Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический дипольный момент ток в металле

    Наиболее непосредственно полярность связи в двухатомных молекулах характеризуется электрическим дипольным моментом. У чисто ковалентных молекул с одинаковыми ядрами > ц = 0, у молекул галогенидов щелочных металлов ( ионных молекул ) дипольные моменты достигают 30—40 10 ° Кл м (10—12 Д ), дипольные моменты 1,5— —3,010 ° Кл м (0,5—1 Д) указьгаают на умеренную полярность связи. Однако сама по себе величина ц еще не говорит о величине зарядов, возникающих на атомах, и, следовательно, о степени ионности связи, так как ц зависит и от заряда связи, и от межъядерного расстояния. Более удобной мерой полярности связи может служить так называемый критерий Полинга  [c.133]


    Если поверхность металла не заряжена (ф яа 0), это способствует наибольшей адсорбции молекулярных (незаряженных) частиц, которые могут замедлять коррозию металла в результате механического экранирования его поверхности или (в зависимости от дипольного момента) создания энергетического барьера (например, антраниловая кислота). В этих условиях применимы и катионные добавки с малым удельным зарядом, действующие замедляюще, так как они создают тормозящее процесс электрическое поле или вытесняют с поверхности металла анионы. [c.348]

    Если в молекуле имеются точечные заряды, постоянные диполи или более высокие мультиполи, то следует принимать во внимание и кулоновские взаимодействия. Зная распределение заряда в молекуле, энергию таких взаимодействий можно вывести непосредственно из закона Кулона. Некоторые авторы, например авторы работы [92], использовали метод Эйринга и сотр. [123], согласно которому распределение заряда устанавливается на основании а) поляризуемости, б) констант экранирования, в) ковалентных радиусов и г) электрических дипольных моментов. Б случае отсутствия таких подробных данных примерное представление о распределении зарядов может быть получено делением дипольного момента каждой связи на длину связи. Однако в таких расчетах не было особой необходимости, поскольку большинство статей по различным аспектам конформационного анализа органических молекул имеет дело с неполярными системами. В комплексах металлов подобные кулоновские взаимодействия должны быть суш ественны. Тем не менее следует отметить, что даже в сравнительно полярных молекулах простые кулоновские взаимодействия между зарядами редко определяют преимущественную конформацию вследствие относительно медленных изменений членов, содержащих г . При наличии полярности более высокого порядка, это становится менее справедливым. Действительно, по мнению некоторых авторов, дипольные и квадру-польные взаимодействия могут иметь значение при определении вращательных барьеров [80, 81, 104]. [c.58]

    Однако дальнейшие экспериментальные исследования установили недостаточность теории Нернста. Исследования Фрумкина показали, что э. д. с. элементов не равны нулю и в тех случаях, когда электроды находятся в нулевых растворах, т. е. не несут на себе заряда. Таким образом, согласно Фрумкину, отсутствие двойного электрического слоя на поверхности раздела металл—раствор не означает отсутствия скачка потенциала. Потенциал может возникать за счет адсорбции растворенных молекул или ориентации молекул растворителя. Потенциалы максимума электрокапиллярных кривых различных металлов не совпадают между собой. Между двумя металлами, находящимися при потенциалах максимумов электрокапиллярных кривых, возникает э. д. с. Потенциалы нулевого заряда металлов располагаются в ряд, близкий к ряду контактных потенциалов этих металлов в вакууме. Полного совпадения при этом, как и следует ожидать, не получается в связи с тем, что ориентация молекул растворителя, обладающих постоянными или наведенными дипольными моментами, создает дополнительный скачок потенциала на границе металл—раствор. [c.428]


    На поверхностях трущихся пар в контакте с топливом образуется тонкий граничный слой со специфическими отличными от топлива свойствами. Граничный слой толщиной менее 1 мкм выполняет роль смазочной пленки. Он предотвращает непосредственный контакт поверхностей трения, уменьшая при этом силу трения и износ трущихся деталей. Причина образования фаничного слоя - высокая активность атомов поверхностного слоя металла. Атомы на поверхности металла имеют свободные связи, не компенсированные соседними атомами. Благодаря этому, поверхность металла способна адсорбировать из топлива в первую очередь ПАВ. Молекулы углеводородов в отсутствии внешнего электрического поля практически неполярны, их дипольный момент близок нулю. Растворенные в топливах гете- [c.50]

