Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуктуации распространение

    Знак минус перед квадратным корнем приводит к отрицательным значениям и, следовательно, к устойчивым возмущениям,, а знак плюс, обычно дающий положительные указывает на наличие нестабильной волны сжатия , вызывающей флуктуации порозности в первоначально однородном слое. Найдено, что нестабильные виды колебаний соответствуют распространению волн в направлениях, образующих острый угол с вертикалью.. [c.89]


    Показано что экспериментальные данные по распространению малых возмущений в жидкостном псевдоожиженном слое являются гораздо более представительными для проверки уравнений движения, нежели данные о поведении полностью развитых пузырей. Были измерены скорости роста и распространения возмущений, а также доминирующая длина волны в ожижаемых водой высоких слоях стеклянных шариков разного диаметра при различной порозности слоя. Флуктуации порозности при различных условиях измеряли методом светопропускания. На рис. 111-4 в качестве примера представлены спектры сигналов, записанных на различных расстояниях от решетки в слоях шариков диаметром 1,27 мм. На рисунке отчетливо видны формирование и рост [c.93]

    При анализе устойчивости процесса в диффузионном режиме следует учесть, что в этом случае реакция локализуется в тонком слое близ внешней поверхности пористой частицы. Благодаря большой скорости химической реакции флуктуации концентрации должны чрезвычайно быстро затухать вне этого слоя, и только флуктуации температуры могут свободно распространяться по всему объему зерна путем теплопроводности. Переходные процессы в тонком реакционном слое должны протекать весьма быстро поэтому цри анализе устойчивости можно считать, что этот слой всегда работает в стационарном режиме и учитывать только наиболее медленный нестационарный процесс распространения тепловых флуктуаций в объеме пористого зерна. Исследуя процесс, протекающий в диффузионном режиме, следует уже учесть сопротивление тепло- и массо-нереносу на внешней поверхности зерна. Учитывая упомянутые выше допущения, записываем уравнения, описывающие нестационарный процесс, протекающий в диффузионном режиме, в виде [c.362]

    Распространенной ошибкой является компенсация поглощения растворителя в области его очень интенсивных полос (например, 700—840 см для четыреххлористого углерода). В этих областях спектра излучение полностью поглощается веществом как в кювете сравнения, так и в кювете с образцом и не попадает на детектор. Перо самописца при этом может регистрировать полосы, которые возникают из-за случайных электронных флуктуаций в приборе и не имеют никакого отношения к исследуемому веп еству. [c.207]

    Рассмотрим гомологический ряд веществ, которые находятся в критическом состоянии. Это означает, что для любого члена ряда в критических условиях имеется максимальная, отличная от нуля вероятность передачи межмолекулярного взаимодействия на расстояние порядка корреляционного радиуса флуктуаций Лс- Предположим, что для ФП в критической области основную роль играет информационная энтропия. Предположим, что энтропия максимальна в критическом состоянии где корреляционный радиус и соответствующий ему корреляционный объем максимальны. По формуле Шеннона эта энтропия связана с вероятностью распространения сигнала в объеме, охваченном корреляционным радиусом W( j [c.29]


    С учетом вышеизложенных представлений возможно более четко охарактеризовать, как уже указывалось, широко распространенное понятие при описании нефтяных дисперсных систем — сложную структурную единицу. По определению автора, сложная структурная единица — термодинамически устойчивое образование в нефтяной дисперсной системе, не возникающее и не исчезающее спонтанным образом, вследствие флуктуаций, связанных с тепловым, броуновским движением. Согласно общепринятым представлениям, сложная структурная единица включает ядро и сольватную оболочку. Упорядоченность организации молекулярных фрагментов падает по мере удаления от центра ядра. [c.49]

    Для более четкого восприятия размерности параметра порядка следует уточнить, что в общем случае нефтяная дисперсная система и ее элементы, в частности, рассматриваются в трехмерном пространстве. Иначе говоря, рассматривается объемная система, группы объектов которой взаимодействуют путем обмена информацией и своими элементами. Естественно, ближайшие соседи взаимодействуют более интенсивно, однако процесс обмена, то есть флуктуации порядка, распространен по всей физической системе. Отметим, что максимальное расстояние, на котором еще наблюдается корреляция между флуктуациями порядка считается корреляционным радиусом системы. [c.182]

    Атермический механизм разрушения наблюдается тогда, когда тепловые флуктуации не играют роли и процесс разрыва определяется только напряженным состоянием материала (низкие температуры или большие скорости нагружения, когда скорость распространения трещины определяется упругими свойствами твердого тела и запасом упругой энергии в нем). [c.307]

