Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк и его соединения реакции

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Нитробензол настолько инертен к ацилированию и так хорошо растворяет хлористый алюминий, с которым образует комплекс типа оксониевой соли, что его часто применяют в качестве растворителя при проведении конденсаций по Фриделю—Крафтсу с другими ароматическими соединениями. Перемещение замещающих групп, наблюдаемое при алкилировании, не происходит при синтезе кетонов, и реакции с хлорангидридами и ангидридами протекают обычно с лучшими выходами, чем с галоидными алкилами. Как уже упоминалось, для синтеза карбонилсодержащих соединений требуется большее количество катализатора, однако в отношении применимости и эффективности различных катализаторов сохраняется та же зависимость. Так, хлористый алюминий и здесь является самым сильным из обычно употребляемых катализаторов хлорное олово и трехфтористый бор действуют слабее, но достаточно эффективно, а плавленый хлористый цинк очень мало активен. Более слабые катализаторы применяют тогда, когда желательно ослабить течение реакции. Например, тиофен настолько реакционноспособнее бензола, что в значительной мере полимеризуется в реакционной смеси, содержащей хлористый алюминий, и поэтому ацилирование тиофена лучше проводить в присутствии менее активного катализатора — четыреххлористого олова  [c.175]

    Одной из полезных областей применения ряда активности металлов является предсказание того, произойдет ли та или иная реакция. Например, при работе в лаборатории вы нашли, что металлический цинк активнее меди и будет взаимодействовать с ионами меди, находящимися ) растворе. Цинк, однако, не реагирует с растворенными ионами магния, и, следовательно, цинк менее активен, чем магний. В целом, более реакционноспособный металл будет вытеснять менее реакционноспособный из епз соединений. [c.150]

    Синтез кремнийорганических мономеров с помощью металлорганических соединений относится к первым промышленным методам синтеза алкил (арил) хлорсиланов. Для проведения этих реакций можно использовать ртуть-, цинк-, натрий-, литий-, алюминий- и магнийорганические соединения. Наиболее распространен магний-органический синтез (метод Гриньяра). [c.239]

    Процесс с использованием комплексных соединений этилена с солями некоторых других металлов проводится в двух реакционных зонах. В первой зоне при взаимодействии олефина с галоидными солями металлов (медь, платина, палладий, алюминий, цинк, сурьма) в присутствии кислорода образуется комплексное соединение. Реакция протекает в интервале О—65 °С. Во второй реакционной зоне образовавшееся комплексное соединение разрушается при 200—540 °С с образованием окиси олефина и альдегида. Процесс проводится при давлении 35—200 ат. [c.151]


    Однако так как иодистый цинк дальше не взаимодействует с три-метиленхлоридом, при реакции необходимо добавить еще вещество, которое снова превращает иодистый цинк -з реакционноспособное иодистое соединение. Для этого обычно применяют углекислый натрий, который взаимодействует с иодистым цинком с образованием основного карбоната цинка и иодистого натрия, или ацетамид, выделяющий из иодистого цинка реакционноспособный иод-ион. [c.215]

    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    Механизм химической реакции, сопровождающей процесс очистки бензинов хлористым цинком, еще недостаточно изучен. Известно, что сернистые соединения, вступая в реакцию, образуют сернистый цинк  [c.315]

    Другие примеры металлов, особенно эффективных в специфических реакциях медь для насыщения групп, соединенных с бензольным кольцом цинк для гидрирования альдегидных групп, сопряженных с олефиновыми связями кобальт для превращения двойных связей и серебро для окисления этилена в окись этилена. Медь как основа катализаторов 52-1 и 51-1 фирмы Ай-Си-Ай обеспечивает соответствующие высокие селективности для реакции окиси углерода с паром с образованием двуокиси углерода и водорода и для гидрирования окиси углерода в метанол. [c.24]

    В опытах по интенсивному гидрокрекингу многоядных углеводородов, угля и угольных экстрактов в качестве катализатора использовался также расплавленный хлористый цинк /29/. Хлористый цинк обладает достаточной активностью как при гидрировании, так и при крекинге. Это особенно важно, поскольку он, по-видимому, менее чувствителен к отравлению соединениями азота, чем некоторые наиболее часто используемые катализаторы гидрокрекинга. Однако прежде чем этот катализатор можно будет рекомендовать промьпиленности, необходимо решить некоторые практические вопросы, в частности такие вопросы, как отделение катализатора от продукта реакции, коррозия, наличие хлоридов в продуктах. [c.273]

    ТЫ. По данным этих исследователей на поверхности катализатора образуется соль карбоновой кислоты в качестве непрочного промежуточного соединения, далее претерпевающего распад по обычной схеме на кетон, СО и окисел металла. Действительно, при понижении температуры реакции до 280—300 из ZnO и уксусной кислоты получался уксуснокислый цинк, превращающийся в кетон при 400-450°. [c.466]

