Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие при адсорбции. Скорость адсорбции

Рис. 5.2. Кривые изменения скорости адсорбции Wa(x) и времени установления равновесия Рис. 5.2. <a href="/info/1155393">Кривые изменения скорости</a> адсорбции Wa(x) и <a href="/info/1651822">времени установления</a> равновесия

    АДСОРБЦИОННОЕ РАВНОВЕСИЕ СКОРОСТЬ АДСОРБЦИИ [c.207]

    Интересно влияние температуры на скорость адсорбции. С повышением температуры скорость адсорбции возрастает, так как нагревание всегда способствует ускорению установления равновесия в системе. С другой стороны, при повышении температуры адсорбция, отвечающая равновесному состоянию, падает. Таким образом, кинетические кривые адсорбции при разных температурах должны пересекать друг друга, как это и показано на рис. IV, 14. [c.108]

    Таким образом, это граничное условие учитывает перенос вещества вдоль поверхности как за счет конвекции, так и за счет поверхностной диффузии. Величина потока поверхностноактивного вещества с поверхности капли в объем жидкости определяется более медленным из двух процессов адсорбцией — десорбцией или диффузией. При малом времени установления адсорбционного равновесия (большая скорость адсорбции) можно считать, что существует равновесие между локальными значениями адсорбции Г (0) и значением объемной концентрации у поверхности с (а, 0). Это значит, что между Г (0) и с (а, 0) должна существовать такая же функциональная связь, как и между Го и q, где Го — равновесное значение адсорбции на неподвижной поверхности при объемной концентрации Со. [c.132]

    При равновесии, когда скорости адсорбции и десорбции первого газа равны [c.154]

    Вследствие тото что при физической адсорбции на высокоэнергетических порошкообразных материалах преобладают изотермы И тина, последние имеют важное практическое значение. Брунауэр, Эммет и Теллер [20] показали, каким образом можно распространить модель Лэнгмюра на полимолекулярную адсорбцию. Полученное авторами уравнение изотермы адсорбции известно как уравнение БЭТ. Ниже дан традиционный вывод этого уравнения, основанный на детальном анализе динамического равновесия между скоростями адсорбции и десорбции молекул. Основное допущение Брунауэра, Эммета и Теллера [c.451]

    Проведенное исследование позволяет сделать вывод, что точность оценивания параметров повышается с увеличением радиуса гранул адсорбата и возрастанием объемных скоростей газа-носителя. При увеличении констант скорости адсорбции и адсорбционно-десорбционного равновесия Ка необходимо увеличивать продолжительность подачи импульсов и время между измерениями выходных концентраций реагентов. Необходимо отметить, что удачный выбор временных промежутков между измерениями концентраций Ai позволяет значительно повысить точность определения параметров моделей кинетики адсорбции. Заметим, что влияние различных факторов на точность оценок рассчитывалось при радиусе гранул адсорбата = 2,5 мм, что соответствует радиусу зерна катализатора широкого класса и объемной скорости W = = 1,57 мл/с [69, 24]. [c.218]


    Первые специальные методы изучения чистых поверхностей были разработаны Лэнгмюром и его сотрудниками при исследовании адсорбционных равновесий и скоростей адсорбции и десорбции [c.182]

    Здесь нужно упомянуть о другом подходе к адсорбционной кинетике, в котором не сделано попытки вывести уравнение ско-> рости адсорбции и рассмотрены только небольшие отклонения от равновесия. Скорость адсорбции выражается в виде частных производных скорости относительно поверхностной и объемной концентраций, а также потенциала. Подробности здесь не приводятся, так как эта книга не рассматривает методики. Краткий обзор дан Парсонсом [6], а детали можно найти в работе Лоренца [66], который дал наиболее удовлетворительную трактовку этого вопроса. Следует также сослаться на работы Фрумкина и Мелик-Гайказяна [41, 67], которые первыми применили переменноточную технику для изучения адсорбционной кинетики. Из результатов, полученных до сих пор, можно заключить, что адсорбция на ртути в водных растворах является быстрым процессом, который в основном контролируется диффузией. Лоренц [66] привел данные по определению скорости адсорбции для условий, соответствующих почти полному диффузионному контролю, и возникает вопрос, в действительности ли он измерил эффекты, относящиеся к относительно медленной адсорбции. [c.131]