    Адиабатические флуктуации плотности по своей физической природе эквивалентны адиабатическим сгущениям и разрежениям, возникающим при распространении в жидкостях продольных звуковых волн. В сущности, адиабатические флуктуации плотности есть затухающие [c.140]

    При измерении зольности по интенсивности обратно рассеянного углем 7-излучения с энергией <7,11 кэВ (вторая модификация методов) снижается влияние флуктуаций содержания железа в золе. Так, в работе [10] описана установка для определения и 5 в низкозольном угле при использовании Ре. Однако из-за малой представительности и сложностей, связанных с подготовкой проб, метод широкого распространения не получил. [c.35]

    Способ ослабления низкоэнергетического у-излучения отличают высокая чувствительность к зольности и влияющим факторам, поэтому требуются их стабилизация или введение корректирующих сигналов. При энергии <7,11 кэВ устраняется влияние Ре, однако остается влияние Са и 5 кроме того, нужны аналитические пробы. С увеличением энергии снижается влияние гранулометрического состава, но растет — флуктуаций химического состава золы, а также плотности, влажности и толщины слоя. Для исключения влияния двух последних параметров стабилизируют насыпную плотность. В работе [31] описан портативный рентгеновский абсорбционный анализатор с источником "Агп и мишенью из серебра. В ФРГ запатентованы способ и устройство анализа состава по отношению интенсивностей прошедшего через пробу и эталон излучения , в Японии — способ измерения сернистости угля, основанный на интенсивности до заполнения, чем обеспечивается одинаковая для разных измерений случайная погрешность . (Ввиду больших погрешностей метод, однако, не получил широкого распространения.) [c.36]

    Вращающихся граничных поверхностей. В данном разделе рассматривается однородная жидкость в сосуде, на который в свою очередь действуют случайные возмущения его линейной и угловой скоростей, т. е. скоростей поступательного движения и вращения. Распространение флуктуаций поступательной скорости происходит в основном с помощью нормальных напряжений (сил сжатия), действующих на границах раздела твердое тело — жидкость. Уравновешивание внутреннего движения жидкости под воздействием волн сжатия происходит достаточно быстро, за исключением случая очень больших сосудов. Вместе с тем изменения вращательного движения сосуда передаются только посредством касательных напряжений и поначалу действуют только на поверхности раздела. Затем это влияние распространяется внутрь объема жидкости, правда, весьма медленно. [c.474]

    Нивелировку реакционной способности легко объяснить исходя из модели жесткой клетки, если дополнительно принять во внимание специфику распространения тепловых флуктуаций в конденсированной фазе. В соответствии со сказанным выше, в полимере для осуществления бимолекулярного элементарного акта нужна активация не только реагирующих частиц (как в жидкой фазе), но и окружающих их сегментов. Поэтому в полимере энергия активации Гиббса [c.239]

    В жидких растворах сохраняются все особенности строения чистых жидкостей. Оно также характеризуется ближним порядком в распределении молекул, наличием флуктуаций плотности, ориентации и концентрации и явлений сольватации и ассоциации. Однако строение растворов более сложно из-за нахождения в них частиц разных компонентов и поэтому многие явления в растворах сложнее, чем в чистых жидкостях. При образовании растворов может происходить частичный или полный распад ассоциированных комплексов, существующих в чистой жидкости. Неполярные молекулы в чистой жидкости и растворе могут ассоциировать в результате действия дисперсионных сил, а полярных — в результате диполь-дипольного взаимодействия, причем прочность ассо-циатов при большом дипольном моменте исходной молекулы достигает в ряде случаев значительной величины. Сущность явления ассоциации молекул вследствие образования водородной связи можно рассмотреть на примере моле сул воды — наиболее распространенного на Земле химического соединения и эффективного растворителя. [c.63]


    Электрические флуктуации всех этих видов несут информацию о макросистеме, которой они создаются, и, следовательно, могут применяться при контроле ее технического состояния. Однако в настоящее время использование этого вида источника информации находится на начальной стадии и, если некоторые виды электрических флуктуаций, как например, тепловые, уже получили достаточно широкое распространение в термометрии, то другие виды ждут расширения области их использования или определения этой области. [c.664]