    В наружном уровне содержится 2 электрона, расположенные на 45-подуровне. Потенциал ионизации / цинка равен 9,391 В относительная электроотрицательность небольшая (1,66). Стандартный окислительно-восстановительный потенциал Zп/Zп =—0,763 В. Следовательно, цинк, являясь активным металло 1, будет в реакции проявлять только восстановительные свойства, его атом отдает 2 электрона. Степень окисления цинка в элементарном состоянии равна О, в соединениях - -2. [c.146]

    Проводят следующую серию опытов. Открывают на воздухе склянку с жидким хлоридом титана (IV), наблюдается образование дыма. Часть содержимого склянки выливают в воду, выпадает белый осадок. Другую часть содержимого склянки вводят в хлороводородную кислоту получается бесцветный раствор, содержащий ионы комплекса. В этот раствор вносят цинк, при этом раствор окрашивается в фиолетовый цвет. К окрашенному раствору медленно приливают раствор щелочи до pH>7. Выпавший красный осадок отфильтровывают и переводят в раствор, обрабатывая его концентрированно й азотной кислотой, а затем добавляют разбавленный раствор щелочи. Выпадает белый осадок, который высушивают и сплавляют с эквимолярным количеством оксида магния. Таким способом получают синтетический минерал — двойной оксид. Составьте уравнения всех протекающих реакций. Укажите, соединения ка- [c.166]

    Сообщалось об определенном успехе, достигнутом заменой рутениевого сенсибилизатора металлопорфиринами, которые имеют преимущество с точки зрения коммерческой эксплуатации. Особенно многообещающим представляется водорастворимый цинк-порфирин, дающий квантовый выход выделения Ог до 0,5. Еще большим успехом, чем даже производство кислорода, явилось бы соединение восстановительной и окислительной систем так, чтобы не требовались расходуемые соединения. Следует напомнить, что природный фотосинтетический процесс (разд. 8.3) достигает такого сопряжения путем использования общей окислительно-восстановительной цепи, действующей между двумя фотосистемами. Попытки моделирования этих процессов в лабораторных условиях обычно терпят неудачу из-за необходимости обеспечить кинетическую избирательность между желаемой прямой реакцией и конкурирующей обратной реакцией. Среди предложений по преодолению этих трудностей есть такие, которые включают упорядоченные структуры типа мицелл, созданных из сотен молекул поверхностно-активных веществ, и разделение двух реакций в пространстве, например с помощью мембран, пропускающих частицы не крупнее электронов и протонов. [c.271]


    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Полимеризация. Молекулы олефинов могут соединяться друг с другом или, как говорят, вступать в реакции уплотнения. Реакции уплотнения, в результате которых образуются соединения, имеющие тот же состав, но более высокий молекулярный вес, называются реакциями полимеризации. Полимеризация олефиновых углеводородов происходит с разрывом двойной связи под действием катализаторов (хлористый цинк, серная кислота и др.). [c.49]

    Очень важной проблемой органического синтеза является энантиоселективное алкилирование альдегидов металлооргаиическими соединениями. Реакцию можно осуществить с иомохщ>ю лтггий-, магний-, цинк-, алюминий- и борорганических соединений. Например, при взаимодействии вспомогательного хирального реагента ЬУ с двумя молями бутиллития образуется конформационно жесткий комплекс ЬУ1, который в реакции с беизальдегид ом дает оптически активный 1-фенил-пентанол. [c.686]

    Очень важной проблемой органического синтеза является Внтиоселективное алкилирование альдегидов металлооргани-скими соединениями. Реакцию можно осуществить с помощью ий-, магний-, цинк-, алюминий- и борорганических соеди-НИЙ. Например, при взаимодействии вспомогательного хираль-реагента ЬУ с двумя молями бутиллития образуется кон-фмационно жесткий комплекс ЬУ1, который в реакции с бенз-ьдегидом дает оптически активный 1-фенилпентанон  [c.77]

    Окса 1амиддиоксим (николлокс) из аммиачного раствора выделяет осадок соединения никеля красно-оранжевого цвета. Кобальт, марганец, цинк, алюминий реакции не мешают в больших количествах мешают железо (III), хром и алюминий. Предельное разбавление 1 150 000 [879, 1138]. [c.51]

    Молекула vльфидa цинка состоит из одного атома серы и одного атохма цинка. В каких весовых отношениях нужно взять серу и цинк для реакции соединения, чтобы получить сульфид цинка  [c.25]

