Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитическое окисление органических соединений

    ЭЛЕКТРОЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.245]

    Любое вещество, снижающее поляризацию, называется деполяризатором. Могут быть два механизма воздействия деполяризаторов. Первый заключается в том, что деполяризатор вступает в химическое взаимодействие с образующимся на электроде веществом до его выделения, второй—в том, что деполяризатор отдает электроду или воспринимает от него электроны. В процессе восстановления можно поддерживать потенциал катода ниже того значения, которое необходимо для выделения водорода при условии, если атомарный водород до своего выделения реагирует с восстанавливаемым соединением или если это соединение принимает электроны от катода [6,7]. Потенциал анода также можно поддерживать ниже значения, необходимого для выделения кислорода, если атомарный кислород до своего выделения реагирует с окисляемым соединением или если это соединение отдает электроны аноду ([7, 3], гл. 15). Таким образом, во многих, хотя и не во всех случаях электролитического восстановления и окисления органических соединений, само соединение действует как деполяризатор. [c.316]


    Кроме того, существенным фактором, обеспечивающим высокие скорости окисления органических соединений в электролитических аппаратах, является многократное участие хлорид-иона в цикле разряд на аноде и гидролиз с образованием активного хлора, затем восстановление активного хлора при взаимодействии с органическими веществами с образованием атомарного кислорода и хлорид-иона. Атомарный кислород как наиболее сильный окислитель вовлекается в окисление органических примесей, а хлорид-ион вновь разряжается на аноде. Такой [c.109]

    Электролиз хлоридных растворов может оказаться перспективным не только для цинка, но и для других процессов электролиза цветных металлов [27]. В этом случае на аноде вместо бесполезного кислорода будет выделяться хлор, который можно использовать для хлорирования продуктов, содержащих цинк, и перевода их в водорастворимую форму. Электролиз цинка из хлоридных растворов наиболее рационально сочетать с электролитическим производством хлора, расходуемого на хлорирование органических соединений. Получаемая при этом хлорировании соляная кислота может быть использована для выщелачивания цинкового концентрата, а выделяющийся при электролизе цинка хлор направлен на хлорирование органических соединений. Помимо сказанного, электролиз хлорида цинка имеет то важное преимущество, что позволяет использовать более дешевые и не загрязняющие электролит графитированные электроды, сопровождается более низким напряжением на ванне ввиду меньшей величины анодного потенциала и большей электропроводности электролита, не требует использования двуокиси марганца для окисления железа и т. д. Недостатками процесса являются усложнение конструкции и обслуживания ванн, худшее качество осадков цинка, ограниченная плотность тока. [c.71]

    В качестве растворителя этилендиамин особенно интересен для катодного восстановления неорганических соединений. Важно то, что этилендиамин весьма схож с аммиаком. Так, например, в нем могут образовываться растворы электронов, а ртуть может служить электронным электродом. По сравнению с аммиаком этилендиамин находится в жидком состоянии в более удобной для работы области температур (11-117°С) и имеет относительно низкое давление паров при комнатной температуре (-10 мм). Несмотря на низкую диэлектрическую постоянную (12), этилендиамин растворяет с одинаковым успехом как органические, так и многие неорганические соединения, особенно перхлораты и нитраты. Подобно аммиаку, этилендиамин не совсем подходит для проведения реакции электролитического окисления, однако для восстановительных процессов он вполне пригоден. Так, в этой среде можно исследовать полярографическое восстановление ионов щелочных металлов от лития до цезия и аммония [c.24]


    В гл. III, посвященной электролитическим реакциям, изложены некоторые общие вопросы, имеющие важное значение при практическом осуществлении этих реакций (перенапряжение, поляризация, деполяризация и т. д.), описана применяемая аппаратура (типы электродов, конструкции электролизёров и т. д.) и рассмотрены способы проведения наиболее типичных электролитических реакций, протекающих в катодном и анодном пространствах электролитической ванны. Большую ценность для читателя представит содержащаяся в этой главе весьма полная сводная таблица, в которой суммированы и систематизированы результаты более чем 500 работ, посвященных исследованию продуктов реакций электролитического окисления, восстановления, сочетания, галоидирования и цианирования для большого числа органических соединений. [c.6]