    Рассмотрим предположительный механизм разрыва эластомера с развитой пространственной структурой. Выше было показано, что в рассматриваемом случае необходимо одновременно преодоление связей обоих типов. Напряжение я в месте роста области разрыва так же, как и номинальное напряжение, складывается из противодействующих разрыву сил главных валентностей Стх и межмолекулярных сил а . Величина ст, зависит от температуры опыта, скорости деформации, степени набухания образца. Рассматривая разрушение и восстановление межмолекулярных связей в результате теплового движения, мы пришли к выводу, что а, , аналогично противодействию вязкому течению должно быть обратно пропорционально вероятности разрыва связей флуктуациями тепловой энергии и прямо пропорционально скорости деформации материала в месте распространения разрыва связей под действием напряжения или, что то же, скорости распространения надрыва о. То же самое относится и к химическим связям, которые значительно реже по сравнению с межмолекулярными связями разрушаются под действием теплового движения кинетических единиц. [c.183]

    Существенно, что из-за пульсаций давления флуктуации скорости наблю даются во всем потоке. Поэтому исследование перемежаемости не может основываться на рассмотрении поля скорости. В силу сказанного наиболее распространенный способ изучения перемежаемости связан с анализом поля градиентов скорости, т.е. диссипации энергии. В этом способе, однако, возникает проблема разделения внешней и внутренней перемежаемостей. Чтобы подчеркнуть важность этой проблемы, проанализируем результаты исследований обоих типов перемежаемости. [c.19]

    При рассмотрении механизма хрупкого разрушения Бартенев исходит из установленного факта двухстадийного разрушения. Прорастание одной или нескольких наиболее опасных микротрещин на первой стадии разрушения определяет долговечность образца из хрупкого материала. На второй стадии скорость разрушения очень велика и примерно соответствует скорости распространения упругих звуковых волн в материале. Рост каждой трещины рассматривается как последовательный разрыв химических связей в элементарном объеме в ее вершине под действием механических напряжений и тепловых флуктуаций. В вершине трещины [c.113]

    Некоторые нестационарные решения уравнений гидромеханики псевдоожиженного слоя рассматривались в работах [67, с. 180 79], где предполагалось, что гидромеханические характеристики псевдоожиженного слоя зависят только от вертикальной координаты X, т. е. рассматривалась одномерная задача. При этом авторы этих работ искали решения уравнений гидромеханики псевдоожиженного слоя, которые являлись бы периодическими функциями от х—с1, где с — некоторая константа. Для нахождения решения в работах [67, с. 180 79] были сделаны некоторые предположения, ограничивающие применимость результатов этих работ. В частности, использовалась процедура линеаризации уравнения для определения порозности. В результате получены выражения для скорости распространения волны возмущения порозности и частоты флуктуаций порозности. Можно предположить, что в том случае, если скорость возмущений будет превышать некоторое критическое значение, образуются разрывы порозности, подобные ударным волнам в газовой динамике. Нелинейные уравнения гидромеханики псевдоожиженного слоя в работе [80] решались при помощи метода характеристик. В этой работе показано, что в псевдоожиженном слое могут возникать разрывы, подобные ударным волнам. В данном разделе будут изложены некоторые результаты этой работы. Здесь будем пренебрегать вязкими напряжениями в газовой и твердой фазах и членом в выражении для силы межфазного взаимодействия, учитывающим присоединенную массу газа. При сделанных предположениях система уравнений гидромеханики псевдоожиженного слоя будет иметь следующий вид  [c.96]

    Вискозиметры с коаксиальными цилиндрами и типа конус-пластина особенно пригодны для изучения жидких и полутвердых эмульсий, так как они дают возможность изменять в широкой области скорости сдвига вплоть до очень малых значений. Капиллярные вискозиметры более подходят для изучения высоких скоростей сдвига. Они не чувствительны к краевым эффектам и температурным флуктуациям, вызванным распространением тепла, пе наблюдается в них и эффект Вейзенберга. [c.214]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Релеевский триплет. Итак, спектр тонкой структуры релеевского рассеяния света (релеевский триплет) в чистых жидкостях обусловлен адиабатическими и изобарическими флуктуациями плотности. В растворах центральная компонента релеевского триплета, будем называть ее компонентой Гросса (по имени открывшего ее в 1930 г. Е. Ф. Гросса), зависит не только от изобарических флуктуаций плотности, но и от флуктуаций концентрации. Изучая спектр центральной компоненты релеевского триплета, изображенного на рис. 32, можно определить коэффициент те.мпературопроводности х и, если известно Ср, —коэффициент теплопроводности %. Изучая спектр компонент Мандельштама—Бриллюэна, получают сведения о скорости распространения и коэффициенте поглощения звуковых волн [36]. Точность этих измерений резко возросла с появлением газовых лазеров. Измерения проводятся при углах рассеяния 0, обычно превышающих 20—30°. В этих условиях спектр компонент Мандельштама — Бриллюэна позволяет изучать лишь гиперзвуковые волны, имеющие частоту порядка 10 Гц. При очень малых углах рассеяния в принципе можно было бы исследовать скорость и поглощение звука в более широком диапазоне частот и оптическим методом получать сведения о дисперсии скорости звука, т. е. о зависимости скорости звука от частоты колебаний звуковых волн [37]. [c.144]

