Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободный радикал процесса

    Михаэлис полагал, что все процессы окисления органических молекул, хотя они и могут быть двухвалентными , обычно происходят через одновалентные стадии, причем в качестве промежуточного соединения образуется свободный радикал. Процессы окисления, конечно, играют важную роль в функционировании многих живых клеток, обеспечивая освобождение свободной энергии, за счет чего происходит упомянутое выше сопряжение и могут создаваться термодинамические неустойчивые составные части клетки. Когда непосредственное окисление молекулярным кислородом исключено, окисление происходит в процессе дисмутации. Если окисление представляет собой цепной процесс, как это обычно имеет место в химии, то, в принципе, по поводу механизма сопряжения вопросов больше не возникает. [c.522]


    Механизм такого процесса окисления можно представить схемой, приведенной на рис. 2.11. На стадии I происходит адсорбция молекулы кислорода на активном центре (обозначен звездочкой). Стадия II характеризуется превращением адсорбированной молекулы кислорода в поверхностный ион Ог и одновременным взаимодействием данной ячейки активатора с полярной молекулой углеводорода, дающего слабую водородную связь с поверхностью, в результате чего ослабляется связь водорода с углеводородным радикалом. На стадии III поверхностный ион кислорода соединяется с ядром водорода с разрывом связи Н—К. При этом образуются поверхностный комплекс [5 --ООН] и свободный радикал К, которые на стадии IV в [c.60]

    Н — углеводород, подвергаемый окислению, точка означает недостаток одного электрона на осколке, образующем свободный радикал, В этой последовательности реакций можно выделить три стадии, характерные для цепной реакции инициирование, развитие и обрыв цепи. Окисление инициируется процессом, который приблизительно определяется как отщепление водородного атома водорода от молекулы углеводорода i H с образованием / . Полученный таким образом свободный радикал реаги  [c.287]

    При фотохимическом хлорировании атомы хлора образуются из молекулы хлора, поглотившей квант света с длипой волны около 365 т1л, т. е. с длиной волны, близкой к максимуму поглощения хлора. При термических процессах диссоциация хлора вызывается столкновением молекул с горячей поверхностью. Высказывалось предположение, что хлорирование может протекать в результате образования атомов водорода, но на осповании работы Брауна, Караша и Чао этот механизм почти полностью исключается для хлорирования, протекающего при низких температурах. Эти авторы получили неактивный 1,2-дихлор-2-метилбутан при хлорировании первичного активного хлористого амила. Рацемизацию следовало ожидать в том случае, если бы свободный радикал [c.59]

    Реакция фторирования, по-виднмому, идет по цепному механизму, включающему промежуточное образование свободных радикалов [4]. Первой стадией является образование атомов фтора в результате термического или каталитического процессов. Она сопровождается замещением водорода атомом фтора, в результате чего образуется промежуточный свободный радикал, реагирующий с молекулой фтора с образованием фторсодержащего соединения и другого атома фтора  [c.69]


    Радикальная полимеризация протекает по цепному механизму. Процесс образования молекулы полимера состоит из следующих стадий инициирование — образование первичного свободного радикала из валентнонасыщенной молекулы мономера рост цепи — последовательное присоединение к радикалу молек л мономера с сохранением свободной валентности на конце растущей молекулы обрыв цепи — прекращение роста молекулы. [c.49]

    Определяющую роль в трактовке механизма окисления, катализируемого металлами переменной валентности, сыграли работы Габера и Вейса [28]. Каталитическое окисление органических соединений в присутствии металлов переменной валентности включает элементарные стадии, характерные как для ионных, так и для радикальных реакций [12, с. 209]. В результате реакции между ионом металла и реагентом происходит изменение валентности иона металла и образуется свободный радикал, обусловливающий возникновение и развитие цепного процесса окисления  [c.629]