    Наибольшее поверхностное натяжение у воды, обладающей высокой полярностью большой дипольный момент (1,84 О), малые размеры молекул, наличие водородных связей. В жидкостях, полученных при плавлении ионных кристаллов, сохраняются ионные связи между частицами и они хорошо проводят электрический ток (электролиты). Поверхностное натяжение у этих жидкостей высокое. Еще выше оно (до 0,30 Дж/м ) при сохранении ковалентных и ионных связей в расплавах кристаллов силикатов и алюми носили катов. Наибольшая величина поверхностного натяжения у жидких металлов, она на порядок выше поверхностного натяжения полярных жидко стей и некоторых расплавов ионных кристаллов. [c.218]

    Геометрическая изомерия координационных соединений является следствием различной координации донорных лигандов с центральным атомом металла, что приводит к различной ориентации молекул в электрическом и магнитном полях. Такие комплексы металлов имеют постоянный дипольный момент, величина которого является характеристикой полярности комплекса. Кроме того, существование геометрических изомеров может быть следствием различной ориентации алкильных групп в симметричных бидентатных лигандах, координированных атомом металла. [c.334]

    Палладиевый комплекс получен из раствора, содержащего бромид-ион и пиридин 5H5N (этот лиганд-хороший донор, легко координируемый ионами металлов). Элементный анализ комплекса показал, что он содержит 37,6% брома, 28,3% углерода, 6,60% азота и 2,37% водорода. Это соединение слабо растворимо в ряде органических растворителей, его спиртовый и водный растворы не проводят электрический ток. Экспериментально установлено, что у данного комплекса нулевой дипольный момент. Запищите химическую формулу этого комплекса и укажите его предполагаемую структуру. [c.406]

    Наиболее высокое сцепление обеспечивается в тех случаях, когда при контакте поверхностей происходит химическое взаимодействие. Чаще всего электронная плотность образовавшейся при этом молекулы распределяется неравномерно, в ней возникает дипольный момент. Образующаяся система диполей, ориентированных перпендикулярно к поверхности контакта, приводит к созданию двойного электрического слоя, роль которого состоит в усилении сопротивления нарушению контакта при динамических нагрузках и в увеличении работы отслаивания [36]. Роль пограничного слоя между пленкой и металлом выявилась в результате [c.29]

    Различный характер распределения электрического заряда в молекулах позволяет разделить их на два основных класса — полярные и неполярные. К полярным молекулам относятся молекулы, обладающие важной электрической характеристикой— дипольным моментом. В 1912 г. П. Дебай впервые ввел представление о диполь-ном моменте как о величине, определяющей разделение положительных и отрицательных зарядов в молекуле. Им создана теория поляризации диэлектриков в электрическом поле и разработаны экспериментальные методы измерения дипольных моментов молекул в газовой фазе и в растворе. До сих пор эти методы являются основными для определения дипольных моментов. Однако методы Дебая имеют некоторые ограничения, так как не позволяют изучать труднолетучие соединения, например соли и оксиды металлов, или неустойчивые соединения. [c.58]

    Молекулы углеводородов в отсутствие внешнего электрического поля неполярны, и их дипольный момент равен нулю. Присутствующие в топливах молекулы гетероорганических соединений содержат атомы серы, кислорода или азота. Такие молекулы полярны и имеют постоянный дипольный момент, обусловленный несовпадением центров тяжести положительных и отрицательных зарядов. Эти соединения притягиваются поверхностью металла, строго ориентируются в слоях и создают ту смазочную пленку, которая уменьшает трение и износ. Установлено, что наилучшими противоизносными свойств ами обладают кислородные соединения. [c.77]


    Сильно влияет на коагуляцию частиц внешнее электрическое поле. В реальных топливных системах, особенно при повышенных температурах, часто наблюдается возникновение различных электрических нолей. Особенно часто возникают так называемые термотоки, которые обусловливаются нагревом двух контактирующих металлов [41]. Очевидно, что молекулы, имеющие высокую полярность, большой дипольный момент и активную функциональную группу, будут способствовать укрупнению образующегося нерастворимого осадка. Именно этим следует объяснить значительное укрупнение осадка в присутствии меркаптанов. Меркаптаны имеют чрезвычайно активную группу — 8Н, которая, кроме того, [c.172]