    При экспериментальном исследовании основных особенностей и механизма распространения турбулентного пламени могут быть применены почти все методы, которые используются при изучении ламинарного пламени. К этим классическим методам при изучении турбулентного горения необходимо присовокупить методы, позволяюш ие вскрыть роль статистических флуктуаций в турбулентном потоке. В следующ,ем параграфе содержится обзор классических методов измерения скоростей и других ос-редненных характеристик турбулентных пламен. В 3 обсуждаются новые экспериментальные методы и результаты, причем основное внимание уделяется вопросу о флуктуациях. [c.227]

    В наиб, распространенном случае образования при К. множества кристаллов (массовая К.) выделяющаяся фаза полидисперсна, что обусловлено неодновременностью зарождения кристаллов н флуктуациями их роста. Мелкие кристаллы более р-рнмы, чем крупные, поэтому прн убывающем пересыщении наступает момент, когда среда, оставаясь пересыщенной относительно последних, становит- [c.528]

    Аморфные полимеры ииже температуры стеклования находятся в твердом стеклообразном состоя1П1И. Для описания температурной зависимости теплопроводности стекол также используются положения фононной теории. Теплопроводность стекол растет с Т немонотонно (см. рис. 5 49) и в области низких температур существенно ниже теплопроводрюсти кристаллических полимеров. Это обусловлено большим рассеянием фоионов из-за Отсутствия дальнего порядка в аморфных полимерах, т, е. явлением релаксации Кроме того, отсутствие дальнего порядка приводит к неоднородности распространения фононов т е. к появлению определенных флуктуаций, что также повышает рассеи- [c.358]

    Наиболее распространен- ным и падежным способом обнаружения конечной точки электрохимической реакции с участием определяемого электроактивного вещества в прямой потенциостатической кулонометрии является установление момента достижения током электролиза силы фонового тока /ф. Для этого снимают иоляризациоппые кривые раствора при отсутствии определяемого деполяризатора и находят силу фонового тока 7ф. Затем проводят электролиз испытуемого раствора до достижения 7ф. Если сила тока электролиза I, пе снижается до силы фонового тока, а остается несколько выше, то электролиз продолжают и считают его завершенным, когда изменепие силы тока электролиза станет постоянным в единицу времени, то есть М, /Дг станет практически постоянной величиной. Однако ни в первом, ни во втором случае величина 7ф не имеет постоянного значения, наблюдается заметная флуктуация ее значений, и потому учитывают некоторое среднее значение. [c.127]

    Таким образом, можно утверждать, что специфика живой материи обусловлена белками, которые свои особые качества обретают в процессе самопроизвольного перехода полипептидной цепи от состояния флуктуирующего статистического клубка к нативной трехмерной структуре, в каждом случае уникальной по биологической функции Именно спонтанное образование фиксированной активной пространственной формы молекулы белка, а не сама форма, есть изначальная причина фундаментальных особенностей живой материи С чисто физической точки зрения этот уникальный акт творения живого заключается в спонтанной трансформации тепловой энергии необратимых флуктуаций в целенап равленную механическую работу создания высокоорганизованной системы Белки представляются почти единственными в природе (по меньшей мере самыми совершенными и распространенными) автоматическими молекулярными преобразователями энергии хаотического теплового дви- [c.56]

    Изучение фильмов скоростной киносъемки разрыва вулканизатов показало, что ширина этой линии в процессе разрыва изменяется. Степень дополнительной ориентации материала в месте роста надрыва можно оценивать по отношению расстояния между нанесенными линиями в этом месте ( р) к расстоянию между этими линиями в середине неразорванной части образца d . Дополнительная ориентация материала, как правило, сопровождается его упрочнением. На первых стадиях процесса разрыва материал в непосредственной близости от места разрыва анизотропен. Об этом свидетельствует характерная эллиптическая форма разрыва, когда разрыв начинается в середине ненад-резанного образца (рис. П.38, а). Распространение разрыва в высокоориентированном упрочненном материале происходит медленно, путем последовательного разрыва тяжей (рис. II, 38, б). Однако растяжение образца сопровождается возрастанием напряжений, концентрирующихся в вершине разрыва. Как только напряжение в элементарном объеме, примыкающем к надрыву, становится достаточно большим, чтобы разорвать связи, препятствующие разделению на части, оставшиеся неразрушенными флуктуациями тепловой энергии, происходит разделение очередного тяжа материала на части. Затем происходит самопроизвольное сокращение разорвавшихся частей и частичное рассасывание напряжения. В результате. последующего растяжения об- [c.106]

