Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны разделение

    Для разделения кипящих при близких температурах углеводородов с различным числом и характером п-связей методами экстрактивной ректификации и экстракции предложено большое число полярных органических веществ различных классов, содержащих кислород, серу и фосфор кетоны, альдегиды, спирты, эфиры, амины, нитрилы, нитраты, карбонаты, лактоны, амиды карбоновых, серусодержащих и фосфорсодержащих кислот, лак-тамы, сульфоксиды и др. [5—7]. Однако лишь небольшая группа растворителей из общего числа предложенных в литературе отвечает необходимым требованиям, предъявляемым к экстрагентам разделения близкокипящих углеводородов С4 и С5. Важнейшими из этих требований являются требования к селективности и растворяющей способности экстрагентов по отношению к разделяемым углеводородам. [c.669]


    Жидкие продукты реакции, состоящие из нитропроизводных углеводородов, нитритов, непрореагировавших углеводородов и продуктов окисления (спирты, кетоны и кислоты) отделяются от водного слоя, включающего реакционную воду, небольшое количество азотной кислоты и низших карбоновых кислот, и поступают на разделение. Разделение нитросоединений осуществляется при помощи ректификации. [c.130]

    Смеси, содержащие спирты, альдегиды, кетоны, амино- и галоид-производные углеводородов и сернистые соединения, также могут быть разделены при использовании цеолитов, причем разделение осуществляется как в жидкой, так и в паровой фазах. Некоторые смеси являются азеотропными и для их разделения обычные методы ректификации не могут быть применены, например смесь метилового спирта и ацетона, сероуглерода и ацетона. На цеолитах разделяют также смеси, содержащие неорганические вещества (например, [c.113]

    В литературе имеются указания [241] о возможности использования метода экстрактивной ректификации с применением раствора минерального вещества в качестве разделяющего агента для разделения смесей близкокипящих алифатических спиртов, а также для выделения спиртов из смесей, содержащих кетоны, альдегиды и эфиры. [c.212]

    Продукты реакции, пройдя газосепаратор 14, поступают в отдувочную колонну 16, в которой окислы выделяются в токе воздуха. Газообразные продукты из аппаратов 13—15 проходят через скруббер 17, орошаемый 50%-ной азотной кислотой. Кислота, поглощая окислы азота, укрепляется до 60% и затем подается в реактор 13. Жидкие продукты реакции из отдувочной колонны 16 поступают на разделение в вакуумную колонну 18. В этой колонне при 70 °С и остаточном давлении 13,3 кПа (100 мм рт. ст.) в качестве погона отбираются монокарбоновые кислоты, образовавшиеся на стадии окисления спирта и кетона. Адипиновая кислота в растворе слабой азотной кислоты, пройдя через кристаллизатор 19, выделяется на центрифуге 20 и направляется на рафинацию. Маточный раствор из центрифуги поступает в отделение укрепления азотной кислоты (на рисунке не показано). [c.189]

    При адсорбционном разделении жидких углеводородных смесей в качестве десорбирующего агента могут быть использованы различные органические жидкости, обладающие более высокой адсорбционной способностью, по сравнению с поглощаемыми компонентами, например, низкомолекулярные ароматические углеводороды (бензол, толуол, ксилолы) или их смеси с полярными растворителями (спиртами, кетонами). [c.280]


    Селективная экстракция с помощью СНГ. Основная цель всех методов растворяющей экстракции — выделение ценных продуктов, содержащихся в нерастворимых или малорастворимых в данном растворителе материалах. Обычно достаточно легко найти растворитель, имеющий больщое сродство с одним из компонентов смесей, встречающихся в природе, однако при этом растворитель почти всегда так хорошо перемешивается с экстрагируемым материалом, что в дальнейшем их весьма трудно или даже невозможно разделить. При физических методах разделения (дистилляция, кристаллизация, осаждение и др.) используемые для регенерации растворители нередко оставляют на экстрагированном материале нежелательные осадки. Это характерно для тех случаев, когда в качестве стандартных растворителей применяют жидкие углеводороды, спирты, кетоны, хлорсодержащие парафины и подобные им относительно высококипящие жидкости. [c.359]

