Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие представления и основные закономерности

    Многочисленные химические соединения, в том числе и простые вещества (т. е. соединения ато.мов одного элемента), являются основным объектом изучения химии. Химия изучает состав соединений, их строение, свойства, разрабатывает методы их получения, использования и анализа. Примечательно, что молекулы подавляющего большинства известных химических соединений содержат в своем составе атомы углерода. Соединений, не содержащих углерода, известно лишь немногим более трехсот тысяч. В связи с исключительной многочисленностью соединений углерода, важной их ролью в природе и технике и совершенно отличающимися от других соединений свойствами химия соединений углерода выделена в самостоятельную область, называе.мую органической хи-М1 ей. Химия соединений всех остальных элементов, а также учение О взаимосвязи между химическими элементами, является областью неорганической химии. Состав и строение химических соединений и общие закономерности течения химических процессов составляют предмет общей химии. Очевидно, что эти общие представления о строении вещества и о закономерностях химических процессов одинаково важны для всех специальных областей химии. [c.6]


    Ранее уже указывалось, что ферменты — это белки, выполняющие роль катализаторов в биологических реакциях. Необходимость таких катализаторов станет очевидной, если вспомнить, что температура тела равна 37°С, а многие органические реакции протекают только при более высоких температурах. Интересно было бы понять, каким образом ферменты осуществляют свои каталитические функции. Установление точного механизма действия ферментов составляет фундаментальную проблему биоорганической химии. Большая часть превращений происходит на поверхности белкового катализатора на участке, обозначаемом как активный центр, где химические превращения следуют основным закономерностям органической и физической химии. При этом одновременно действуют несколько факторов, которые следует ограничить и исследовать отдельно с помощью специальных моделей. Однако, чтобы оценить каталитическое превращение реагента (субстрата) в продукт реакции, необходимо общее представление о таком явлении, как катализ. Субстратом обычно называют химическое вещество, превращение которого катализирует фермент. [c.189]

    Данная глава посвящена изложению теоретических представлений о природе, закономерностях и механизмах основных процессов, ведущих к разрушению дисперсных систем, и общих факторах, определяющих скорость протекания этих процессов, а следовательно, и устойчивость дисперсных систем приложение этих общих представлений к различным конкретным системам будет рассмотрено в следующей главе. [c.239]

    Во введении студенты получают общее представление об аналитической химии. Во 2-й части Термодинамика и кинетика приводятся основные сведения о закономерностях, определяющих равновесные состояния химических систем, и о путях, а также скоростях достижения равновесных состояний. [c.297]

    Основные закономерности теплообмена в этой области рассматривались рядом исследователей [43, 72, 118]. Полученные ими зависимости устанавливают влияние основных факторов — физических свойств жидкости, давления и т. д. Влияние давления можно определить из типичных зависимостей, представленных на фиг. 42 с увеличением давления линия АВ перемещается влево и занимает положения А В и А"В". Это показывает, что с ростом р пузырьковое кипение подавляется при более высокой скорости жидкости. Из литературных данных известно, что при пузырьковом кипении в большом объеме геометрические размеры не оказывают влияния на значения коэффициентов теплоотдачи. В рассматриваемой области теплообмена при кипении в трубах размеры диаметра также практически не имеют значения. Общее, достаточно полное уравнение для данной области выведено не было. Это объясняется главным образом влиянием материала поверхности (стр. 140), которое в настоящее время не может быть выражено аналитически. Некоторые обобщенные зависимости приводятся в приложении (табл. IV). [c.146]


    Книга содержит сведения о химическом составе продуктов питания, объединенные в таблицы, которые помещены в приложении. Конечно, в реальной жизни никто из нас не рассчитывает с помощью таблиц с точностью до граммов или миллиграммов количество пищевых веществ, потребляемых нами, не определяет состав блюд, которые мы едим, но эти сведения дают общее представление о составе пищи и содержании основных ее компонентов, помогают выявить закономерности, обосновать практические рекомендации и сделать их более убедительными. [c.4]

    Создание научной теории предвидения каталитического действия веществ, позволяющей рациональным путем подбирать катализаторы для различных реакций, является основной проблемой катализа. Над ее рещением работает огромная армия исследователей, ей посвящены тысячи работ, однако и сегодня мы находимся от ее решения не намного ближе, чем несколько десятков лет назад. За последние годы достигнуты большие успехи в раскрытии механизма отдельных сторон каталитических реакций (главным образом в результате применения новейших методов исследования). Установлены многочисленные корреляции между физикохимическими свойствами веществ н их каталитическим действием, сделаны частные обобщения для отдельных групп родственных реакций. Но, несмотря на эти успехи каталитической науки, поиск новых катализаторов продолжает осуществляться, как и прежде, эмпирическим путем, исходя из общих представлений, аналогий, частных закономерностей и т. п. [c.5]

