Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово соединения его как катализаторо при

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]


    Термодесорбция поверхностного соединения, образовавшегося при адсорбции пропилена на поверхности олово-молибденового катализатора в области предкатализа (70°С) и обнаруживаемого по данным мессбауэровских спектров [140, И9], приводит к появлению продуктов мягкого окисления (акролеина и акриловой кислоты) в области 170—290 °С. Дальнейшее повышение температуры снижает выход продуктов мягкого окисления при этом появляются продукты глубокого окисления (СО и СО2). Гамма-резонансный спектр образца после десорбции при нагревании до 300°С указывает на исчезновение поверхностного комплекса. [c.55]

    Общая селективность по карбонильным соединениям выше для олово-молибденового катализатора. [c.329]

    Каталитическое хлорирование. Галоидирование парафинов катализируется углеродом, металлами, солями металлов и соединениями, разлагающимися с образованием свободных радикалов. К последним относятся тетраэтилсвинец, гексафенилэтан и азометан, действие которых заключается в инициировании свободно-радикальной цепи. Такие металлы, как медь, по-видимому, частично превращаются в хлориды, являющиеся эффективными катализаторами. Для различных реакций хлорирования применялись хлориды меди, церия, железа, сурьмы, алюминия и в меньшей степени титана и олова. Каталитическое действие их усиливается при нанесении соли металла на сильно развитую поверхность, например на. стекло, пемзу, окись алюминия или силикагель. [c.62]

    Содержание платины в катализаторах определяют колориметрическим методом, основанным на образовании окрашенного комплексного соединения, образующегося при взаимодействии раствора платинохлористоводородной кислоты с хлоридом олова. [c.122]

    В качестве катализаторов наибольшее применение получили органические производные олова и третичные амины, но могут быть использованы и другие соединения кислого или основного характера  [c.527]

    Исследована гидрогенизация китайских углей. Лучшие катализаторы — соединения олова и молибдена, особенно галогениды олова [c.19]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]


    Следовательно, модифицирование алюмоплатинового катализа--тора оловом или свинцом должно привести к уменьшению вклада реакций, протекающих через прочно адсорбированные соединения, ведущие к фрагментации исходного углеводорода (например,. через гидрогенолиз). В этой связи интересно отметить увеличение селективности процесса при риформинге на алюмоплатиновом катализаторе, модифицированном одним из металлов IV группы — германием при одинаковом октановом числе бензина риформинга объемный выход его повышается примерно на 2,5% [216]. 1 [c.99]

    Менделеева (германия, олова, свинца) и галогена — хлора, является [121] введение галогена (или галогенсодержащих соединений) в газовую смесь при регенерации катализатора. Обычно в газовую смесь впрыскивают [c.160]

    С. 3. Рогинский считает, что закон роста К,, с увеличением Е красной нитью проходит через кинетику реакции гомогенного и гетерогенного катализа. Г. М. Жаброва и Е. А. Фокина [341 при исследовании разложения перекиси водорода на MgO с разным содержанием окиси олова и окиси сурьмы, введенных в катализатор путем пирогенного распада соответствующих магний- или оловоорганических соединений, нашли, что зависимость скоростей реакций от количества примесей неодинакова при разных температурах (рис. 14). Кривые зависимости от добавки имели ярко выраженный максимум при 84°, при 70° они более плоски, а при дальнейшем снижении температуры реакции (45 и 30°) выпрямляются, т. е. зависимость активности катализатора от содержания добавки практически исчезает. И в данном случае наиболее активные катализаторы имеют максимальные значения Е и Это важное и новое явление в катализе можно было бы иллюстрировать и другими примерами. [c.79]

    Металлорганические соединения имеют широкое практическое применение. Среди них встречаются лекарственные препараты (соединения ртути), антиоксиданты и стабилизаторы высокомолекулярных соединений (соединения олова), антидетонаторы (тетраэтилсвинец), очень важные катализаторы (соединения щелочных металлов, алюминия, титана) и др. [c.207]

    Наряду с промотированием алюмоплатинового катализатора различными металлами его качество можно улучшить обработкой окиси алюминия различными соединениями, например производными вольфрама и олова. Платиновольфрамовый катализатор по активности близок к платинорениевым, а по избирательности - к моноплатиновому катализатора. [c.21]

