворе появляется маленький избыток хлорной кислоты. Хлорная кислота катализирует реакцию между водой и уксусным ангидридом. Температура раствора при этом резко поднимается и конечная точка титрования для реакции нейтрализации четко обозначается. Сообщается, что метод пригоден для анализа растворов, содержа щих от 2-10- - до 5- 10 -м. сильных оснований. При более низких концентрациях оснований повышается ошибка определения. При определении таких оснований, как аденин и цинхонин, и таких солей, как бифталат калия, получены результаты, отличающиеся в среднем меньше чем на 0,3% от результатов, полученных потенциометрическим методом. [c.115]

    Из этого вытекает, что флокулирующие и стабилизирующие свойства ПАВ следует сопоставлять по максимальным стабилизирующим (минимумы на кривых Ро.ь — Спаб) или флокулирующим (максимальное значение / 0,5) эффектам. Такой подход к оценке эффективности действия ПАВ позволил показать, что в гомологическом ряду аминов, кислот и спиртов, как и следовало ожидать, с удлинением их углеводородной цепи флокулирующие и стабилизирующке свойства усиливаются. Однако они ослабляются при переходе от одноатомных спиртов к двух- и трехатомным, от первичных к вторичным и третичным, от одноосновных кислот к двуосновным, от первичных аминов к вторичным и третичным. Поверхностно-активные вещества с азотом в пиридиновом кольце, представляющие собой более эффективные флокулянты, чем ПАВ с азотом в боковом кольце, являются более эффективными флоку-лянтами, чем ПАВ с азотом в боковом радикале. В проявлении эффективности флокулирующего действия четвертичных аммониевых оснований существенную роль играет и природа аниона (йод > > бром > хлор). [c.202]

    Буквы А, Г, У, Ц в таблице обозначают основания РНК — СООН . аденин, гуанин, урацил, цитозин буквенные обозначения аминокислот (напр., фен, сер, лей) см. в ст. а-Амино-кислоты. <Амбер , охра , <опал>—обозначения бессмысленных кодонов, к-рые не кодируют аминокислоты, а служат сигналами окончания синтеза полипептидной цепи. Первое основание кодона обозначается буквами в вертикальном ряду слева, второе — в горизонтальном ряду сверху, третье — в вертикальном ряду справа. Реализация Г. к. происходит в два этапа транскрипции и трансляции. За расшифровку генетич. кода X. Г. Коране и М. У. Ни-ренбергу в 1968 присуждена Нобелевская премия. [c.125]

    Первоначальный водный раствор, содержащий соляную кислоту в отношении (1 7), подщелачивают едким натром до pH не менее 10 и экстрагируют несколькими порциями эфира по 50 мл каждая. Соединяют эфирные вытяжки, высушивают их безводным сульфатом натрия, отгоняют эфир и остаток взвешивают. Остаток состоит из органических соединений основного характера (амины, пиридиновые основания и т. п.). Оставшийся после экстракции водный раствор может содержать амфотерные вещества, а также нелетучие, лучше растворимые в воде, чем в эфире, органические соединения, как, например, многоосновные кислоты, многоатомные спирты, сахара, сульфонрвые кислоты. Этот рас- [c.175]

    За исключением очень немногих случаев хинолинкарбоксальдегиды, можно считать, обладают типичными свойствами ароматических альдегидов. Например, они участвуют в реакциях Перкина, Канниццаро, в конденсациях Кневенагеля с соединениями, содержащими активную метиленовую группу. Они могут быть восстановлены по Кижнеру, дают с аминами шиффовы основания и нормально взаимодействуют с реактивами Гриньяра, образуя карбинолы. Окисление пероксидом водорода дает с хорошими выходами соответствующие кислоты. Однако хинолинкарбоксаль-дегиды-2 и -4 не подвергаются нормальной бензоиновой конденсации при действии цианида калия. 4-Изомер, по-видимому, дает нормальный ацилоин, который далее восстанавливается "другой молекулой хинолинкарбоксальдегида-4, как в перекрестной реак- [c.246]

    Первоначальный водный раствор, содержащий соляную рис-лоту в отношении (1 7), подщелачивают едким натром до pH 10 и обрабатывают несколькими порциями эфира по 50 мл каждая. Соединяют эфирные вытяжки, высушивают их безвод-ным сульфатом натрия, отгоняют эфир и остаток взвешивают, Остаток состоит из органических соединений основного характера (амины, пиридиновые основания и т. п.). Оставшийся после экстракции водный раствор может содержать амфотерные вещества, а также нелетучие, лучше растэоримые в воде, чем в эфире, органические соединения, например многоосновные кислоты, оксикислоты, многоосновные спирты, аминокислоты, галогено- и сульфокислоты, частично многоосновные фенолы, простые углеводы, карбамид и его производные. Этот раствор точно нейтрализуют уксусной кислотой и обрабатывают несколькими порциями эфира. Эфирные вытяжки высушивают безводным сульфатом-натрия и отгоняют эфир. В остатке содержатся амфотерные соединения. . - [c.256]


Смотреть страницы где упоминается термин Амины как кислоты и основания: [c.467]    [c.301]    [c.41]    [c.107]    [c.163]    [c.41]    [c.26]    [c.14]    [c.314]    [c.314]    [c.265]    [c.76]    [c.62]    [c.429]    [c.308]   
Смотреть главы в:

Основы органической химии 2 Издание 2 -> Амины как кислоты и основания

Основы органической химии Ч 2 -> Амины как кислоты и основания




ПОИСК





Смотрите так же термины и статьи:

Муравьиная кислота титрование аминами и гетероциклическими основаниями

Основания и кислоты

Уксусная кислота титрование аминами и гетероциклическими основаниями

Хлорангидриды кислот титрование аминами и гетероциклическими основаниями



© 2024 chem21.info Реклама на сайте