    Для разделения олефинов была использована в основном четкая ректификация ожиженных газов под давлением с помощью технических приемов, уже известных в промышленности нефтепереработки единственным новшеством было проведение ректификации при низкой температуре, требующейся для концентрирования этилена. Основными из разработанных процессов химической переработки олефинов были сернокислотная гидратация, приводившая к получению спиртов, которые затем дегидрировались в альдегиды и кетоны, и получение из олефинов их окисей с помощью реакции гипохлорирования. Доступность в промышленных масштабах окиси этилена и окиси пропилена привела к тому, что на рынке стали появляться все новые и новые продукты, получаемые на их основе, например гликоли, сложные и простые эфиры гликолей и алканоламины. [c.19]

    Обычно в качестве вещества, образующего азеотропную смесь с ароматическим углеводородом, берут метилэтилкетон или метиловый спирт. Лэйк [9] составил список веществ, дающих азеотропные смеси с толуолом. Для азеотропной перегонки последнего, по-видимому, наиболее часто используют водный метилэтилкетон. Его применение для этой цели в промышленном масштабе описано в литературе [9, 10]. Этот кетон увлекает с собой в отгон парафины, а также нафтены, если последние присутствуют в разделяемой смеси. Для экономии греющего пара перегонке подвергают концентрат, содержащий 40% толуола. Даже в этом случае для хорошего разделения требуется брать на каждый объем неароматического углеводорода 2—3 объема метилэтилкетона. [c.246]

    Так как разделение кетона от кислоты не представляет труда, вопрос решается просто. Возможно, однако, одновременное получение и кетона и кислоты, что говорит о смеси кислот в исходном веществе. [c.135]

    Если бы индексы удерживания всех пяти соединений изменялись равномерно, то можно было бы расположить жидкие фазы в табл. 17-2 в порядке их полярности. Однако, как видно из рис. 17-13, этого не происходит. Действительно, линии на этом графике не только не параллельны, но и пересекаются. Так, бутанол элюируется первым из хроматографических колонок, содержащих жидкие фазы 1, 2, 3 и 5, но третьим — из колонок, содержащих жидкую фазу 4, которая, как можно заключить, селективно удерживает доноры протонов. Причина этого станет ясна, если обратиться к химической структуре жидкостей (см. выше). Представим, что два соединения не разделяются на колонке, содержащей SE-30 (жидкая фаза 3). Если одним из соединений является спирт, а другим — ароматический углеводород, то можно ожидать, что они разделятся на колонке, содержащей диоктилсебацинат. Если смесь состоит из кетона и ароматического углеводорода, то на колонке, содержащей жидкую фазу 4 или 5, разделить эту пару соединений нельзя (заметим, что значения / для бензола и пентанона на рис. 17-13 почти совпадают при использовании жидких фаз 3, 4 и 5). Возможно, лучший результат можно получить на колонке с апьезо-ном L, который удерживает ароматический углеводород сильнее, чем кетон. Разделение на колонке с QF-1 высоко селективно к акцепторам электронов и кетонам, но не к донорам электронов или молекулам, способным образовывать водородную связь. Это можно легко объяснить природой трифторметильных групп, которые присутствуют в молекуле QF-1. Таким образом, пару кетон — ароматический углеводород [c.576]

    Дальнейшее разделение проводили экстрактивной дистилляцией и извлечением селективными растворителями из водных растворов. Основным представителем спиртов оказался этиловый спирт, кетонов — ацетон, альдегидов — ацетальдегид и кислот—уксусная кислота. Все кетоны относятся к метил.кстона,м. В табл. 53 показано, сколько кисл1ородных соединений может быть получено в год с установки суточной производительностью 1590 лродуктов синтеза. [c.124]

    Пусть, например, требуется выделить толуол из смеси с алка-нами, имеющими практически ту же точку кипения. Разделение подобной системы в обычной колонне практически неосуществимо, поэтому следует прибегнуть к азеотропной ректификации в присутствии третьего компонента. В качестве последнего можно использовать метилэтилкетоп. Полностью взаимно растворимый со всеми компонентами смеси кетон образует с алканами низкокипящий годюазеотроп с точкой кипения, заметно более низкой, чем точка кипения толуола, что позволяет получить сверху колонны смесь азеотропов, а снизу — толуол. Если в систему подается избыток кетона, то нижний продукт представляет собой легко поддающуюся разделению смесь толуола с метилэтилке-тоном. [c.338]