    Общие представления и основные закономерности [c.86]

    Количество СОг в почвенно-грунтовом воздухе при нормальной аэрации во много раз больше, чем в атмосферном. Приведенные средние цифры дают лишь общее представление об особенностях его состава. Содержание в нем СОг изменяется в широких пределах и какой-либо закономерности этого не обнаружено она может участвовать во многих реакциях в почве, связываясь основными [c.62]

    Подробные выводы и указания ближайших задач исследования были даны выше. Ограничимся поэтому общими замечаниями о развитии физики горения газа. Хотя конечной целью теории горения является подробный количественный расчет явления, полноценное в практическом отношении решение такой задачи требует большого времени и зависит от прогресса смежных отраслей знания (газовой динамики, теории турбулентности, процессов тепло- и массообмена, кинетики). Однако уже сейчас физика горения может оказать существенную помощь конструкторам и инженерам прежде всего ясными представлениями о природе и основных закономерностях турбулентного горения газа. Из качественных представлений, количественных оценок, полуэмпирических теорий и т. п. можно вывести заключения об оптимальных условиях сжигания газа при той либо пной конкретной организации технического процесса. Дальнейшее совершенствование связано с развитием некоторых разделов физики горения газа, в первую очередь — аэродинамики и теплового режима, и расширением комплексных исследований, охватывающих эти две основные, хотя и не исчерпывающие стороны явления. [c.174]

    Основные закономерности, полученные при теоретическом рассмотрении поведения макромолекул в ограниченном объеме, приведены в виде графиков на рис. 111.8—111.11. Представленные результаты позволяют сделать ряд общих выводов о характере межфазного распределения полимерных цепей и на основе этих выводов проводить интерпретацию данных хроматографических экспериментов. [c.69]

    Учебное пособие Примеры и задачи по общей химической технологии является дополнением к учебнику Общая химическая технология . Пособие охватывает основные разделы учебной дисциплины Общая химическая технология — физико-химические основы химических процессов, химические процессы и реакторы, химико-техно-логические системы. В соответствии с общей направленностью курса основное внимание уделено расчетам процессов с химическими превращениями. Вначале предлагается расчет основных технологических показателей производства, используя данные по протекающим в нем химическим превращениям. Здесь же обращено внимание на культуру расчета - соблюдение размерностей и некоторые вопросы точности вычислений. Затем предлагается расчетный материал последовательно от частного к общему физико-химические закономерности химических процессов, расчет химического реактора и системы реакторов, материальный и тепловой балансы химико-технологической системы и химического производства. Каждый раздел содержит краткие сведения о процессе и основные расчетные формулы, примеры расчетов и задачи для самостоятельного решения, ответы на которые приведены в конце книги. Исключение составляет глава Материальный и тепловой балансы химико-технологической системы - в нем приведены только примеры технологического расчета конкретного производства, чтобы показать логику разных расчетов и форму их представления. [c.3]


    Скорость отлета для Земли равняется 11,3 км/с. Частицы тел, проникающих с такой или большей скоростью в поле земного тяготения, могут более или менее свободно уйти в космическое пространство. Частицы, падающие в поле земного тяготения, двигающиеся с меньшей скоростью, чем 11,3 км/с, не могут из него уйти. Среди космических сил в геологии основное значение имеют пока радиоактивные процессы, связанные, по нашим современным представлениям, с закономерным распадением атомных ядер некоторых немногих радиоактивных элементов. Явление это получило сейчас основное значение в геологии, так как тепловые процессы, связанные с этим распадом, достаточны для объяснения основного геологического, эмпирически точно установленного явления — роста температуры — действенной энергии планеты в пределах биосферы и ниже ее на некоторую глубину, в общем все же в пределах немногих сотен километров от уровня геоида. [c.31]