    Процессы с разветвленными цепями отличаются от рассмотренных тем, что в иих единичная реакция одного свободного радикала приводит к образованию более чем одного нового свободного радикала. Один из них как бы продолжает цепь, а другой (другие)—начинает новую (новые). Примером этого типа процессов служит окнсление водорода, которое при определенных условиях протекает так  [c.228]

    Изучение кинетики окисления этилбензола в присутствии аминов и фенольных соединений [5] показало, что в процессе окисления концентрация амина в смеси остается постоянной вплоть до полного расходования фенола. Это, вероятно, связано с тем, что при окислении амина образуется свободный радикал, который отрывает атом водорода от молекулы фенола, давая новую молекулу амина вследствие этого концентрация амина практически не меняется до тех пор, пока не израсходуется весь фенол. [c.25]

    Заключительная стадия процесса полимеризации — обрыв цепи, который происходит при взаимном насыщении полимерных радикалов, при насыщении свободного радикала, при изомеризации образующейся макромолекулы в устойчивое соединение. [c.194]

    В процессе акта каталитического превращения активируются как молекулы водорода, так и молекулы сырья с образованием соответственно атомарного водорода и свободных радикалов (рис, 481. Атомы водорода или свободный радикал продолжают реакционную цепь. [c.146]

    Таким образом, явление изомеризации радикалов в газовой фазе с 1,2-миграцией водорода даже в качественном отношении пока еще мало изучено. Обобщая рассмотренные литературные данные, следует признать принципиальную возможность этого процесса. Он безусловно затруднен при обычных условиях крекинга углеводородов (до 600 °С), но, вероятно, имеет место в превращениях горячих частиц, а также в свободно-радикальных процессах, в которых последующие реакции радикала являются медленными . Возможно, внутримолекулярные перегруппировки простейших алкильных ра- [c.192]

    Процессы полимеризации этилена разделяют на две категории высокого давления с инициированием свободными радика- [c.252]

    Действительно, в целом система молекула+радикал имеет нечетное число электронов, и какая-либо из частиц, образовавшихся в результате их взаимодействия, неизбежно будет иметь нечетное число электронов, т. е. будет обладать свободной валентностью (речь идет, конечно, о молекулах, атомы которых не имеют незаполненных /-оболочек). Поэтому если в системе образовался свободный радикал, то он не исчезнет иначе, как при захвате стенками сосуда или при встрече с другим свободным радикалом. Поскольку свободные радикалы, как правило, присутствуют в реагирующей системе н небольших концентрациях, то вероятность встречи их друг с другом сравнительно мала. Значительно более вероятно столкновение и взаимодействие свободного радикала с молекулой какого-либо из реагирующих веществ. В результате этого взаимодействия снова образуется свободный радикал, который может вступить в реакцию с новой молекулой и т. д. Иными словами, один свободный радикал может вызывать длинную цепь превращений. В этом случае возникает так называемый цепной процесс. [c.22]

    СНз 4- СНз С Нв два атома углерода и шесть атомов водорода вначале скомбинированы в два свободных радикала СНз, а в конце процесса объединены в одну молекулу этана. Таким образом, в ходе элементарного акта химического превращения происходит изменение взаимного расположения атомов в системе. [c.56]

    Такие реакции присоединения широко известны для кислорода, олефинов и ряда других соединений с кратными связями. Реакции )того типа представляют собой основу всех процессов полимери- чации, идущих при участии свободных радикалов. Так, свободный радикал R, присоединяясь к молекуле стирола [c.111]


    СНз)зСООН -> (СНз)эСО + он Этот свободный радикал легко распадается на молекулу ацетона и СНз, что представляет собой процесс, обратный присоединению свободного радикала СНз по двойной связи молекулы ацетона [c.113]

    Разветвлением цепей называется элементарная стадия цепного процесса, в которой превращение активных промежуточных продуктов реакций приводит к увеличению числа атомов и свободных радикалов. Разветвление цепей может происходить в реакции атома или свободного радикала с насыщенной молекулой с образованием другого атома или свободного радикала и бирадикала. [c.275]