    При проведении электролитического восстановления многие органические соединения можно перевести в водный раствор добавлением к католиту определенных количеств какого-нибудь растворимого органического соединения, например одного из низших спиртов, обычно этилового (см. примеры реакций восстановления, стр. 332 и сл.). Если эту операцию осуществить при проведении окисления, то соединение, добавляемое для повышения растворимости, окисляется вместе с тем органическим соединением, которое нужно окислить. В некоторых случаях, как указано выше, можно употреблять неводные рас- [c.324]

    Предлагается метод одновременного определения углерода, водорода, азота в органических соединениях с газо-хроматографическим окончанием анализа. Анализируемое вещество окисляется окисью меди при пиролитическом разложении навески в замкнутом объеме в среде гелия при 750—850 С, Продолжительность сожжения 30 мин. Продукты окисления вытесняются гелием через электролитическую ячейку, где происходит накопление и последующее электролитическое разложение воды. Продукты пиролиза и электролиза (N2, СО,, О...) идентифицируются газо-хроматографическим методом. [c.338]

    В этой главе рассматривается электролитическое поведение органических гетероциклических соединений, обусловленное их способностью присоединять или отдавать электроны, т. е. восстанавливаться или окисляться. Обычно при помощи инертных индикаторных электродов измеряется либо зависимость окислительновосстановительного потенциала (редокс-потенциала) от отношения (окисленная форма)/(восстановленная форма), либо зависимость силы тока от приложенного напряжения. Первая зависимость исследуется потенциометрическим методом, вторая — полярографическим или, в общем случае, вольтамперометрическим методом. В основном все электрохимические измерения относятся к одному из этих методов. В ряде случаев для решения специальных вопросов, недоступных двум классическим методам, техника этих методов изменялась, не затрагивая теоретических основ. [c.228]

    Практический интерес представляет и установленный эффект снижения со временем значения ХПК в очищенной БСВ (рис. 33). По данным рис. 33 видно, что ХПК очищенной воды через 96 ч после электрообработки стоков падает практически до нуля. Последнее объясняется интенсивным протеканием окислительных процессов за счет кислорода, образующегося при электролитическом разложении воды в межэлектродном пространстве электрокоагулятора и выделяющегося на аноде по описанной ранее схеме. Образующийся атомарный кислород, растворяясь в воде или рекомбинируя с возникновением молекулярного кислорода и последующим его растворением, окисляет остаточные органические соединения до промежуточных или конечных продуктов окисления — углекислого газа и воды. Поэтому ХПК очищенный воды снижается. [c.234]

    Пиридин — единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты — основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универса.ть-ный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Пиридин находится в жидком состоянии в области температур от —41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. По вязкости он подобен воде и растворяется в ней в любых пропорциях. Пиридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, [c.42]

    Соли довольно часто применяются как фоновые электролиты при электровосстановлении или электроокислении органических соединений в водной среде. Восстанавливаться на катоде на фоне солей могут ацетиленовые углеводороды и спирты до этиленовых производных, лактоны, карбонильные соединения до спиртов. Соли являются также электролитами при гидродимеризации альдегидов и кетонов, ненасыщенных карбоновых кислот и их производных, активированных олефинов, а также в реакциях дегалогенирования. Соли используются в качестве электролитов в реакциях электролитического окисления карбоновых кислот (реакция Кольбе, Брауна — Уокера), в процессах алкоксилирования. [c.99]


    До сих пор рассматривалась роль, которую адсорбция играет лишь непосредственно в самом процессе электролитического восстановления (или окисления). Этот фактор должен сказываться и на кинетике конкурирующих процессов, т. е. на кинетике электрохимического выделения водорода или кислорода. Присутствие адсорбированных веществ на поверхности электрода может и увеличивать и уменьшать перенапряжение водорода или кислорода. Это, в свою очередь, будет изменять условия протекания реакции восстановления или окисления. Исходя из подобных представлений, удалось объяснить тот экспериментальный факт, что реакции электроокисления или электровосстановления многих веществ часто протекают со значительным выходом по току при потенциалах, заметно больших, чем те, при которых (при той же плотности тока) происходит выделение водорода или кислорода из растворов, не содержащих деполяризатора . В частности, проведение синтеза Кольбе возможно именно потому, что органические соединения, адсорбируясь на платиновом электроде, отравляют его, затрудняют выделение кислорода и смещают потенциал до значения, при котором может начаться окисление анионов карбоновых кислот. [c.415]