    В состоянии равновесия скорости адсорбции и десорбции равны. Следовательно [c.209]

    Примерами таких процессов являются синтез аммиака, скорость которого на различных катализаторах в области, не очень далекой от равновесия, определяется скоростью адсорбции азота [104, 138], окисление сернистого газа на платине или окиси железа, когда лимитирующей стадией является адсорбция сернистого газа или соответственно кислорода [475], а также некоторые другие процессы, рассмотренные в следующей главе. [c.141]

    В теории адсорбционных равновесий и скоростей адсорбции на однородной поверхности основными первичными величинами являются свободные энергии перехода газовой молекулы в конечное устойчивое или в промежуточное неустойчивое состояние на поверхности. В большинстве случаев вместо них можно пользоваться теплотой адсорбции A.Q или энергией активации АЕ адсорбционного процесса. [c.249]

    Исследуя равновесие и скорость адсорбции органических веществ из водных растворов, следует иметь в виду, что помимо дисперсионного взаимодействия молекул с поверхностью адсорбента на положение равновесия могут более или менее существенно влиять поверхностные функциональные группы. Такие группы либо образуются в результате неполного окисления или гидратации атомов поверхности, либо появляются в процессе приготовления адсорбентов как следствие гидролиза или других химических реакций. [c.47]

    Уравнения Лангмюра и Михаэлиса — Ментена выведены из условия термодинамического равновесия (равенство скоростей адсорбции и десорбции — уравнения Лангмюра и равенство взаимодействия и диссоциации субстрат-ферментного комплекса — уравнение Михаэлиса — Ментена). [c.25]

    Изотерму выводят в предположении установления динамического равновесия, когда Скорость адсорбции равна скорости десорбции. [c.151]

    Определены константы равновесия адсорбции, скорости реакции и энергии активации изученных реакций. Найдено, что реакции изомеризации протекают по первому порядку относительно реагирующих олефинов. В свете полученных результатов обсуждается механизм изученных реакций. [c.155]

    Равновесие при адсорбции. Скорость адсорбции [c.212]

    Если поверхностную реакцию можно описать уравнением первого порядка, например г = кфр — kp (исходное вещество слабо адсорбировано), то принимая, что константа равновесия адсорбции Ь и константа скорости k зависят от температуры следующим образом [c.282]

    При таких допущениях скорость адсорбции пропорциональна доле свободной поверхности 1 — 0 и концентрации вещества с в объеме, а скорость десорбции вещества — доле запятой им иоверхности 0. При наступлении адсорбционного равновесия имеем  [c.48]

    Скорость реакции на поверхности настолько высока, что адсорбционное равновесие не достигается и устанавливается стационарное состояние, при котором количество адсорбированного вешества, несколько меньшее, чем равновесное, остается постоянным по абсолютной величине и не зависит от протекания быстрой реакции на поверхности. Часто скорость адсорбции одного из компонентов (реагента или продукта) заметно ниже, чем у других, следовательно, она и определяет скорость обратимой реакции в целом. [c.212]

    Если реакция между адсорбированными веществами протекает очень быстро, суммарная скорость реакции определяется скоростью адсорбции. Обычно только один из реагентов не находится в равновесии с адсорбтивом. Предположим, что это будет компонент А в реакции [c.217]