    Эти иоказатели наблюдаются нри процессах, в которых в качестве кетона в составе растворителя берут ацетон, как это делают на ряде действующих заводов. Если же в качестве кетона применяют МЭК, то приведенные показатели изменяются следующим образом. Содержание кетона в составе растворителя повысится с 25—40% до 40—60%, а при обезмасливании — даже до 65— 70%. Повысится до —1 --6° температурный эффект депарафинизации, что позволит вести обработку прп более высоких температурах или получать масло с более низкими температурами застывания. Повысится на 2—5% отбор масла вследствие улучшения четкости разделения застывающих и низкозастывающих компонентов. Содержание же масла в получаемом гаче при этом соответственно уменьшится. При обезмасливании несколько возрастет выход целевого парафина-сырца при снижении содержания в нем масла. При применении МЭК-бензол-толуоловых растворителей можно уменьшить на 28—32% разбавление сырья растворителем, что соответствующим образом повысит производительность фильтров. На 10—15% возрастут скорости фильтрации. [c.199]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    До сих пор нет хорошего способа определения содержания в асфальте парафина. Во всяком сл.-у-чае многие высшие индивиды нафтенового ряда должны иметь малую растворимость в спирте, кетонах и т. п. веществах, как и у самого парафина. Поэтому обычные способы разделения неприменимы. Но зато химическая активность Г)нт,р[ов позволяет удалить их крепкой серной кислотой, после чего оставихееся масло, если надо н уг.леводородный остаток растворяются, подвергаются перегонке для подготовки пробы и анализу по Гольде-Энглеру. [c.358]

    Стереоизомеры олефинов С4—Се обычно разделяют азеотропной перегонкой с использованием эфиров и кетонов. При этом образуется азеотропная смесь с цис-томероы, имеющая максимальную температуру кипения. Применяется для этой цели также метод экстракции карбамидом. В последнее время для разделения структурных и стереоизомеров начали использовать адсорбционные методы, где сорбентами служат цеолиты СаА [44, 48], а также ка-тионзамещенные цеолиты типа X и V [48, 49]. [c.201]

    Экстракция органическими растворителями (сольвентная экстракция) — один из важнейших способов лабораторного и промышленного выделения ГАС из углеводородных систем. В качестве растворителей, позволяющих отделять ГАС от углеводородов, испытано большое число полярных органических соединений (фенолы, нитробензол, нитрофенол, анилин, фурфурол, низшие кетоны и спирты, ацетофенон, ацетил-фуран, ацетилтиофен, диметилформамид, ацетонитрил, диметил-сульфоксид и др. [58—63]), но ни одно из них не дает четкого разделения, и полученные экстракты, как правило, содержат значительную долю полициклоароматических углеводородов. Для повышения эффективности разделения экстракция часто проводится в системе, содержащей два сольвента, не смешивающиеся между собой или обладающие ограниченной взаимной растворимостью пропан и фенол [64], циклогексан и диметилформамид [65] и т. д. Экстракционная способность полярных растворителей по отношению к отдельным группам нефтяных ГАС может существенно различаться. Так, диметилформамид экстрагирует из масляных дистиллятов карбоновые кислоты в 7—8 раз эффективнее, чем сернистые соединения [66 ]. Однако практически использовать эти различия для четкого фракционирования ГАС на отдельные типы чрезвычайно трудно, в связи с чем методы сольвентной экстракции обычно служат средством отделения суммы ГАС или грубого разделения высокомолекулярных ГАС в соответствии со средней полярностью их молекул (не по функциональному признаку) [67-69]. [c.10]

    Карбонаты алкенов 338 Керилбензол 397 Кетоны 309, 757 Кислотно-щелочная очистка 129 Кислоты карбоновые 361 Клатратные процессы разделения 20, [c.710]

    Большое число патентов посвящено разделению кислородсодержащих соединений с близкими температурами кипения. Смесь этанола, изопропанола, метилэтилкетона, метилпропил-кетона и этилацетата может быть разделена путем экстрактивной ректификации с использованием в качестве разделяющего агента светлого масла , представляющего собой смесь углеводородов с температурами кипения 200—270° [335]. Этим же методом можно выделять опирты С]—из смесей с другими кислородсодержащими соединениями, имеющими не более 5 атомов углерода [336]. В присутствии углеводородов понижается относительная летучесть кислородсодержащих соединений в следующем порядке спирты, кетоны, альдегиды, эфиры, слож,ные эфиры [335]. Отсюда вытекает возможность отгонки путем екстрак- [c.284]