    Поскольку поверхностные молекулы жидкости уже ориентированы собственным внутренним полем (см. формулу (11.44)), то взаимодействие их с электрическим полем металла при контакте фаз может осуществляться лишь через деформационную поляризацию молекул жидкости — через индуцированный дипольный момент pei = Предполагая, что раствор имеет постоянную концентрацию одного и того же вещества и достаточно разбавлен во избежание нарушений структуры растворителя, вклад в общую поляризацию растворенного вещества при смене растворителя можно считать постоянным и малым. Тогда [c.258]

    Можно допустить, что поляризация вызывается электрическим двойным слоем, состоящим из электронов, расположенных на поверхности проводящего адсорбента, и соответствующих положительных зарядов, находящихся внутри металла. Величину дипольного момента, индуцированного в адсорбированных молекулах полем этого двойного слоя, можно найти по разности между теоретическим и фактически определяемым значением постоянной аг- Эта разность составляет слагаемое постоянной которое возникает в результате действия диполя. [c.41]

    На этом прекращается аналогия между магнитными и электрическими эффектами, так как хо и %р имеют различные знаки, а соответствующие электрические величины (деформационная поляризация Рв и ориентационная поляризация Ро) — одинаковые знаки. Если рассматриваемое соединение не имеет постоянного магнитного дипольного момента, %р равно нулю и единсг-венным членом, дающим вклад в магнитную восприимчивость, окажется отрицательный член %в. В этом случае вещество называется диамагнитным. Оно менее проницаемо для магнитных силовых линий, чем вакуум, и в неоднородном магнитном поле будет перемещаться от более сильной к более слабой части неоднородного поля. Если же вещество обладает постоянным магнитным дипольным моментом, то положительный член /р перекрывает отрицательный член %в и молярная восприимчивость %м положительна. В таком случае говорят, что это вещество парамагнитно. Для магнитных силовых линий оно более проницаемо, чем вакуум, и, находясь в магнитном поле, перемещается от более слабой к более сильной его части. У сравнительно немногочисленных веществ, в основном металлов и сплавов, хм положительно и по величине приблизительно в 10 раз больше нормальных значений диамагнитной восприимчивости. Такие вещества называются ферромагнетиками (разд. 9.5). В этой главе ферромагнитные вещества не рассматриваются. [c.254]

    Принято считать, что изменения работы выхода, вызванные присутствием адсорбированных веществ, возникают вследствие образования дипольных слоев. Так, электроотрицательные атомы, как, например, кислород на вольфраме, имеют тенденцию притягивать электроны, в результате чего создается избыточный заряд, равный примерно Vie заряда электрона. В результате этого в металле индуцируется электрическое изображение, приводящее к образованию диполя. В том случае, когда дипольный момент отдельных атомных комплексов адсорбата слабо изменяется со степенью покрытия, слой можно рассматривать как конденсатор, потенциал которого пропорционален числу отдельных диполей, приходящихся на единицу поверхности, т. е. пропорционален степени покрытия поверхности адсорбатом. Этот потенциал, или приращение работы выхода, обычно называется контактным потенциалом и выражается через [c.112]

    Электрические поля, обусловленные межфазными электрическими потенциалами, которые возникают на границах раздела металл — масло, дисперсная фаза — масло, влияют на важнейшие функциональные свойства масел [1, 2]. Влияние этих полей на вязкость масел не изучено. В литературе имеются данные о влиянии магнитного и электрического поля различной частоты на вязкость азоксианизола при сдвиге [3, т. 1, с. 47—57]. Показано, что вязкость такой жидкости под действием полей, когда вектор напряженности поля перпендикулярен направлению сдвига, значительно возрастает и при определенном значении напряженности приложенного поля достигает насыщения. Если вектор напряженности поля совпадает с направлением сдвига, то вязкость уменьшается незначительно. Известно также [3, т. 2, с. 63—67], что относительное увеличение вязкости некоторых низкомолекулярных жидкостей (бензол, толуол, этиловый эфир, нитробензол) под действием электрического поля линейно зависит от дипольного момента молекул. [c.193]

    На границе раздела фаз обычно возникает разность электрических потенциалов, природа которой может быть различной. Например, скачок потенциала на границе металл — вакуум является следствием смещения электронного облака относительно ионной решетки, в результате которого поверхность приобретает некоторый эффективный дипольный момент. В случае контакта металл — электролит возникает ряд дополнительных факторов, которые оказывают влияние на величину межфазного скачка потенциала. Прежде всего это адсорбция молекул воды (или другого растворителя), которая дает вклад в дипольный скачок потенциала. Кроме того, возможна специфическая адсорбция ионов или переход заряженных частиц — электронов или ионов — через границу раздела, что приводит к заряжению поверхности. [c.8]