    При крашении целлюлозных волокон механизм действия веществ, способствующих равномерному окрашиванию, несколько отличен. В случае целлюлозы, вне зависимости от того, происходит ли крашение субстантивными или кубовыми красителями, краситель удерживается на волокне не электростатическими силами, а силами побочной валентности (Ван-дер-Ваальса). Величина этих сил сцепления красителя с мицеллами целлюлозы определяет и скорость, с которой краситель линяет , т. е. легкость, с которой он может быть удален при стирке. Имеется сравнительно небольшое число красителей, которые проччо и длительно связываются целлюлозой к ним относятся субстантивные красители и растворимые лейкоформы кубовых красителей. Очевидно, что, как и в случае крашения шерсти, любой фактор, замедляющий скорость адсорбции красителя, будет способствовать большей равномерности окраски. Повидимому, механизм этого эффекта на целлюлозе в отличие от шерсти заключается не в вытеснении адсорбирующихся ионов красителя с поверхности волокон целлюлозы, а в замедлении скорости адсорбции, обусловленном изменением состояния этих ионов в растворе, в результате чего снижается их способность к адсорбции. В водных растворах субстантивных красителей и лейкоформ кубовых красителей между отдельными молекулами и образованными ими мицеллами, аналогичными мицеллам моющих средств, существует подвижное равновесие, и адсорбироваться на волокнах из этих растворов способны только изолированные молекулы. Поэтому при крашении целлюлозных волокон выравнивающее [c.375]

    Рассмотрим сначала адсорбцию одного вещества. При принятых допущениях, очевидно, скорость адсорбции пропорциональна доле свободной поверхности (1 — 0) и концентрации вещества в объеме С, а скорость десорбции пропорциональна доле занятой поверхности 0. При наступлении адсорбционного равновесия эти скорости становятся равными [c.15]

    Степени заполнения поверхности, близкие к единице, чне достигаются, если процесс лимитируется скоростью адсорбции исходного вещества. Даже если равновесие адсор.бции нацело смещено в сторону адсорбции реагента Ь = оо), но скорость адсорбции сравнима со скоростью реакции, кинетика процесса определяется уравнением лангмюровского типа  [c.85]

    Если растворенное вещество адсорбируется на стенках аппарата и частицах насадки или вступает в химическую реакцию, то наблюдается обмен с неравными скоростями в противоположных направлениях. Рассмотрим для примера явление адсорбции. Пусть т — константа равновесия адсорбции, тогда обменный поток за счет адсорбции запишется в виде q = а х—а ту, где а — коэффициент скорости адсорбции. [c.383]

    Рассмотрим каталитические процессы, в которых хемосорбция и десорбция протекают с высокими скоростями и на поверхности катализатора существует равновесие адсорбции. Для описания скорости процесса на поверхности используется уравнение, аналогичное закону действующих масс  [c.645]

    Два важных свойства адсорбента—коэффициент разделения а и скорость адсорбции — в бсльшой степени зависят от среднего диаметра пор. Избирательное действие адсорбента проявляется только по отношению к тому слою молекул, который прилегает к его поверхности. Отсюда ясна зависимость избирательной адсорбции от удельной поверхности. По-видимому, жидкость, находящаяся в центре поры, имеет тот же состав, что и жидкость вне адсорбента. Вследствие этого величина коэффициента разделения должна убывать по мере увеличения диаметра поры. С другой стороны, увеличение диаметра поры благоприятствует увеличению скорости адсорбции. Для некоторых сортов силикагеля величина среднего диаметра поры только немного больше утроенного диаметра молекулы бензола, и в результате относительно небольшого прироста величины диаметра поры скорость адсорбции может значительно увеличиться. Идеальным является такой адсорбент, в котором достигнуто необходимое равновесие между избирательностью и скоростью адсорбции. По мере увеличения размеров молекулы или вязкости адсорбата влияние скорости адсорбции на процесс становится более ощутимым. [c.160]

    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]

    Е. к. Богачева и Ю. А. Эльтеков [72] показали, что время установления адсорбционного равновесия для полистирола с молекулярным весом 43 ООО и 290 ООО примерно одинаково. Иногда для одного и того же полимера наблюдали как увеличение, так и уменьшение скорости адсорбции с ростом молекулярного веса, например при адсорбции полибутадиенов с узким молекулярновесовым распределением на саже НАР из растворов в гептане (рис. И) [861. Как видно из рис. 11, скорость адсорбции уменьшается с увеличением молекулярного веса равновесная адсорбция возрастает, в результате чего происходит пересечение кривых. В случае полибутадиена большого молекулярного веса (рис. 12) наблюдается обратная картина скорость адсорбции уменьшается с молекулярным весом. Наблюдаемое уменьшение скорости адсорбции при больших молекулярных весах может быть связано только с недоступностью поверхности адсорбции для больших молекул. [c.27]