    При этом способе синтеза применяют самые разнообразные реагенты, катализаторы и растворители. Наиболее употребительными агентами галогеиалкилирования являются альдегиды и галогеноводородные кислоты (для галогенметилирования—формальдегид илн его полимеры, например параформальдегид), ацетали и галогеноводородные кислоты и галогеналкилэфиры- Наиболее часто употребляются кислые галогениды, такие, как хлористый цинк, хлористый алюминий или четыреххлористое олово, или катализаторы типа протонных кислот, такие, как хлористый водород, серная, фосфорная или уксусная кислота. Растворителями обычно служат эфир, диоксан, четыреххлористый углерод, хлороформ, нитробензол или сероуглерод. В некоторых случаях такое соединение, как уксусная кислота, может одновременно служить катализатором и растворителем, а такое соединение, как хлорметиловый эфир, и реагентом, и катализатором [92]. Нередко применяют смешанны.е катализаторы. При этом методе синтеза получают самые различные, но часто вполне удовлетворительные выходы. [c.461]

    Механизм стабилизирующего действия олова на катализатор отличается от действия рения, олово отравляет центры прочной адсорбции на платине, что предотвращает ее закоксовывание [73]. Олово и германий, предотвращая блокирование платины коксом, способствуют поддержанию высокой скорости спилловера водорода, при этом гидрирование поверхностных ненасыщенных соединений, склонных к образованию кокса на носителе, будет протекать с наибольшей интенсивностью вблизи кластеров, включающих платину и олово (или германий). Таким образом, повышение стабильности платиновых катализаторов риформинга при промотировании оловом и германием [c.38]

    Адсорбция пропилена на олово-молибденовом катализаторе при комнатной температуре происходит с разрывом С = С-связи и образованием соединений типа окисей этилена или пропилена, а если адсорбция идет при 200°С, в ИК-спектрах наблюдаются полосы, относящиеся к С = С-связи, координационно связанной с поверхностью, и к С = 0-связи. При этом предполагается образование карбонилсодержащих соединений, координационно связанных с поверхиостью по двойной углерод-углеродной связи [155]. [c.58]

    При взаимодействии изобутилена с олово-сурьмяным катализатором и молибдатом кобальта [159] в ИК-спектрах образующихся поверхностных соединений отсутствует полоса, соответствующая связи С = С (1660 см ), но появляются полосы 1470 и 1030 см , принадлежащие антисимметричным и симметричным колебаниям связей С= С= С, которые свидетельствуют об образовании я-металлильного комплекса. [c.59]


    Изучение комйлексообразования виниловых эфиров аминофенолов с хлорным оловом — активным катализатором катионной полимеризации — позволило впервые синтезировать и охарактеризовать около двух десятков комплексных соединений. С помощью ИК-спектров доказано донорноакцеп-торное взаимодействие атомов олова с неподеленными электронными парами атомов кислорода и азота [41]. [c.19]

    При адсорбции пропилена на ионе шестивалентного молибдена, находящегося на поверхности олово-молибдеиового катализатора, согласно изотопным данным [2, 3], образуются я-аллильный комплекс и гидроксильная группа, связанная, вероятно, с пятивалентным молибденом. Последнее предположение основывается на исследовании соединений вольфрама — аналога молибдена [15]. Взаимодействие с кислородом приводит к отрыву второго [c.45]

    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Алюминийорганические соединения в катализаторах на основе Ti U могут быть заменены полииминоаланами [24], органическими производными других металлов лития, магния, цинка, кадмия, олова, литийалюминийалкилами [52] или биметаллическими комплексами общей формулы  [c.214]