    Число полных звеньев, приходящихся в среднем на каждый свободный радикал, образовавшийся в результате реакции зарождения цепи, называется длиной цепи. Длина цепи определяется соотношением скорости процессов обрыва и продолжения цепи. [c.277]

    Обрыв цепей на стенке происходит в результате двух последовательных процессов — диффузии свободных радикалов к поверхности реакционного сосуда и захвата свободного радикала этой поверхностью. В зависимости от того, какой из этих процессов является лимитирующим, различают диффузионную и кинетическую область протекания реакции обрыва и цепной реакции в целом. [c.292]

    Строго говоря, присоединение каждого нового остатка мономера к цепи полимера представляет собой новую химическую реакцию п образование молекулы полимера происходит в результате большого числа последовательных стадий. Система дифференциальных уравнений, описывающая кинетику такого процесса, содержит большое число уравнений и не может быть строго проинтегрирована. Это же относится и к обратным процессам превраш,ения полимера в мономер или другие низкомолекулярные соединения (деструкция полимеров). Однако, как правило, можно считать, что увеличение или уменьшение длины полимерной частицы (молекулы или свободного радикала) не меняет существенно реакционной способности этой частицы. Это дает возможность рассматривать в первом приближении образование полимерной молекулы не как последовательность большого числа различных стадий, а как многократное повторение одной и той же реакции. Тем самым становится возможным рассматривать рост или деструкцию полимера как сравнительно простой процесс, состоящий, в зависимости от механизма реакции, из одной или нескольких элементарных стадий. [c.354]

    Одним из основных типов процессов, приводящих к образованию полимеров, является свободно-радикальная полимеризация виниловых соединений. В реакциях этого типа способной к росту оказывается только цепочка, на конце которой имеется свободная валентность, т. е. цепочка, представляющая собой свободный радикал. Такой свободный радикал может присоединиться по двойной связи к молекуле мономера с образованием нового свободного радикала, иа одно звено более длинного, чем предыдущий  [c.359]

    Как любая цепная реакция, процесс свободно-радикальной полимеризации включает также стадии зарождения цепей и обрыва цепей. Как пришило, процессы полимеризации ведутся в присутствии инициаторов, являющихся источниками свободных радикалов. Такими инициаторами являются, в частности, перекиси и азосоединения, например перекись бензоила и азоизобутиронитрил (см. стр. 270). Процесс полимеризации поэтому начинается с присоединения к молекуле мономера свободного радикала 2, образовавшегося из инициатора. Таким образом, растущая полимерная [c.359]

    В результате распада образуется новый свободный радикал, отличающийся от исходного лишь длиной цепочки. Он, в свою очередь, отщепляет еще одну молекулу мономера и процесс продолжается до тех пор, пока молекула полимера не распадется полностью или пока в результате реакции передачи или обрыва цепи не исчезнет свободная валентность на конце полимерной цепочки. [c.373]

    Полимерный свободный радикал -СНОН— HR может оторвать атом И от соседней молекулы полимера, что приведет далее к окислению и разрыву этой молекулы, т.е. возникает цепной процесс. [c.373]

    Таким образом, под воздействием физических или химических факторов в системе появляются свободные радикалы, имеющие, например, неспаренные / -электроны и обладающие вследствие этого высокой химической активностью. Соударения свободных радикалов приводят к возникновению ковалентной связи между ними с образованием неактивной молекулы. При взаимодействии свободного радикала с неактивной молекулой образуется продукт реакции, имеющий тоже один неспаренный электрон и обладающий почти той же активностью, что и исходный свободный радикал. Эти процессы могут быть иллюстрированы схемой [c.218]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    Ииициировамия молекулы мономера, заключающегося в образовании начального свободного радикала. Процесс инициирования может происходить, апример, путем присоединения радикала инициатора Кишщ к молекуле мономера М  [c.244]