    Эти формулы относятся только к магнитным частицам. Дискриминация электрического аналога в этих и других формулах будет проводиться и в дальнейшем. Для этого есть ряд веских причин. Первая состоит в том, что имеющаяся во многих случаях идентичность магнитных и электрических эффектов делает излишним дублирование формул. Раз-тичие заключается в вычислении энергии и момента сил, которое иллюстрировано приведенными выше формулами, в частности формулами (3.11.9) и (3.11.10). Вторая причина — различие в досту пности для экспериментирования ориентационного структурирования в электрическом и магнитном полях. Структурирование электрическим полем достигается только в специальных случаях, а возможность измерения электрической поляризации также сопряжено с рядом трудностей. Измерение статической электрической поляризации и вовсе неосуществимо. Магнитное поле в этих отношениях является предпочтительным. Единственное, о чем необходимо позаботиться, — это подбор дисперсной фазы. Она должна быть магнитной. Никаких других ограничений, в том числе отностельно природы среды, не существует. Это может быть диэлектрическая жидкость или раствор электролита высокой концентрации, это может быть даже расплавленный металл, что, кстати, позволяет достичь температуры Кюри магнитного материала и поставить сравнительный эксперимент с одной и той же системой при магнитном и немагнитном состояниях дисперсной фазы. Все эффекты магнитной поляризации и структурирования могут быть реализованы и исследованы экспериментально, тогда как с электрической поляризацией это вряд ли возможно. Наконец, третья причина, по которой далее будет отдаваться предпочтение ферромагнитным системам, — отсутствие трудностей с вычислением и с измерением величины магнитного дипольного момента частиц в случае однодоменных частиц шш в состоянии насыщения многодоменных частиц их магнитный момент легко вычисляется по формуле [c.683]

    В заключение отметим, что объединенное уравнение первого и второго законов термодинамики, дополненное электростатической работой, вызванной поляризацией поверхностного слоя двух контактирующих жидких фаз, позволяет построить молекулярную термодинамику поверхностных явлений получить обобщенное уравнение электрокапиллярности (см. (1.14), следствия из которого дают возможность определить поверхностный скачок потенциала на границе жидкость - газ (1.25, 1.26), жидкостной потенциал (1.37), уравнение эл ектр окапил лярно сти (1.43), выражение для величины дифференциальной емкости двойного электрического слоя границы металл - раствор (1.46), смещение потенциала электрокапиллярного максимума (1.53) и многое другое. Все эти соотношения непротиворечиво описывают зависимость поверхностных натяжения и заряда, емкости двойного слоя, скачка потенциала на межфазной границе от таких индивидуальных параметров жидкости, как поляризуемость, дипольный момент, показатель преломления, количество молекул в единице объема, которые ранее или вовсе не учитывались или им придавали второстепенную роль. Эвристическая ценность данного исследования на этом не исчерпывается, поскольку приведенные соотношения открывают широкую перспективу для дальнейших исследований межфазных процессов. [c.30]

    Ионы переходных металлов (Т-клгионы) занимают в этой классификации промежуточное положение между А- в В-металлами. Их свойства часто представляют компромисс между мягким в жестким поведением. Т-катионы имеют частично заполненные -оболочки (1,2,..., 9 электронов). Мы можем рассматривать их как сферическое адро, окруженное мягкой в легко деформируемой внешней электронной оболочкой. Электронная плотность вокруг 5Цфа pa пpeдeJ a несимметрично. Магнитный и электрический дипольные моменты могут принимать различные значения в зависимости от числа электронов в -оболочке. [c.163]

    Для выяснения структур некоторых межгалоидных соединений и, в частности, трифторида брома определены диэлектрические константы и электрические дипольные моменты [47]. Измерения проведены на многократно дистиллированном в монелевой аппаратуре трифториде брома методом биения гетеродина. Контроль температур осуществлялся с точностью + 0,05° С. Измерения давлений проводили с точностью +1 мм при помощи прибора Бур-дона, изготовленного из монель-металла и калиброванного по ртутному манометру. Измерительную ячейку калибровали на очищенных образцах аммиака и двуокиси углерода. Диэлектрические константы газов при давлении в одну атмосферу рассчитывали по изменению емкости АС измерительной ячейки. [c.139]