    Необратимые процессы [3]. Реакции необратимого типа, т. е. реакции в системах, в которых не устанавливаются обратимые равновесные потенциалы, наиболее часто встречаются в случае органических соединений, не диссоциирующих на ионы. Катодное восстановление нитробензола в анилин и анодное окисление спирта в уксусную кислоту являются примерами процессов этого типа. Вероятно, необратимы также некоторые неорганические реакции, например электролитическое восстановление азотной кислоты и нитратов в гидроксиламин и аммиак или анодное окисление ионов трехвалентного хрома в хромат-ионы. Хотя проблемы электролитического окисления и восстановления были предметом многочисленных экспериментальных исследований, точный механизм протекающих при этом реакций остается все еще спорным. Так, например, электролитическое восстановление соединения НО в К может быть представлено уравнением [c.672]

    Как указывалось ранее, большинство процессов электролитического окисления или восстановления органических соединений протекает необратимо. Имеются, однако, некоторые заслуживающие внимания исключения, например переход хинона в гидрохинон, лейкооснования в окрашенную форму трифенилметановых красителей и т. д. Однако эти системы редки, и в общем случае мы должны довольствоваться эмпирическими данными. Необратимая система не дает определенного потенциала, который изменялся бы в соответствии с количеством окисленной и восстановленной формы, как это получается в случае применения термодинамического выражения для потенциала обратимой системы. Потенциал необратимых систем зависит больше от природы среды (степени ее кислотности или щелочности) и природы электрода, чем от концентраций окисленной и восстановленной форм. Поэтому невозможно применить простые термодинамические принципы, которые справедливы для обратимых электродных процессов. Следует помнить, что существует четкое различие между химической и термодинамической обратимостью. Переход кетона во вторичный спирт может быть обратимым, но этому равновесному переходу не обязательно будет соответствовать определенный термодинамически обратимый потенциал. Это не означает, что кетон, электролитически восстановленный до спирта, не может быть снова электролитически окислен до кетона. Такое окисление возможно, но для осуществления его потребуются совершенно другие условия в отношении потенциала, pH среды и. материала электрода. [c.12]

    Всякий процесс электролиза состоит из двух сопряженных реакций восстановления — на катоде и окисления — на аноде. Из многочисленных электрохимических процессов первыми развились в многотоннажные производства те, которые связаны. либо с выделением газообразных продуктов (электролиз воды, получение хлора и т. д.), либо с выделением металлов (гидроэлектрометаллургия, рафинирование, гальванотехника). Процессы электролиза, при которых основные образующиеся продукты не выделяются в виде металлов или газов, а остаются в электролите в растворенном состоянии или выпадают в виде нерастворимых соединений, имеют в электрохимической промышленности относительно меньший удельный вес (по тоннажу, но не всегда — по значению). За этими процессами сохранилось название электролитическое окисление (или восстановление) , но более правильным названием для них является электросинтез , соответственно неорганических и органических веществ. [c.114]

    Из других процессов электролитического окисления кроме описываемого ниже производства перекисей отметим получение хромовокислых солей, многочисленных органических соединений (окисление спиртов до кислот) и т. д. [c.448]

    Изучение электролитических реакций органических соединений началось вскоре после открытия в 1800 г. Никольсоном и Карлисле электролиза воды. Однако эти реакции не применялись для синтетических целей вплоть до 1847 г., когда Кольбе сделал открытие, что алифатические углеводороды можно получать электролизом солей алифатических кислот. С тех гюр область применения электролитических реакций сильно расширилась и теперь можно проводить синтезы при помощи электролитического восстановления, окисления, катодной конденсации, анодной конденсации и замещения. [c.312]

    Иеренапряжише, как будет показано ниже, играет большую роль не только при восстановлении и окислении органических соединений, но также и при проведении реакций электролитического восстановления в щелочных растворах на ртутном катоде и при хлорировании. [c.316]

    В этой связи стоит упомянуть, чтоТафель в 1900 г. в своих обширных работах по электролитическому восстановлению органических соединений часто пользовался специально подготовленным свинцовым электродом, поверхность которого превращалась в шероховато-губчатую путем электролитического-окисления до перекиси свинца и последующего катодного восстановления ее в губчатый свинец. [c.677]