    Основное содержание ОТ составляет специфический универсальный метод, одновременно сочетающий в себе обобщенный подход, который оперирует количественными мерами одинаковой размерности, и конкретный подход, оперирующий величинами неодинаковой размерности, но которые либо прямо соответствуют, либо в определенной комбинации приводятся к размерностям обобщенного подхода. Благодаря такой постановке вопроса идея единства природы и ее законов получает конкретное количественное выражение, в равной степени справедливое для самых различных дисциплин, которые ранее рассматривались независимо друг от друга. Здесь уместно подчеркнуть принципиальную разницу, существующую между ОТ (и ОТС) и известной теорией подобия (и размерностей). Первые пекутся главным образом о выявлении наиболее общих, глубинных законов природы, а вторые занимаются в основном формальным обобщенным представлением имеющихся закономерностей. [c.78]

    Поскольку процессы промышленного микробиологического синтеза в своем технологическом и аппаратурном оформлении имеют много общего, они могут обсуждаться как единая отрасль промышленности со своими закономерностями и спецификой. Это отразилось и на построении указанных учебных пособий первое из них, хотя и посвящено конкретно биосинтезу белковых веществ, содержит главы 2 и 3, в которых дано общее представление о типичной структуре производства в биотехнологии и о способах получения основных сырьевых источников, используемых во всех разновидностях промышленного микробиологического синтеза. Во-втором излагаются лишь фактическое состояние и перспективы развития производства биологически активных препаратов микробного происхождения. [c.5]

    В углублении и расширении этих данных и в целеустремленных поисках аналогичных явлений мы видим дальнейший плодотворный путь исследований принципа нормировки структурных молекулярных состояний, выражающей, с нашей точки зрения, основные закономерности взаимодействия отдельных функциональных систем в общей системе целого. Очевидно, что в свете высказанных выше представлений проблема целого понимается как изучение его проявлений. [c.107]

    Основное значение эмпирических уравнений заключается в их использовании для алгебраического представления экспериментальных данных. Для расчета равновесия эти уравнения не могут быть рекомендованы, так как большинство их противоречит термодинамическим закономерностям и ни одно не может являться общим для всех систем. [c.170]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    Книга написана так, чтобы, насколько это возможно, дать читателю объективное представление о современной органической химии и ее применениях—быть может, в очень упрощенной форме. Читатель постепенно знакомится с основными общими закономерностями органической химии, с реакциями отдельных групп соединений, природными соединениями, основами промышленного производства важнейших органических веществ и с применениями органической химии в повседневной жизни, в том числе и с потенциальными опасностями, которые таят в себе органические соединения. [c.6]

    Неорганическая химия неотделима от общей химии. Исторически при изучении химического взаимодействия элементов друг с другом были сформулированы основные законы химии, общие закономерности протекания химических реакций, теория химической связи, учение о растворах и многое другое, что составляет предмет общей химии. Таким образом, общая химия изучает теоретические представления и концепции, составляющие фундамент всей системы химических знаний. [c.7]

    Рассмотренная иерархическая схема может быть углублена и дополнена в соответствии с особенностями исследуемой БТС. В свою очередь БТС может входить как составляющая в более общую метасистему, например отраслевую систему микробиологической промышленности. Представленный системный подход к анализу сложной многоуровневой биотехнологической системы позволяет увязать научные исследования, проводимые большей частью разрозненно на отдельных иерархических уровнях, в общую систему с целью получения закономерностей ее функционирования, методов оптимизации и управления. С другой стороны, в соответствии с выше рассмотренной иерархической схемой БТС можно выделить следующие основные этапы исследования БТС. [c.44]

    Итак, схематически и в самых общих чертах мы обрисовали некоторые основные вопросы, которым посвящен настоящий труд. Полное представление о значимости затронутых здесь вопросов читатель получит, когда ознакомится со всеми теоретическими положениями и найденными закономерностями. [c.11]

    Методологической основой изучения материала курса Общая химическая технология являются основные научные методы исследования химико-технологических процессов — математическое моделирование и системный анализ, базирующиеся на закономерностях протекающих химических и фазовых превращений, явлений переноса теплоты и вещества, равновесия, сохранения энергии и массы в сложных реагирующих системах, что делает представленный материал не просто изложением сведений о процессах и явлениях химической технологии, а их исследованием и разработкой. [c.3]