    Теория де Бура — Цвиккера подверглась суровой критике Брунауэра [18], основное возражение которого заключалось в том, что эффект поляризации недостаточно велик. Это привело к почти полному забвению поляризационной теории. Однако некоторые новые данные показывают, что в этой теории все же имеется рациональное зерно. Бьюиг и Зисман [64], в частности, показали, что адсорбция н-гексана на различных металлах приводит к значительному изменению поверхностного потенциала АУ, соответствующему довольно большому индуцированному дипольному моменту порядка 0,3 дебая (В). Согласно-расчетным данным, для индуцирования такого диполя на молекулах н-гексана на поверхности должно быть поле напряженностью около 10 В/см. Значительное изменение АУ обнаружено и при адсорбции инертных газов на металлах [65]. Так, по данным Притчарда [66], при адсорбции ксенона на меди, никеле, золоте и платине при —183°С значение АУ меняется от 0,2 до 0,8 В, причем в момент завершения образования монослоя наклон зависимости АУ от V резко уменьшается. По мнению Бенсона и Кинга [67], адсорбция инертных газов на окиси алюминия в значительной мере определяется локальными электрическими полями. Поверхность графита, по-видимому, также характеризуется сильным полем, обусловленным разделением д-электронов и положительно заряженных атомов углерода. В последнее время получены спектроскопические данные (гл. XIII, разд. Х1П-4), свидетельствующие о значительной поляризации адсорбированных частиц. Как показано в разд. XIV-10, даже на поверхностях молекулярных кристаллов дисперсионным силам можно приписать только часть энергии адсорбции. Более того, на поверхностях, покрытых прослойками предварительно адсорбированных инертных веществ, потенциальное поле убывает почти экспоненциально. Таким образом, можно считать доказанным, что в общем случае адсорбция в первом слое больше определяется электростатическим поляризационным взаимодействием (уравнение (У1-38), гл. VI), чем дисперсионными силами. [c.463]

    Между неполярными адгезивами и субстратами реализуются преимущественно Ван-дер-Ваальсово взаимодействие или водородные связи. При протекании на фанице раздела фаз реакций образуются химические связи и наблюдается образование двойного электрического слоя. Изменение адгезии вследствие возникновения двойного электрического слоя в зоне контакта и образования донорно-акцепторной связи определяется для металлов и кристаллов состоянием внещних электронов атомов поверхностного слоя и дефектами кристаллической решетки, для пО]Тупроводников - поверхностными состояниями и наличием примесных атомов, а для диэлектриков - дипольным моментом функциональных фупп молекул на фанице фаз. [c.93]

    Слабые полосы (lge l—2) обусловлены электронными переходами между термами иона металла в электрическом поле лигандов. Система термов зависит от симметрии ноля лигандов, атомных термов, из которых она выводится, и силы ноля. Для октаэдрических комплексов интерес представляют три типа симметрии поля кубическая, тетрагональная и ромбическая. Если суммы дипольных моментов вдоль осей октаэдрического комплекса х, у ж z (лиганды расположены на этих осях) равны А , fiy и и лиганды находятся на одинаковых расстояниях от центрального иона металла, то поле будет кубическое, если p, = [i,, тетрагональное, если Ф Hz и ромбическое, если х Ф у.у Ф Симметрия различных типов комплексов приведена в табл. 39 [22]. [c.180]

    И поверхностный потенциал [10] /, = (Фвнешп-Фвнутр) двойной электрический слой возникает вследствие несимметричного расположения электронов, находящихся на поверхности металла. Величина поверхностного потенциала определяется выражением = 4т М1, где М обозначает суммарный дипольный момент на единицу поверхности. [c.87]

    Недавно, измеряя контактные потенциалы, Миньоле [28], показал, что в неполярных молекулах и даже в атомах инертных газов при адсорбции на металлах и угле наводятся удивительно большие дипольные моменты. Вероятно, адсорбируемые молекулы поляризуются электрическим полем двойного слоя, образованного свободными электронами поверхности металла и соответствующим внутренним положительным зарядом. Соответствующий вклад в потенциальную энергию может быть записан как [c.28]