    Указанная закономер,ность во взаимодействии углетодоро-дов и кислородсодержащих веществ может быть исполЬ 30вала для разделения смесей последних также путем азеотропной ректификации. Примером такого процесса является разделение смесей спиртов и кетонов, таких, как метанол и этанол, цикло-гексанол, циклогексанол и др. 1337]. Разделяющими агентами являются ароматические углеводороды с температурой кипения не более чем на 30° ниже и на 20° выше температур кипения разделяемых веществ. В виде дистиллата отгоняются азеотропы спиртов и углеводородов, а чистые кетоны остаются в кубе. [c.285]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикпслоты. Однако гетероноликислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH = 1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота илн кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Методы разделения и онределения (подержания различных груни смолисто-асфальтовых соединений, основанные на их различной растворимости в разных растворителях, так же как и отделение сиолисто-ас-фальтовых веществ от углеводородов различными адсорбентами или серной кислотой, несмотря на широкое распространение, имеют существенные недостатки. О недостатках сернокислотного (акцизного) способа онределения содержания смолисто-асфальтовых веществ будет сказано ниже ( 4, раздел Б). При определении смолисто-асфальтовых веществ осаждением ацетоном [212] получается завышенное их содержание вследствие ни-что кно малой растворимости в кетонах (в частности, ацетоне) твердых углеиодородов парафинового ряда и высоко индексных углеводородов масляных фракций. [c.465]

    Широко применяется для разделения смесей высокомолекулярных органических соединений метод, основанный на избирательном растворяющем действии по отношению к компонентам смеси различных органических растворителей, таких, как бензол, фенол, тетралип, петролейный эфир, кетоны, спирты, пиридин, хлорированные [c.116]

    Адсорбционная хроматография позволяет отделить более полярные гетероатомные соединения и арены от менее полярных алканов и циклоалканов, осуществить первичное концентрирование сераорганических соединений нефтяных фракций. Возможность разделения обусловлена различием энергии адсорбции, например на оксиде алюминия [195] алканов 0,084, аренов 0,25— 0,50, сульфидов 3,18—5,53, эфиров 7,41, кетонов 14,0, сульфокси-дов 16,7, ароматических аминов 18,4, фенолов 31,0, ароматических кислот 79,6 кДж/моль. [c.86]

    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Карбамид взаимодействует с соответствующими органическими соединениями, находясь в кристаллическом состоянии (в присутствии небольших количеств активаторов — спиртов, кетонов и др.), в виде растворов в воде или других растворителях, либо в виде пульпИ. В результате взаимодействия карбамида и соединений с прямой цепью образуется белый сметанообразный продукт — комплекс (точнее комплекс-сырец). Образование его сопровождается выделением некоторого количества тепла После отделения комплекса-сырца от жидкой фазы, промывки и сушки он имеет вид твердой кристаллической массы. Полученный комплекс моя ет быть легко разрушен паггреванием или растворением в воде нли в каком-либо другом растворителе с выделением исходных компонентов — карбамида и органических соединений. Таким образом, процесс разделения, основанный на образовании карбамидного комплекса, состоит из следующих стадий реакция между карбамидом и органическим соединением с прямой цепью с образованием кристаллического комплекса отделение комплекса от жидкой фазы промывка комплекса растворителем и сушка комплекса разрушение комплекса. [c.8]

    После отделения кислот и фенолов нейтральную часть адсорбционных смол перегоняют в вакууме. В дистиллят переходят спирты, соединения с карбонильной группой и возможные примеси сернистых и азотистых соединений. При перегонке цвет дистиллятов с повышением температуры кипения изменяется от лимонно-желтого до темножелтого. Выход нейтральных кислородных соединений составляет 65—85 вес. % от количества адсорбционных смол. Разделение спиртов и кетонов, а также их очистку от примесей лучше всего осуществить хроматографически. Бензолом десорбируют почти исключительно спирты, а затем спирто-бензольной смесью (1 1) отделяют кетоны. Из нейтральной части кислородных соединений спирты можно выделить и через их борные эфиры. Однако в борные эфиры связываются лишь около /з спиртов. [c.232]