    Врие, напротив, полагает хаотическое распределение флуктуаций толщины. Исходя из вероятности возникновения флуктуаций, он [202] вывел уравнение для критической толщины, содержащее только измеряемые величины. Колебания толщины пленки происходят в результате наложения всех независимых стационарных синусоидальных волн, амплитуды которых являются показательными функциями времени. Вывод уравнения для h основан на сравнении скорости распространения флуктуации, приводящей к прорыву, и скорости уменьшения толщины при вытекании раствора из пленки. [c.94]

    Из математических моделей гидродинамических структур потоков наибольшее распространение в расчетной практике и при изучении массопередачи получили диффузионная и секционная модели, подробно рассмотренные в гл. 4. При наличии массопередачи в потоках принципиальное содержание и физический смысл математических моделей гидродинамических структур потоков не меняется в диффузионной модели изменений концентраций компонентов в потокак рассматривается как следствие конвективной, турбулентной и молекулярной диффузий частиц в потоках. При этом под турбулентной диффузией понимается перенос массы, обусловленный крупномасштабными пульсациями и флуктуациями скоростей потоков. В секционной модели вместо непрерывного профиля изменения концентраций компонентов в потоке рассматривается ступенчатый профиль, каждая ступень которого соответствует одной секции полного перемешивания частиц потока в пределах определенного объема аппарата. [c.177]

    В последнее время получили распространение гипотезы о двухструктурной модели воды, предполагающие существование в жидкой воде по крайней мере двух различающихся структур ближнего окружения, отличающихся упаковкой, природой теплового движения и взаимодействия молекул в них [5, 6]. Несмотря на разницу в количественных оценках, общепризнанным считается наличие относительно крупномасщтабных флуктуаций плотности в жидкой воде — ее микрогетерогенность. Прямое подтверждение этому дают данные диэлектрической релаксации жидкой [c.13]

    При определенных условиях (низкие температуры, большие скорости разрушения) тепловые флуктуации не играют существенной роли, и разрыв хрупких тел идет по атермическому механизму. В этом случае только при напряжениях выше критического (ок) растут микротрещииы и твердое тело разрушается. Если пренебречь механическими потерями, то стартовая скорость микротрещин при переходе напряжения через значение 0к сразу стано вится большой, приблизительно равной скорости распространения поперечных упругих колебаний в твердом теле. Если же учесть рассеяние упругой энергии, зависящее от скорости роста трещины, то предельная критическая [c.95]

    Представляет интерес рассмотреть процессы, которые могут протекать в краевых зонах магнитного поля. Они могут существенно отличаться от процессов, протекающих в зоне однородного поля. Сильная неоднородность поля в краевых зонах способствует образованию волн и перемещению ионов в направлении распространения волн, т. е. возникают продольные колебания. Кроме магнитно-звуковых волн в краевых зонах возникают колебания электрического поля с той же частотой, что и колебания магнито-звуковых волн. В краевых зонах поля в определенных условиях мол<ет возрастать количество замагниченных ионов, длина свободного пробега которых без магнитного поля больше ларморовского радиуса, что приводит к возникновению флуктуации концентрации ионов. При этом резко возрастает вероятность ассоциации ионов. При их агрегации происходит нейтрализация ассоциатов, которые выносятся из зоны повышенной концентрации. Эта гипотеза нуждается в проверке. [c.104]

    Согласно Дебаевой теории распространения света причиной рассеяния является оптическая неоднородность тела, обусловленная тепловым движением молекул, вызывающим флуктуации плотности и показателя преломления. [c.160]

    Имеется много примеров применения двойных коллекторов в системах, где сигнал на выходе подвержен флуктуациям во времени. Флуктуации сигнала связаны либо с нестабильной работой источника, либо с малым отношением сигнала к шуму. Подобные системы позволяют повысить точность сравнения распространенностей изотопов и в случае более интенсивных ионных пучков. Зольшинство приборов, сконструированных для исследования определенного соединения [2118] или для более широкого применения, обычно имеют систе му, в которой один из измеряемых ионных пучков проходит через щель в первом [c.97]


Смотреть страницы где упоминается термин Флуктуации распространение: [c.179]    [c.254]    [c.143]    [c.149]    [c.212]    [c.100]    [c.56]    [c.125]    [c.125]    [c.80]    [c.283]    [c.283]    [c.300]    [c.133]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.93 , c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Флуктуации



© 2025 chem21.info Реклама на сайте