    Жидкофазпое хлорирование углеводородов проводится под давлением. При этом в качестве переносчиков хлора могут использоваться хлориды фосфора, сурьмы, железа, олова и некоторых других элементов. Для тех же целей годны тетраэтилсвинец, диазометан и другие соединения [135]. В качестве гетерогенных катализаторов используют кизельгур, пемзу, активированный уголь и окись алюминия. Указанные вещества применяют или в чистом виде или пропитывают солями различных металлов. Часто для указанных целей применяют соли меди. [c.119]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Хлорметилирование до недавнего времени проводили в присутствии хлористого цинка и иногда — четыреххлористого олова. Эти же катализаторы используют и теперь для менее реакционноспособных соединений или в специальных с./тучаях. Однако они вызывают побочную конденсацию хлорметилированного соединения с исходным веществом, приводящую к образованию диарилметанов  [c.553]

    Для снижения дезактивирующего влияния примесей сырья на катализаторы крекинга в последние годы весьма эффективно применяется технология ККФ с подачей в сырье специальных пассиваторов металлов, представляющих собой металлоорганические комплексы сурьмы, висмута, фосфора, олова и других элементов. Сущность пассивации заключается в переводе металлов, осадивщихся на катализаторе, в неактивное (пассивное) состояние, например в результате образования соединения типа шпинели. [c.117]

    Наряду с Pt-Sn- комплексами на поверхности катализатора олово содержится в двух- и четырехвалентном состоянии. Имеются также большие кристаллы платины. Из рис. 6.14 и 6.15 видно, что активность Pt-Sn-катализаторапри низких температурах (315 С) мала даже в реакции дегидрирования циклогексана, что свидетельствует о слабой способности образования мультиплетного комплекса. С повышением температуры ускоряется образование мультиплетного комплекса с последующим его распадом и десорбцией продуктов реакции за счет увеличения спилловера водорода. При этом основная часть продуктор переходит в газовую фазу, а часть тяжелых непредельных соединений мигрирует на носитель, где инициирует топографическую цепнун реакцию деструктивной поликонденсации до кокса. Об этом свиде- [c.155]

    Сложную систему представляет собою катализатор Р1—5п/А120з после восстановления при 500 °С [183]. Наряду со сплавами Р1—5п, он содержит ионные формы двух- н четырехвалентного олова, а также кристаллы платины. При нанесении систе.мы на хлорированный оксид алюминия значительно увеличивается степень восстановления соединений олова [184]  [c.83]

    Сера. Значительный лнтерес представляют данные о действии серы на алюмоплатиновый катализатор, так как оно в известной мере подобно действию металлов IV группы (германия, олова, свинца). Дозированное осернение алюмоплатинового катализатора и, следо этельно, введение небольших количеств серы, хотя и снижает дегидрирующую активность катализатора, однако, подавляя гидрогенолиз парафинов, увеличивает селективность процесса, вследствие чего повышается выход ароматических углеводородов. С другой стороны, при значительном содержании серусодержащих соединений в сырье происходит отравление катализатора, в частности уменьшается его активность и селективность в реакции дегидроциклизации парафинов (табл. 2.13). Подобное явление наблюдается только, при умеренных температурах каталитического риформинга. Если же проводить процесс при высоких температурах (например, 525 " С) существенного ухудшения селективности не отмечено [120]. . [c.96]

    При рассмотрении роли спилловера водорода в подавлении коксоотложения на носителе катализатора рнформинга было показано, что наибольшего эффекта можно ожидать на участках носителя вблизи платины. Германий и олово, предотвращая блокирование платины коксом, тем самым должны способствовать поддержанию высокой скорости спилловера водорода. При этом гидрирование повер сностных ненасыщенных соединений, склонных к образованию кокса на носителе, будет протекать с наибольшей интен-чвностью вблизи кластеров, включающих платину и германий или олово). Таким образом, повышение стабильности платиновых катализаторов риформинга при промотировании германием, оловом или свинцом объясняется не только предотвращением блокирования платины коксом, но и подавлением коксообразования на той части поверхности носителя, которая вероятно играет наиболее важную роль в катализе. [c.100]