    АдсО р бция—процесс самопроизвольный, т. е. он идет с уменьшением свободной энергии, АРсО. В состоянии равновесия, когда скорости адсорбции и десорбции равны, АР=0. Процесс адсорбции сопровождается выделением тепла, АНСО. Величина АН, (найденная в процессе адсорбции, характеризует количество и активность групп на поверхности адсорбента, способных реагировать с адсорб-тивом. [c.143]

    Изложенные выше результаты нельзя объяснить в рамках простой теории, однако они позволяют получить общие представления о механизме. Очевидно, что связь молекул газа с поверхностью вызывается скорее физическими, чем химическими силами, и поэтому пе наблюдается существенных различий в поведении инертных газов и таких газов, как кислород и азот. Однако наблюдаемые величины энергий связи много больше тех, которые могут быть обусловлены просто силами Ван-дер-Ваальса. В случае металлов наиболее вероятно, что ионы, обладающие кинетической энергией, проникают в глубь самого металла на несколько атомных слоев и, таким образом, захватываются кристаллической решеткой. (Юнг [4] показал, что ироникновение ионов водорода и гелия в кристаллическую решетку алюминия увеличивается приблизительно линейно с ростом энергии в интервале от 1 до 10 кэв. При энергии порядка 1 кэв они проникают на глубину, примерно равную 10 мм, что соответствует 50 атомным слоям. Поэтому вполне допустимо предположение о том, что в описанных выше опытах ионы, обладающие энергией порядка 1 кэв, проникают в глубь металла на несколько атомных слоев.) Замена одного адсорбированного слоя другим при последующей бомбардировке ионами (рис. 4) указывает на то, что ион, проникающий в кристаллическую решетку, способен выбить предварительно адсорбированную молекулу, находящуюся в непосредственной близости. Таким образом, при продолжительной бомбардировке в конце концов создаются условия динамического равновесия, когда скорости адсорбции и десорбции становятся равными. Наблюдаемое изменение этого равновесия в сторону увеличения адсорбции пропс- [c.541]

    В этом случае все стадии, за исключением связанных с поверхностной химической реакцией, быстрые, поэтому для каждого из веществ А, В и С устанавливается адсорбционпо-десорбцнонное равновесие. Суммарная скорость адсорбции реагента А равна разности между скоростями адсорбции г ж десорбции Ге  [c.283]

    При выводе уравнений скорости реакций, протекающих с участием или с образованием адсорбированных частиц, надо учитывать возможность различия энергии активации на разных участках поверхности, связанную с энергетической неоднородностью поверхности и взаимодействием адсорбированных частиц. М. И. Темкин подробно разобрал частный случай равномерно неоднородной поверхности при средних заполнениях, для которой равновесие адсорбции выражается логарифмической изотермой . Исходя из аналогии с известным соотношением Брёнстеда о линейной связи между тепловыми эффектами и энергиями активации аналогичных реакций, М. И. Темкин предположил, что энергия активации адсорбции уменьшается с увеличением теплоты адсорбции, причем ее изменение составляет постоянную долю а от изменения теплоты адсорбции. [c.61]

    Следующая за первой порция раствора поступает не в свободный слой, а в слой зерен, уже поглотивших некоторое количество вещества. Вследствие этого скорость адсорбции дополнительного количества вещества оказывается меньше, чем скорость адсорбции на таком же участке свободного адсорбента, и полное поглощение растворенного вещества из этой порции раствора заканчивается дальше, чем при поглощении вещества из первой порции. Адсорбция из новой порции раствора заканчивается на еще большем расстоянии от начала слоя. Через некоторое время начальный участок слоя насыщается до равновесия с концентрацией входящего раствора и, естественно, больше в процессе адсорбции не участвует. Через этот начальный участок адсорбента раствор будет, очевидно, профильтровываться без изменения концентрации. Так заканчивается первая стадия динамики адсорбции ГмнвпьИ вещества из потока раствора [c.204]