    Хотя в этой главе сравнительно много места уделено теории электрохимического восстановления и окисления органических соединений, однако этот вопрос заслуживает еще большего внимания в связи с его практическим значением. Старая литература более подробно рассмотрена в книге К. Брокман, Органическая электрохимия, Процессы электролитического окисления и восстановления, М.—Л., Химтеоретиздат, 1937. Работы русских ученых по электролизу органических соединений, выполненные до революции, перечислены в статье Н. Е. Хомутова [ЖФХ, 24, 1030 (1950)]. В советский период в этой области было проведено много работ, имеющих как практическое, так и теоретическое значение [Н. Е. Хомутов, С. В. Горбачев. ЖФХ, 24, 1101, (1950) Н. Е. Хомутов, ЖФХ, 25, 607 (1951) Н. А. Изгарышев и И. И. Арямова. ЖОХ, 18, 337 (1948) Н. А. Изгарышев. А. А. Петрова, там же, 24, 745 (1950)]. В статье Л. И. Антропова [Труды второй всесоюзной конференции по теоретической и прикладной электрохимии. Изд. АН УССР, Киев, 1949, стр. 138] изложены основы современной теории электрохимического гидрирования органических соединений и приведена более новая литература по этому вопросу. Ряд работ в этой области сделан полярографическим методом (см. гл. XIII). [c.691]

    Окисление органического соединения электролитическим методом во многих отношениях очень сходно с действием сильного окисляющего агента. Однако механизм окислительного процесса пока еще окончательно не установлен. Глесстон и Хикклинг предложили механизм [1], согласно которому предполагается, что в водном растворе гидроксильные ионы разряжаются при низком потенциале, образуя гидроксильные радикалы, которые, соединяясь, дают перекись водорода. Перекись водорода может затем реагировать с органическим деполяризатором, вызывая окисление, или разлагаться, давая кислород и воду  [c.105]

    До сих пор бензонитрил преимущественно использовался в электроана-литической химии или электрохимии органических соединений. Это обусловлено наличием примыкающего к нитрилу фенильного кольца и отсутствием альфа-водорода, что выгодно отличает его от других нитрилов. Благодаря этим особенностям бензонитрил является удобным растворителем для обнаружения электролитически генерированных радикалов. Бензонитрил применялся в качестве растворителя при полярографии [1] в нем можно получить полярограммы для активных металлов Ка , Mg , Са , и Ва , но не для и четвертичного аммониевого иона вследствие низкой растворимости соответствующих солей. Бензонитрил использовался также для анодного окисления алифатических аминов [2]. По-видимому, применение этого растворителя, связанное с большими трудностями, не дает каких-либо преимуществ по сравнению с ацетонитрилом. [c.13]

    Ниридин - единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты - основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универсальный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Ниридин находится в жидком состоянии в области температур от -41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. Но вязкости он подобен воде и растворяется в ней в любых пропорциях. Ниридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, платиновом и графитовом электродах. Из пиридиновых растворов были электроосаждены следующие элементы Ы, Ка, К, Си, Ag, Mg, Са, Ва, 2п, РЬ и Ге [1]. Имеются некоторые указания на образование растворов электронов в пиридине [2.  [c.27]

    В ГЛ. I и II были рассмотрены процессы электролиза, при которых под действием электрического тока происходит разложение продуктов на его составляющие части. Однако при помощи электрического тока можно осуществлять и синтез сложных неорганических и органических соединений. Такой процесс называется электрохимическим синтезом. В руководстве рассматриваются лишь процессы электрохимического синтеза неорганических соединений. Процессы электрохимического синтеза могут проходить как на аноде, так и на катоде или в объеме электролита в условиях взаимодействия электродных продуктов. Анодные процессы, получившие название электролитического окисления, протекают с потерей электрона, а на катоде процессы связаны с присоединением электрона и называются электровосстановительными. [c.135]

    Не стоит говорить, что работа над темами, финансируемыми армией, флотом и воздушными силами, будет продолжаться, а в некоторых случаях и расширяться. Воздушные силы, например, только что заключили договоры, согласно которым будет изучаться электролитическое окисление неорганических и органических соединений, электрохимия растворенных газов, попытаются найти новые редокс -системы и будут исследовать мембраны для элемента фирмы Айоникс . [c.418]