    Смешение катализаторов Р1/Аи0з и 5п/А1гОз не приводит к повышению стабильности платинового катализатора [232]. Это служит подтверждением различия механизма стабилизирующего действия рения и олова. Олово отравляет центры прочной адсорбции на платине, что предотвращает ее закоксовывание. Рений же катализирует гидрирование тех ненасыщенных соединений, которые служат источником" коксообразования на платине. Как и при модифицировании [c.103]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    В окислении и аммоокислении олефинов углеводород претерпевает частичное дегидрирование, образуя адсорбирующийся радикал, к которому присоединяется кислород. Полученные продукты, сходные с альдегидами, могут затем конденсироваться с аммиаком, а продукт присоединения дегидрируется в нитрил. Необходимые функции — дегидрирование, присоединение кислорода и конденсация — ассоциируются с такими катализаторами, как молибдат висмута и соединения окислов олова и сурьмы. [c.33]

    Наряду с промотированием алюмоплатинового катализатора различными металлами его качество можно улучшить обработкой окиси алюминия различными соединениями, например производными вольфрама и олова [109, ПО]. Так, платиновольфрамовый катализатор готовят одновременной или раздельной пропиткой окиси алюминия растворами соединений вольфрама (Нг Л 04, С1б и т. д.) и платины (Н2Р1С1б и др.). Катализатор сушат в атмосфере азота, а затем восстанавливают водородом при более высокой температуре. После предварительной обработки смесью водорода и углеводородного сырья в течение 1—1,5 ч (для предупреждения деструкции с разрывом связей С—С) катализатор приобретает высокие активность и избирательность. По активности он близок к платинорениевым катализаторам, по избирательности —к моно-платиновому [109]. [c.149]

    Имеется большой набор изученных активных катализаторов /21/. Наиболее активньп и из них являются третичные алифатические амины и в первую очередь вполне доступные N-этил-морфолин и 1,4-диазабииикло-(2,2,2 )-октан. Многие соединения металлов, растворимые в реакционной смеси, также обладают каталитической активностью, причем наиболее активны соединения олова /21/. Практически оба эти типа катализатора являются синэргетическими, поэтому, если необходимо обеспечить большую скорость протекания реакции (что и бывает обычно), катализаторы обоих типов применяют вместе. Концентрация и соотношение катализаторов зависят от системы, но находятся в пределах 0,05-0,5% оловоорганического соединения и амина. Хотя в ходе реакции выделяется некоторое количество тепла, протекает она практически при комнатной температуре. Компоненты смешивают в сопле, и смесь втекает в форму, где реакция заканчивается в течение нескольких минут. [c.334]

    Хорошие результаты были получены при пропускании паров крекируемого сырья через расплавленное олово или расплавленный свинец (метод Меламида). Предлагались также железные или медные сетки, алюминиевые, хромированные илп луженые медные трубы. Очень хорошие результаты были получены при крекинге сланцевой смолы в ретортах из хромоникелевой стали (Кожевников, 1936 г.). В качестве катализаторов для крекинга различными авторами были предложены Разнообразные металлы и сплавы. Были испробованы почти все элементы периодической системы и их соединения. Установлено, что все металлы так или иначе благоприятствуют разрыву С—С-связи, дегидрированию и полному разложению на углерод и водород. Некоторые металлы проявляют свое избирательное влияние на отдельные стадии крекинга например, Си и Pd способствуют дегидрированию в олефины, Fe, Со и Ni—полному разложению углеводородов на углерод и водород. [c.309]

    Деструктивному гидрированию при нагревании под давлением можно подвергать самые разнообразные вещества торф, полиозы, лигнин, смолы и т. д. В зависимости от характера исходного сырья, получаются различные продукты. Так, из крахмала или целлюлозы образуются глицерин, гликоли, спирты и др. Гидрирование лигнина над меднохромитным катализатором, содержащим немного никеля, при 300—335° или над сульфидом олова с добавкой йодоформа при 400 приводит к превращению лигнина на 75% в сложную смесь органических соединений, содержащую, кроме газа и воды, углеводороды, метанол, кетоны, циклические спирты, фенолы. Последние представляют наибольший интерес. Таким путем можно получать труднодоступные фенолы метил-, этил- и пропилметоксибензолы, метил-, этил- и пропилдиоксибензолы и др. [c.419]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]


Смотреть страницы где упоминается термин Олово соединения его как катализаторо при: [c.110]    [c.115]    [c.95]    [c.630]    [c.57]    [c.104]    [c.330]    [c.490]    [c.156]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы олова



© 2025 chem21.info Реклама на сайте