    Отсюда следует, что с увеличением температуры энергия Тйббс системы возрастает, и при некоторой температуре Гр наступает. равновесие, когда скорость адсорбции равна скорости десорбции. адсорбция [c.159]

    При первоначальном выводе, данном Ленгмюром, эта изотерма получалась из рассмотрения скоростей адсорбции и десорбции нри равновесии. Так как констапты скорости пе входят в конечное выражение, то это пе самый простой вывод, потому что он требует определенн1лх предположений о скоростях реакций, хотя эти предположения и не являются необходимыми. [c.537]

    Обычно каталитические эксперименты проводят на лабораторных микрокаталитических установках при стационарном и нестационарном протекании процессов диффузии и адсорбции реактантов при этом одним из наиболее перспективных способов исследования физических свойств катализаторов и адсорбентов является экспрессный импульсный хроматографический метод, позволяющий в ограниченные промежутки времени для значений технологических параметров, близких к промышленным, получить (в частности, для MOHO- и бидисперсных моделей зерен катализаторов) важную информацию о численных величинах их констант, таких, как эффективные коэффициенты диффузии в макро- и микропорах, константы скорости адсорбции, константы адсорбционно-десорбционного равновесия, коэффициенты массоотдачи. Для оценки последних применяются метод моментов, метод взвешенных моментов, методы, использующие в своей основе преобразования Лапласа и Фурье и т. д. Однако все они обладают существенными недостатками применимы только для линейно параметризованных моделей, не позволяют провести оценку точности полученных параметров и оценку точности прогноза по моделям, не допускают проведение планирования прецизионного и дискриминирующего эксперимента. Отметим также, что при их практическом исполь- [c.162]

    Численное решение записанной системы уравнений проводилось методом ортогональных коллокаций. Исследовался пример решения модели (4.20)—(4.26) с линейной кинетикой адсорбции, т. е. / (X, п, 0) = Ла (X — п1Ка), где Ка — константа адсорбционно-десорбционного равновесия Ка — константа скорости адсорбции. При проведении расчетов принимали 7 = 13 мл 7а = 5 мл к = 25,0 см/с >эф = 0,2 см7с ц = 0,4 6 = 1 г/см . Варьировали РГ от 1 до 2 мл/с, Д от 0,1 до 1 см, ка от 2 до 100 мл/г с. Ка от 1 до 50 мл/г, Д( от 3 до 10 с, а также величину и форму входного сигнала Свх t)  [c.213]

    Двумерные концентрации г),-, как и степени заполнения поверхности 0 , не принадлежат к числу непосредственно измеряемых величин, 1 оэтому кинетические уравнения процесса должны быть выражены через измеряемые концентрации реагентов в объеме. Для этого в формулы (11.86)—(11.88) надо подставить выражения, связываюпще степень заполнения поверхности с концентрацией соответствующего вещества в объеме. Для процесса с установившимся адсорбционным равновесием это будут уравнения изотермы адсорбции, а для реакции, скорость которой лимитируется скоростью адсорбции или десорбции [c.80]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    После контакта двух фаз происходит адсорбция распределяемого вещества на поверхности раздела фаз. В то же время изменяются концентрации вблизи границы раздела фаз, так что первоначальная однородность слоев нарушается. Скорость адсорбции уменьшается и количество адсорбированного вещества становится приблизительно постоянным. Это состоя1ше обычно достигается очень быстро. Процесс переноса вещества подразделяется на две стадии. Первая стадия, когда скорость адсорбции велика, называется адсорбционной стадией вторая, когда скорость адсорбции близка к нулю,— переходной стадией . Первая стадия заканчивается очень быстро, в то время как вторая длится до установления равновесия мел<ду слоями. [c.243]


Смотреть страницы где упоминается термин Равновесие при адсорбции. Скорость адсорбции: [c.170]    [c.409]    [c.228]    [c.164]    [c.75]   
Смотреть главы в:

Физические методы переработки и использования газа -> Равновесие при адсорбции. Скорость адсорбции




ПОИСК





Смотрите так же термины и статьи:

Адсорбция равновесие

Скорость адсорбции

Скорость адсорбции и равновесие

Скорость и равновесие



© 2025 chem21.info Реклама на сайте