    Применение полимеризационноспособных непредельных соединений и олигомеров — прогрессивное направление в технологии резины, обеспечивающее снижение энергетических затрат, упрощение и автоматизацию переработки и формования резиновых смесей, получение эластомеров с новым комплексом свойств. Специфический комплекс свойств резиновых смесей и резин, полученных при применении полимеризационноспособных олигомеров и мономеров, особенности физико-химических явлений и химических превращений, наблюдающихся при их использовании в качестве временных пластификаторов, сшивающих агентов и усиливающих наполнителей, позволяют выделить этот метод как самостоятельное направление в области синтеза эластомеров. Применение с этой целью низкомолекулярных акриловых и метакриловых соединений и солей непредельных карбоновых кислот, комплексных соединений винилпиридинов, дималеинимидов, дивинилбензола и др., а также структура и свойства получаемых таким образом резин рассматривались в монографии [50, с. 255] и в работах [51, 52]. В результате были сформулированы общие представления о закономерностях протекающих реакций и структуре вулкаиизатов с непредельными соединениями. Кратко эти вопросы рассмотрены также в гл. 4. В данном разделе основное внимание уделено получению резин с помощью полимеризационноспособных олигомеров класса олигоэфиракрилатов (ОЭА) —дешевых нетоксичных продуктов, выпускаемых в промышленном масштабе [53]. Их использование в ряде случаев является единственно приемлемым способом переработки жестких каучуков и резиновых смесей, изделия из которых обладают уникальным сочетанием высокой износостойкости, прочности и теплостойкости, характеризуются низким набуханием в маслах и бензине. Применение низкомолекулярных аналогов ОЭА—акриловых и метакриловых эфиров гликоля, этаноламина и т. д. — описано в ряде работ [52, 54—67]. [c.26]

    Одним из основных аспектов повышения производственного потенциала нефтеперерабатывающих и нефтехимических предприятий является интенсификация технологических систем, среди которых ведущее место занимают массо- и теплообменные процессы в совокупности с соответствующей аппаратурой. Как правило, решение задач математического моделирования технологических процессов и разработка новых конструкций аппаратов базируются на классических представлениях о закономерностях протекания кинетики, массо- и теплопереноса. Общий недостаток этих классических представлений заключается в том, что решение задачи интенсификации процесса носит асимптотический )црак1ер, то есть значительные количественные изменения параметров процесса не приносят сколько-нибудь заметного улучшения результата. [c.214]

    Структура данной книги не сильно отличается от учебника выпуска 1970 г. Фотохимия — это химия возбужденных частиц, и ее предметом является изучение различных превращений возбужденной частицы ее химические реакции либо излуча-тельный или безызлучательный распад. Эти возможности и рассматриваются в гл. 3—6 в гл. 1 дается общее введение в основные принципы фотохимии, а в гл. 2 кратко объясняются закономерности поглощения и испускания излучения. Совершенно очевидно, что в фотохимии используются определенные экспериментальные методы, и иллюстративный материал лучше усваивается, если читатель понимает суть экспериментальной методики. Описание некоторых наиболее важных экспериментальных методов приводится в гл. 7. Эта глава включает очень общее представление о направлении, называемом Фотохимия с высоким временным разрешением . Оно связано с детализацией динамики фотохимических процессов, включая использование энергии исходных частиц в определенных квантовых состояниях при преобразовании в конечные продукты. Этот материал позволяет понять детали фотохимического взаимодействия, но не очень хорошо согласуется с содержанием гл. 3—8. Так как экспериментальная реализация этого метода технически сложна, то описание его дается в гл. 7 (разд. 7.5 и 7.6). Гл. 8 завершает книгу обсуждением фотохимических процессов, происходящих в природе, и некоторых технологических и лабораторных применений. В ней я не пытался жестко с.педовать систематическим названиям химических соединений, привояя названия, широко используемые в промышленности. [c.9]

    Первая из этих задач в настоящее время решена на достаточно строгой физико-химической основе, решение второй затруднено недостаточным развитием теории растворов, невозможностью сколько-нибудь полного учета богатой гаммы межмоле-кулярных взаимодействий в хроматографических системах. Поэтому закономерно, что в данной области основным подходом является полуэмпирическое моделирование, базирующееся на общих представлениях о механизмах сорбции в системах того или иного типа. С учетом этого настоящий раздел посвящен исключительно первой задаче вопросы связи между строением сорбатов и удерживанием рассматриваются в последующих разделах, посвященных конкретным разновидностям ВЭЖХ. [c.26]