    По теории Смита — Эварта принимаются следующие допущения а) обрыв двух свободных радикалов в полимер-мопомерной частице происходит мгновенно б) каждая активная частица в любой момент времени содержит только один свободный радикал, так как при проникновении второго радикала частица дезактивируется вследствие реакции рекомбинации в) средняя стационарная концентрация радикалов в частице составляет половину исходной концентрации г) диффузия мономера из капель эмульсии в полимер-мономерную частицу не лимитирует процесс поли меризацпи. [c.148]

    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]

    Всякая реакция может идти как путем простой перегруппн-ровки связей, так и цепным путем с образованием н участием в процессе свободных атомов и радикалов. Как уже было сказано, радикалы обладают большой реакционной способностью и, кроме того, при реакции одновалентного свободного радикала с молекулой свободная валентность не уничтожается, что обусловливает развитие цепей. [c.199]

    Таким образом, свободные радикалы, возникающие при распаде инициаторов, входят в состав молекулы полимера в виде конечных групп. Как видно из приведенной схемы, такие цепи имеют вещественный характер, так как каждое звено цепной реакции увеличивает длину цепи полимера. Длина цепи (число циклов) в этом случае равна числу молекул мономера в молекуле полимера. Обрыв вещественных цепей приводит к завершению процесса образования макромолекул. Обрыв цепей может происходить в результате столкновения реагирующей цепи с радикалом, вследствие чего насыщаются свободные валентности. Столкновение радикалов может привести к обрыву цепи вследствие перехода атома водорода от одной реагирующей цепи к другой, в результате чего прекращается рост обеих молекул, так как у одной молекулы возникает двойная связь, а другая становится насыщенной. Обрыв цепи может произойти н после столкновения растущего"радикаЛа с молекулами растворителя, мономера или полимера, в результате чего насыщается свободная валентность данного радикала и образуется новый свободный радикал, начинающий новую цепь реакций. Этот процесс называется переносом цепи. Процесс переноса ц ти может приводить к разветвлению неЩёсЧЪённых цепей и [c.202]

    Имеются случаи, когда роль свободного радикала играет ион, например ион N2 —бнрадикал. Тогда уже первичный процесс ионизации электронным ударом ведет к возникновению радикала. Согласно упоминавшейся теории энергетического катализа, значительную роль в реакциях, протекающих в разрядах, играют так называемые удары второго рода, в результате которых энергия электронного возбуждения одного из партнеров в соударении превращается в иной вид энергии другого партнера. Примером удара второго рода в разряде может служить процесс, наблюдающийся при разряде в смеси аргона и кислорода [c.254]

    Эта реакция относится к и,еииым реакциям с вырожденными разветвлениями , В данном процессе разветвление осуществляется фотохимически за счет подвода чиергии извне. Относительно устойчивым промежуточным продуктом является свободный радикал ОН Кинетика этой реакции выражается уравнением (XIV, 16), логарифмирование которого дает 1по==1п, 4+фт (XIV,17) [c.395]

    Процесс инициирования заключается в образовании свободного радикала из молекулы мономера вследствие возиикновения в ней непарных электронов. Образование свободных радикалов достигается нагреванием, действием света, рентгеновского излучения или особых инициирующих веществ. В качестве инициирующих веществ используются сравнительно неустойчивые соединения, например пероксид водорода, органические пероксиды и некоторые другие, способные распадаться на свободные радикалы. Образовавшийся свободный радикал инициатора вступает во взаимодействие с молекулой мономера по месту кратной (например, двойной) [c.372]

    Элементарные реакции продолжения цепи. Образовавшийся в системе за счет процессов зарождепия плп вырожденного разветвления цепи свободный радикал R нглинает цепь окислительных превращений  [c.270]

    Обрыв цепей в жидкофазном окислении. Гибель свободных радикалов может происходить при взаимодействии свободного радикала со стенкой реактора и при киадратичном обрыве. Вследствие Вь сокой вязкости среды в жидкой фазе диффузия радикалов к стспке затруднена. В жидкофазных процессах происходит в основном квадратичный обрыв цепе  [c.272]