    В книге рассматриваются методы проведения каталитических, фотохимических и электролитических реакций органических сое-динеии11. Она состоит соответственно из трех глав. В гл. I дано описание аппаратуры для проведения каталитических реакции, путей ее применения, изложены методы приготовления катализаторов, а также методические особенности проведения каталитических реакций гидрирования, дегидрирования, изомеризации, полимеризации, конденсации, алкилироваиия и др. В гл. II рассматриваются фотссенсибнлизированные окисление и восстановление, реакции, протекающие с участием кетонов, альдегидов, азотистых соединений и соединений с ненасыщенными связями, а также молекулярные перегруппировки, цепные реакции и т. д. Описана применяемая в фотохимии аппаратура и, в частности, источники излучения. В гл. III даны сведения по электролитическим реакциям с большим числом примеров их осуществления в тщательно составленных таблицах систематизирован обширный материал с указанием выходов. [c.4]

    Окислительное сдваивание. Соединение двух свободных радикалов с образованием сдвоеппого продукта реакции — это часть окислительного процесса, если радикалы возникают при реакции окислеттая. Ряд примеров подобных процессов уже был рассмотрен в главе о гомолитических реакциях замещепия (стр. 421). Еще один путь получения радикалов, которые могут соединяться, — это электролитическое окисление. Хотя органическая электрохимия — сравнительно мало разработанная область, имеется по меньшей мере один очень старый пример окислительного сдваивания на аноде. В синтезе Кольбе соли карбоновых кислот подвергаются электролизу и сдваиваются с потерей карбоксила в виде двуокиси углерода. [c.428]

    Возможности метода электролитического окисления в водной среде ограничены тем, что при повышенной разности потенциалов вода начинает подвергаться электролизу метод, однако, применяли для получения гексафторо-(IV) манганата калия КгМпРб и гидратированного фторида кобальта -Ввиду важности электролиза в жидком фтористом водороде как метода фторирования органических соединений кажется странным, что совершенно нет работ по приложению этого метода к получению соединений переходных металлов. [c.90]

    Ниже рассматриваются данные об окислении отдельных групп органических сернистых соединений. Для удобства обозрения в приложении даны таблица примеров окисления сернистых соединений, с С2 по Сзз, и таблица действия важнейших окислителей на сернистые соединения (Н2О2 надуксусной, над-бензойной и мононадфталевой кислот СгОз и Н2СГО4 КМПО4 НМОз, электролитическое окисление и действие озона). [c.132]

    Среди карбоксилатов наиболее важен тетрацетат свинца, поскольку он используется в органической химии как сильный, но селективный окислитель. Его получают при растворении сурика РЬз04 в горячей ледяной уксусной кислоте или при электролитическом окислении РЬ в уксусной кислоте. При окислении в качестве атакующего реагента, по-видимому, выступает катион РЬ (ОСОСНз) 3, который изоэлектронен другому окислителю того же типа Т1 (ОСОСНз) з, хотя это соединение иногда окисляет по [c.322]

    Образование серной кислоты также происходит при биохимическом и химическом окислении серы, сероводорода, сульфидов и серосодержащих органических соединений (см. главу VI). К поступлению ионов водорода в метаморфизованные подземные воды приводит и электролитическая диссоциация слабых кислот. Среди них важную геохимическую роль иг иют угольная и уксусная кислоты. Углекислота не только содержится в загрязненных атмосферных осадках, сточных и природных водах, но и генерируется при закачке сжатого СО2 и карбонизированной воды для повыщения нефтеотдачи коллекторов II и III подзон. Как будет показано в главе VI, уксусная кислота является промежуточньпи про-д5 ктом биоокисления нефтяных углеводородов в загрязненных ими водах. [c.115]

    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающихся частиц. Это видно, например, из рис. 86, на котором представлены данные по электровосстановлению трехвалентных ионов марганца до двухвалентных. Однако такая простая- зависимо.сть наблюдается не всегда. В кинетических уравнениях, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. Один из таких примеров был приведен на стр. 385, где рассматривалось восстановление растворенного иода до иодида. В уравнения, описывающие кинетику электровосстанов-ления органических соединений, их объемная концентрация вхоД,ит обычно в дробной степени. [c.465]