    Несколько слов об отношении излагаемых в книге вопросов к общему положению, сложившемуся в физике дефектов к настоящему времени. В последние годы стало очевидным, что механические свойства сильно деформированных твердых тел или кристаллов со сложной дислокационной или двойниковой структурой очень трудно выразить непосредственно через микроскопические свойства дефектов (дислокаций). Возникла необходимость пользоваться свойствами коллективных образований типа ансамблей дислокаций, дисклинаций и штнарных дефектов, описывающих ротационные степени свободы пластической деформации. Переход к этим представлениям отвечает переходу от микроскопического рассмотрения к следующему структурному уровню (условно, - уровню мезоэф-фектов), удобному для анализа механических свойств деформированных кристаллов. В случае обратимой пластичности подобными коллективными образованиями являются гшоские скопления дислокаций превращения на межфазных границах или скопления двойникующих дислокаций на двойниковых границах. Именно в этих терминах удобно описывать основные закономерности обратимой пластичности кристаллов. [c.12]

    В литературе во многих работах анализ строения плотного слоя ири адсорбции ТМ на электродах проводился по упрощенной модели Грэма и Парсонса [59, 66], пренебрегающей зависимостью эффективного дипольного момента ТМ и диэлектрической постоянной плотного слоя >02 от поверхностной концентрации ТМ, а также вытеснением и взаимодействием дипольных молекул растворителя и диполей ТМ в двойном слое. В работе [67] анализ строения плотного слоя при адсорбции ТМ был проведен на основе более общих представлений, учитывающих изменение диэлектрической постоянной и толщины плотного слоя, а также адсорбционное вытеснение молекул растворителя с поверхности электрода при адсорбции ТМ. В модели плотного слоя, развитой в работе [67], учитывается, что при е = соп81 величины Хэф и /)о2, а также толщина плотного слоя б зависят от Г. На основе зависимости г ) от Г рассчитаны отношения ([1эф/6)е=о и ( Лэф/б)е=1 в зависимости от 8. Расчеты показали, что в среде ДМСО и ДМФ отношение ( 1эф/6)е=о лишь немного возрастает, а в спиртах сильно увеличивается при переходе от <0 к 8>0. Отношение ( 1эф/б)е=1 в ДМСО и ДМФ резко уменьшается, а в спиртах и воде несколько возрастает с ростом положительного заряда электрода. Анализ этих закономерностей привел к выводу, что в среде ДМФ и ДМСО большую роль играет эффект ориентационной поляризации в области точки нулевого заряда висмута, отражающей взаимодействие в плотном слое адсорбированных молекул ТМ с диполями ДМФ и ДМСО, тогда как толщина плотного слоя 6 изменяется мало. В спиртах, наоборот, основным фактором является увеличение ё при переходе от 6 = 0 к 0=1 в области 8>0. [c.129]

    Какая же связь между превращение.м органической химии в количественную науку и электронными теориями Известно, что ход химической реакции, природа конечных продуктов, их выход — все это функция от состава и строения исходных продуктов и от условий, в которых протекает их взаи.модействие — химическая реакция. Можно даже сказать — все это есть функция только строения исходных продуктов, потому что поведение данного вещества в данных условиях (температура, растворитель, катализатор, сореагент и т. п.) также можно рассматривать как функцию его строснпя. Поскольку химик изучает превращения. кимических соединений, то очевидно правильнее всего начинать с выяснения их строения. Только такой путь к познанию закономерностей химических превращений. южет быть кратчайшим — все остальные пути будут более долгими и трудоемкими или приведут лишь к поверхностным результатам. Собственно последователей Бутлерова в этом убеждать и не надо, ибо основное положение теории химического строения, как мы уже говорили (стр. 410), сводится к тому, что химическая натура молекулы определяется натурой элементарных составных частей, количеством их и химическим строением [25, стр. 70]. Но в классической теории химического строения эта зависимость химических свойств органических молекул от их химического строения носит качественный характер. Для того, чтобы зависимость между реакционной способностью молекул, например значениями энергий активации органических реакций с их участием, от строения реагентов была количественной, необходимо не только иметь общее представление о более тонких деталях этого строения, но и обладать набором отвечающих им количественных характеристик. Решение этой задачи невозможно без электронных теорий, которые уже теперь показали себя способными к количественному описанию тонкого строения органических молекул, а в будущем обгщают делать это несравнимо точнее и полнее. [c.414]

    Мы вынуждены поэтому ограничиться здесь весьма кратким и сжатым очерком некоторых закономерностей, свойственных механическим процессам, происходящим в центрифугах, подчеркнув одновременно, что почтй полное до сих пор отсутствие опытных исследований придает этим закономерностям весьма общий характер, который позволяет пользоваться ими в основном лишь для получения общего представления о качественной стороне рассматриваемых явле- [c.26]