    Были описаны методы идентификации ацеталей в сложных смесях, содержащих эфиры, альдегиды, кетоны и другие соединения [231]. Поток нз капиллярной колонки поступал непосредственно на время-пролетный масс-спектрометр. Один из коллекторов прибора настраивался на ионы с массой 15, которые использовались для регистрации хроматограммы. На втором коллекторе отбирались все ионы в диапазоне 24— 200 ат. ед. массы полный спектр регистрировался на осцилло- графе в течение 6 сек. При хроматографическом разделении земляничного масла с помощью этой методики удалось идентифицировать 150 компонентов. Аналогичным образом исследовалась сложная смесь углеводородов [232]. [c.128]

    В ТСХ применяют оксид алюминия, выпускаемый отечественной промышленностью под маркой оксид алюминия для хроматографии , образующий на пластинке прочный слой. Оксид алюминия для хроматографии может поступать в продажу в основной, нейтральной или кислой форме. Основную форму применяют для разделения смесей аминов, основных аминокислот и других основных соединений. Нейтральная форма позволяет хорошо разделять из не-водных растворов смеси таких веществ, как алканы, альдегиды, кетоны, спирты, эфиры, фенолы. Кислая форма применяется для разделения смесей карбоновых кислот и других веществ кислого характера. Из иностранных фирм, готовящих оксид алюминия для тех, следует указать фирмы Флюка (Швейцария), Вёльм (ФРГ) и Бакер (США). [c.129]

    Чаще всего используют оксид алюминия с активностью от 1,5 до 5. Активность адсорбента определяется характером разделяе.мых веществ. Например, для разделения углеводородов применяют AljOj с активностью 1,5—2 для разделения спиртов и кетонов — 2—3,5 лактонов — 3—4 и т. д. [c.150]

    Все типы поропака стабильны при 250° С, за исключением типа Т (200° С). Одно из исключительных свойств этих сорбентов то, что вода и другие высокополярные соединения быстро выходят из колонки, причем хвост у пиков почти не образуется. Поропак используется главным образом для эффективного разделения низкокипящих углеводородов, спиртов, сложных эфиров, кетонов, низкомолекулярных соединений, содержащих галогены и серу. Наиболее универсален поропак Q. [c.87]

    Диглицерин [С3Н5 (OH)al20. Мол. вес 166,18, плоти. 1,27 при 20° С, т. кип. 220—230 С при 10 мм рт. ст. Максимальная рабочая температура колонки 150° С, минимальная 20° С. Рекомендуемые растворители диэтиловый эфир, этиловый спирт. Применяется для разделения спиртов, кетонов в присутствии воды. Вода удерживается наиболее сильно, что позволяет определить содержание спирта в разбавленных водных растворах. [c.280]

    Т рикрезилфосфат (тритолилфосфат) (СНзСаН40)зР0. Мол. вес 368,39, плотн. 1,179 при 20° С, т. плавл. 35° С, т. кип. 275 при 20 мм рт. ст., диэлектрическая проницаемость 6,7—7, показатель преломления 1,555, полярность по Роршнейдеру 48. Максимальная температура колонки 130° С. Рекомендуемые растворители ацетон, этанол. Селективная жидкая фаза. Применяется для разделения ароматических и алифатических углеводородов, кетонов, сложных эфиров и других кислород- и галогенсодержащих углеводородов. Не годится для спиртов и аминов. По возможности не должен содержать орто-изомера ввиду его особой ядовитости. [c.282]

    Диоктилсебацинат (октойл S) gHijOO СН2)в OO jH,,. Мол. вес 426,69, плотн. 0,913, т. кип. 248° С при 4 мм рт. ст. Максимальная рабочая температура колонки 150° С. Рекомендуемые растворители дихлорметан, ацетон, хлороформ. Применяется для разделения насыщенных и ароматических углеводородов, низших жирных кислот, эфиров, кетонов, спиртов. [c.282]


Смотреть страницы где упоминается термин Кетоны разделение: [c.298]    [c.443]    [c.149]    [c.23]    [c.191]    [c.468]    [c.40]    [c.41]    [c.28]    [c.248]    [c.331]    [c.1115]    [c.277]    [c.280]   
Современная аналитическая химия (1977) -- [ c.490 ]

Методы органической химии Том 2 Издание 2 (1967) -- [ c.431 , c.446 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.431 , c.446 ]




ПОИСК





Смотрите так же термины и статьи:

Кетоны разделение смесей

Кетоны хроматографическое разделение

Кетоны циклические препаративное разделение



© 2025 chem21.info Реклама на сайте