    Р. 3. Магарил [106], признавая цепной характер термических процессов, предполагает, что инициирование цепей достигается за счет взаимодействия ингибитора с молекулами исходных углеводородов. В этом случае допускается, ч.о обрыв цепи есть результат рекомбинации свободною радикала и молекул ингибитора. Неодинаковая длина цепей, образующихся в процессе термического крекинга при низких и высоких температурах, свидетельствует о разных механизмах протекания этого процесса. При высоких температурах (900 С и выше) в процессе крекинга (а также коксования) также образуются радикалы, но вследствие значительного сокращения числа звеньев в цепи цепная реакция вырождается и все больше приближается к молекулярной. [c.84]

    В ряде случаев образование даже малых количеств радикалов оказывает существенное влияние на развитие химического процесса. Это связано с тем, что свободная валентность не может исчезнуть в результате взаимодействия свободного радикала с молекулой — принцип неуничтожимости свободной валентности. [c.22]

    С1 или свободный радикал O I не исчезнут в результате захвата стенкой реакционного сосуда или процесса рекомбинации  [c.241]

    Поэтому в целом ряде процессов значительно более вероятным оказывается взаимодействие свободных радикалов с молекулами исходных веществ или растворителя и мономолекулярные превращения свободных радикалов — изомеризация или распад. В силу принципа неуничтожимости свободной валентности в результате любого такого процесса в системе образуется новый свободный радикал. Если этот свободный радикал не является вследствие каких-либо структурных особенностей малоактивным, то он в свою очередь вступит в реакцию с молекулой исходного вещества или растворителя с образованием нового свободного радикала. Последо- [c.267]

    Поскольку присоединение молекулы мономера к растущей цепочке полимера идет с образованием свободного радикала, практически не отличающегося от предыдущего, т. е. как бы с регенерацией свободного радикала, то такие процессы по своим кинетическим закономерностям являются типичными цепными иеразвет-вленными реакциями. Каждый акт присоединения к растущему свободному радикалу новой молекулы мономера представляет собой звено цепи, которое в рассматриваемом случае состоит из одной элементарной стадии продолжения цепи. [c.359]

    Образование разветвленных полимерных цепей обусловлено не разветвлением кинетической цепи (т. е. таким цепным процессом, при котором из одного активного центра - свободного радикала - получается несколько новых активных центров), а лищь передачей кинетической цепи на полимер. С увеличением степени превращения разветвленность полимера возрастает. [c.229]

    Особый интерес представляет катализирующее действие перекисей на процессы полимеризации. Вопрос этот был разработан С. С. Медведевым [60], который считает, что, например, перекись бензоила, катализирующая полимеризацию хлоропреиа, распадается, образуя свободный радикал этот радикал инициирует, главным образом, цепную реакцию  [c.628]


Смотреть страницы где упоминается термин Свободный радикал процесса: [c.310]    [c.354]    [c.268]    [c.361]    [c.335]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.864 , c.867 , c.876 , c.889 ]




ПОИСК





Смотрите так же термины и статьи:

Воеводский Разветвленные цепные процессы и реакции свободных радикалов

Возникновение свободных радикалов в электрохимических процессах

Методы обнаружения свободных радикалов при химических процессах

О роли свободных радикалов в цепном процессе горения твердых топлив

Определение энергии активации процесса диссоциации органических соединений на свободные радикалы

Процессы с участием атомов и свободных радикалов

Разветвленные цепные процессы и реакции свободных радикалов

Свободные радикалы

Свободные радикалы в процессах радиационной твердофазной полимеризации и прививки

Свободные радикалы изомеризация во время химического процесса

Свободные радикалы ион-радикалы

Свободные радикалы энзиматических процессах

Свободный радикал обнаружение при химических процессах

Физико-химическое изучение процессов диссоциации органических соединений с образованием свободных радикалов



© 2025 chem21.info Реклама на сайте