    Следующей туи ыв в развитии гэлектроврганической химия является исследование процесса анодного замещения, который гораздо менее изучен, чем процессы электролитического окисления и восстановления. Однако здесь имеются некоторые важные факторы, которые следует считать тесно связанными с окислительно-восстановительными процессами. Во-первых, при анодном замещении не происходит в явном виде изменения числа электронов в продукте замещения. Во-вторых, атом водорода в молекуле замещается другим атомом или группой, например, атомом галоида или нитрогруппой, которые выделяются из раствора в процессе электролиза. Обычно считают, что существуют три процесса, при которых может происходить такое замещение. Первый процесс вызывается тем, что при окислении вещества в растворе образуются активные агенты, вступающие в реакцию с органическим соединением. Этот тип процесса по существу является электрохимическим по своей природе и должен зависеть от потенциала анода, плотности тока и материала электрода. Кроме того, в этом случае соединение должно вести себя как типичный деполяризатор, понижая потенциал электрода, и полученные в результате этого процесса продукты могут отличаться от получаемых обычными химическими методами. Вторая группа процессов аналогична химической реакции, и роль электрического тока заключается только в выделении замещающего агента за счет какого-либо из веществ, содержащихся в растворе. Так, например, только выделение брома из раствора бромистой соли зависит от пропускаемого тока, способность же брома вступать в реакцию замещения не зависит ни от потенциала анода, ни от материала электрода. Рез , льтат в этом случае будет по существу тот же, что и при простом барботировании брома через раствор органического соединения. Третий тип процессов, при котором происходит реакция замещения, связан с высокой концентрацией активного вещества на поверхности [c.151]

    К процессам электролитического окисления следует отнести также процессы хлорирования, фторирования, бромирования и иодирования на аноде. Такие реакции применяются главным образом при электросинтезе органических соединений, например, для хлорирования бензола или этилена, фторирования и бромирования углеводородов, получения йодоформа. Теория этих процессов изучена очень мало Изгарышев и Горбачев считают, что первично на аноде выделяется галоид, который уже вторично взаимодействует с веществом, подлежащим галоидированию (бензол, толуол, спирт и т. д.) непосредственно или с промежуточным образованием в водных растворах хлорноватистых, иодноватистых и других соединений. Очевидно, электрогалоидирование в ряде случаев должно идти аналогично электроокислению. [c.119]

    Глава 11. Электросинтеа. (Процессы электролитического восстановления и окисления) — 114—143. 25. Процессы при электролитическом восстановлении — 114. 26. Процессы при электролитическом окислении—117. 27. Примеры электролитического восстановления 120. 28. Электролитическое окисление неорганических веществ— 122. 29. Электролитическое производство перекиси водорода, надкислот и их солей, озона — 127. 30. Электролитическое производство кислородных соединений хлора — 135. 31. Электролитическое окисление и галоидирование органических веществ — 142. [c.539]

    Алкоксильные соединения, эфиры и соли кислородсодержащих кислот. Все четыре элемента образуют алкоксильные соединения, например 51(ОС.2Н5)4, и эфиры, напри- 1ер РЬ(ОСОСНз)4. Тетраацетат свинца, получаемый взаимодействием уксусной кислоты и РЬд04 или электролитическим окислением растворов РЬ" в карбоновых кислотах, используют в органической химии в качестве сильного, но селективного окислителя. [c.331]

    Электролиз сточных вод проводится с использованием электролитически нерастворимых анодных материалов (графитированного угля, магнетита, двуокиси свинца, марганца или рутения, нанесенных на титановую основу) при относнтельно высоких плотностях тока в безднафрагменных либо диафра-гменных электролизах при обычной или повышенной температуре. Деструктивное окислеиие молекул различных органических веществ на аноде часто сопровождае Тся полным их распадом с образованием углекислого газа, воды, аммиака и некоторых других газообразных продуктов. В некоторых случаях происходит анодное окисление органических или неорганических соединений с образованием более простых по составу, а также нетоксичных или малотоксичных продуктов (например, анодное окисление фенолов до малеиновой кислоты, цианидов до цианатов, сульфидов до сульфатов и др.). [c.95]


Смотреть страницы где упоминается термин Электролитическое окисление органических соединений: [c.196]    [c.36]    [c.369]    [c.9]    [c.68]    [c.88]   
Смотреть главы в:

Методы разложения в аналитической химии -> Электролитическое окисление органических соединений




ПОИСК





Смотрите так же термины и статьи:

Окисление электролитическое

Органические электролитическое



© 2025 chem21.info Реклама на сайте