    На основании самых общих представлений о структуре растворов низкомолекулярных веществ в полимерах можно выделить по крайней мере три типа главных структурных элементов, предопределяющих его основные физические характеристики ассоциаты молекул пенетранта с функциональными группами сегментов макромолекул, кластеры молекул пенетранта и статистически распределенные в матрице полимера молекулы сорбата, подчиняющиеся либо закономерностям Генри, либо Флори — Хаггинса. Анализ изотерм сорбции с помощью теорий БЭТ, Флори — Хаггинса, Генри, двойной сорбции , Зимма — Лунберга (см. гл. 8) позволяет установить границы появления и развития этих структурных элементов. Например, кластеры из молекул пенетранта возникают вблизи границ совместимости, ассоциаты молекул — при низких активностях диффузанта и т. п. Если принять, что каждый из указанных типов структурных элементов характеризуется своим локальным коэффициентом диффузии ),, то образование в матрице вторичных структур может и должно приводить к появлению дополнительных составляющих в общем трансмембранном потоке. Так, естественно ожидать, а отдельные эксперименты это подтверждают [47, 86], что кл в кластерах молекул пенетранта выше Д, для статистически распределенных молекул. При коалесценции кластеров в объеме мембраны и образования бесконечного кластера, соединяющего две стороны мембраны, возникает канал , обладающий более высокой проницаемостью ( ) г, кл> 1 )- Образование такого канала происходит при вполне определенной концентрации кластеров (Скл 16%), как это следует из теории перколяции [138]. Поскольку образование кластеров, их разра- [c.72]

    Учет этих обстоятельств позволил количественно описать основные закономерности кинетики многих электродных реакций. Эти представления были подтверждены на примере реакции выделения водорода на ртутном катоде (С. Д. Левина, Я. В. Дурдин, В. А. Зарин-ский, 3. А. Иофа, Б. Н. Кабанов, В. С. Багоцкий и др.). В частности, оказалось возможным полностью объяснить зависимость перенапряжения от концентрации ионов водорода в чистых кислотах и на фоне посторонней соли, влияние общей концентрации электролита, влияние перестройки структуры двойного слоя в присутствии адсорбирующихся ионов и т. д. [c.151]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]

    Следует иметь в виду, что представления о структуре материала основаны на закономерностях взаимодействия компонентов данного материала. В коллоидной химии изучаются составы, имеющие два основных компонента, точнее, две фазы дисперсную фазу (чаще всего в виде мелких твердых частиц) и дисперсионную среду (обычно жидкость, содержащую различные растворенные вещества). Состав системы определяет величину сил, действующих между частицами (так как от него зависят потенциал и толщина двойного слоя, а также толщина и состояние адсорбционного слоя поверхностно-активного вещества или полимера). Межчастичные силы и концентрация частиц, а часто и предыстория определяют, в свою очередь, структуру дисперсной системы и, следовательно, ее реологические свойства, поэтому, приступая к изучению реологических свойств, необходимо хотя бы в общих чертах познако- [c.151]

    Сознательный, т. е. научно обоснованный синтез прочности или, вернее, носителя прочности реального твердого тела — проблема новых рациональных строительных и конструкционных материалов в современной технике. Она прежде всего и определяет актуальность физико-химической механики, ее выдающееся прикладное значение. Ученые физнко-химнки до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка — дело технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные от исследователей — механиков и физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химии только для того, чтобы использовать новые методы измерения. Таким образом, основные задачи не были даже правильно поставлены, не было физико-химических представлений о существе процессов деформирования и разрушения, с одной стороны, и структурообразования — с другой. Даже не выдвигалась проблема установления общих закономерностей в этой важнейшей области науки и практики. Отсутствие современных физико-химических представлений о существе и механизме процессов приводило к техническому формализму в его худшем виде творческое научное исследование подменялось эмпирическими рецептурными сведениями на основе давно устаревших взглядов. Если в области металлов и новых сплавов, а также полимеров и пластиков здесь уже довольно много сделано, то основные проблемы неметалличргких мятрриялов на основе ионных кристаллов (цементы и бетоны, керамика) до последнего времени оставались нерешенными. [c.209]


Смотреть страницы где упоминается термин Общие представления и основные закономерности: [c.74]    [c.244]    [c.24]    [c.49]    [c.58]    [c.210]   
Смотреть главы в:

Современная радиохимия -> Общие представления и основные закономерности




ПОИСК





Смотрите так же термины и статьи:

Общие закономерности

Основные закономерности



© 2024 chem21.info Реклама на сайте