    Приповерхностные зоны материнской и дочерней фаз характеризуются особыми свойствами [19—24]. Протяженность таких зон зависит от природы компонентов системы. Если в кристаллах или жидкости имеются свободные носители зарядов, то они часто локализуются в непосредственной близи от границы раздела фаз. Носители же компенсирующего заряда располагаются в приповерхностных зонах диффузно на расстоянии, соизмеримом с дебаевским радиусом экранирования, который меняется от 10 до 10 А при переходе от кристаллизантов металлов к диэлектрикам [18—20]. Неравномерное распределение носителей заряда приводит к электрической и механической поляризации приповерхностной зоны, что должно сказаться и на распределении примеси. Если в системе нет свободных зарядов или невозможна их локализация на границе раздела фаз, то протяженность приповерхностной зоны жидкой фазы зависит от дипольного момента ее молекул и поляризующего действия кристаллов. Эта зона обнаружена, например, на поверхности стеклянных и металЯических пластин, смоченных водой [21]. Особыми свойствами отличается вода между кристаллами в концентрированных суспензиях, что проявляется в отклонении их поведения от закона Дарси [22] и в замедленной диффузии ионов в растворах между кристаллами таких суспензий [23]. Протяженность слоя воды, обладающего особыми свойствами, точно не установлена, однако [c.61]

    Если в соответствии с мнением Косселя, Фаянса и других принять, что химические силы между ионами металла, молекулами аммиака и воды обусловлены лишь электрическим притяжением между электрическими зарядами иона металла и постоянными я индуцированными диполями молекул, то можно объяснить многое в образовании и устойчивости амминов. Следует отметить только два интересных момента. Известно, что постоянный дипольный момент воды несколько больше постоянного дипольного момента аммиака , но зато аммиак больше поляризуется, о чем свидетельствуют рефрактометрические измерения и, вероятно, поэтому молекулы аммиака обычно связаны с ионами металла сильнее, чем молекулы воды. Различие в поляризуемости проявляется меньше в случае больших ионов щелочных и щелочноземельных металлов с электронной оболочкой инертного газа. Этим объясняется то, что в водных растворах этих ионов не образуются аммины (исключение составляют только очень концентрированные растворы). Этого не наблюдается в случае ионов металлов побочных групп, которые вследствие своей электронной конфигурации имеют значительно большую энергию поляризации и где соответственно происходит значительное образование амминов даже при малых концентрациях (если только радиус не очень велик и мал заряд). [c.76]

    Поскольку введение экзо- и гетероциклических атомов в молекулы ароматических соединений значительно повышает их поверхностную активность, можно считать, что именно эти атомы в основном определяют прочность связи адсорбент — адсорбат. Основным адсорбционным центром у аминов является атом азота аминогруппы в случае замещенных анилинов и азометинового мостика для производных 1-окси-2-нафтальанилина. У замещенных бензальдегидов таким центром может быть атом кислорода карбонильной группы. Кроме того, возможно я-электронное взаимодействие ароматических ядер молекул с поверхностью металла. Заместители К, вводимые в ароматическое ядро, которое в данном случае является разделяющей группировкой М, изменяют электронную плотность на адсорбционном центре и, вызывая перераспределение электрических зарядов в молекуле, влияют на величину дипольного момента ц последней. [c.20]

    Еще одним возможным механизмом возникновения двойных электрических слоев является поверхностная ориентация молекул, имеющих полярные группы [57, 62, с. 98]. В работе [60, с. 81] указывается, что этот случай электризации при контакте наиболее полно соответствует процессам, происходящим па границе субстрат — полимерный адгезив, независимо от того, является ли субстрат металлом, стеклом, полимером и т. д. В массе полимера дипольные моменты полярных групп взаилшо компенсированы, а на поверхности — нет. При контакте с металлом или диэлектриком происходит ориентация поверхностных диполей, и поверхность приобретает заряд определенной величины и знака. Так что образование зарядов на поверхностях при контакте металла и диэлектрика или двух диэлектриков обусловлено главным образом эффектом ориентации, а эффект перехода электронов крайне незначителен [48]. [c.17]


Смотреть страницы где упоминается термин Электрический дипольный момент ток в металле: [c.161]    [c.125]    [c.257]    [c.406]    [c.185]    [c.466]    [c.81]    [c.32]    [c.107]    [c.65]    [c.269]    [c.734]    [c.152]    [c.197]    [c.105]    [c.124]    [c.181]   
Общая химия (1964) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент



© 2025 chem21.info Реклама на сайте