    Разница между легким протеканием реакции галоидсодержащих видов фосфора с водой и затрудненной реакцией с металлорганиче-скими соединениями может быть объяснена тем, что атомы галоида расположены в подавляющем большинстве внутри сетчатой трехмерной макромолекулы и блокированы атомами фосфора. Молекулы воды, очевидно, достаточно малы для того, чтобы проникнуть внутрь, в то время как магнийгалоидорганические соединения представляют собой в растворах сравнительно крупные и малоподвижные комплексы. Цинк-этил занимает среднее положение. Следует отметить, что попытки получения гомологов гидрокаучука из каучукгидробромида действием алкилмагнийбромидов не дали положительных результатов [ ], но с цинк- этилом реакция прошла легко. У нас, в случае нерастворимого трехмерного полимера, реакция и с цинкэтилом протекала трудно и далеко не полно. Иодсодержащий фосфор при большом содержании иода обладает, вероятно, более рыхлой структурой, чем бромсодержащий, и обнаруживает признаки реакции с метилмагнийиодидом. [c.725]

    Обесцинкование. В те дни, когда Бенгоу начинал свои исследования, странные расхождения в поведении различных партий латунных конденсаторных трубок часто ставили специалистов в тупик. В конце концов, этот вопрос выяснили Бенгоу и Мэй. Было обнаружено, что некоторые (но не все) трубки претерпевали опасное изменение, при котором латунь в определенных местах превращалась в губчатую медь при этом больших изменений поверхности трубки не наблюдалось при воздействии же на трубу острым предметом выяснилось, что превращенный металл был мягким. Иногда такое превращение в губчатую медь носило локальный характер образовывались местные пробки (фиг. 89j б), но в кислых средах оно часто развивалось вширь, в результате чего превращению подвергались лишь поверхностные слои (фиг. 89, б). В морской воде, которая (если только она не загрязнена), имеет слабощелочную реакцию, наиболее распространенным видом превращения является образование пробок иногда пробка из губчатой меди пронизывала всю толщу стенки трубки, создавая в конечном счете течь, а иногда под давлением воды пробка совсем, выпадала при этом появлялся свищ значительного размера. Основным продуктом коррозии, сопровождающим обесцинкование, по-видимому, является хлористый цинк соединения меди в них практически отсутствуют. В трубках же, не претерпевавших обесцинкования (как его стали называть), образовывались зеленые продукты коррозии, содержащие основную хлорную медь СиОг-ЗСи (ОН)а. [c.434]

    Хлорметильная группа, вероятно, легче присоединяется к ядру ароматического углеводорода, чем любой другой радикал с одним атомом углерода. Реагентами являются водный формальдегид и соляная кпслота в присутствии мягко действующего катализатора (хлористый цинк), если вообще он необходим. В соединении с реакцией дегалоидирования хлорметильной группы это может быть общим методом превращения ароматического углеводорода в его гомологи с приращением одной или более метильной групп в ядре. В большинстве случаев можно ожидать образования смесей, но если исходный углеводород симметричного строения, то образуется один продукт. Например, толуол дает смесь трех ксилолов, в то время как и-ксилол дает исключительро псевдо-кумол. [c.485]

    Металлические катализаторы гидрирования мало эффективны при сосстановлении карбоксильной группы, и успех процесса во мног( м решила разработка активных контактов оксидного тнпа, обла ,ающих селективной адсорбционной способностью к кисло-родс( держащим соединениям. Среди них наибольшее практическое значение получили медь- и цинк-хромитные (СиО-СггОз и ZnO- СГ2С13), а также медь-цинк-хромитные ( uO-ZnO- raOa) катализаторы. Реакция проводится при 250—350°С и высоком давлении (25—35 МПа), необходимом для увеличения скорости и равновесной (тепени конверсии. [c.505]

    Уже упоминалось, что коррозионные процессы, как правило, являются электрохимическими. В водной среде они протекают так же, как и в батарейке для карманного фонаря, состоящей из центрального угольного и внешнего цинкового электродов, разделенных электролитом — раствором хлорида аммония (рис. 2.1). Лампочка, соединенная с обоими электродами, горит, пока электрическая энергия генерируется химическими реакциями на электродах. На угольном электроде (положительный полюс) идет реакция химического восстановления, на цинковом (отрицательный полюс) — окисления, при этом металлический цинк превращается в гидратированные ионы цинка Zn -nHaO. В водном растворе ионы притягивают молекулы воды (правда, число последних неопределенно). Этим ионы металла в растворе отличаются от ионов в газе, которые не гидратируются. Обычно при обозначении гидр атированных ионов цинка не учитывают гидратную воду и пишут просто Zn . Чем больше поток электричества в элементе, тем большее количество цинка корродирует. Эта связь описывается количественно законом Фарадея, открытым в начале XIX века  [c.20]

    Медь, свинец, цинк и олово. Оксиды меди-получение меди-электролитическое получение меди-применецие меди-соли меди-аНалитическая реакция. Свинец-свойства и соединения-аналитическая реакция Цинк-свойства и соединения-олово [c.470]

    Цинкорганические соли играют важную роль в реакции Реформатского. Последняя заключается в том, что эфир а-галоидкарбоновой кислоты взаимодействует с цинком и карбонильным соединением (альдегидом, кетоном) или непосредственно, или в таких безводных растворителях, как бензол, тетрагидрофуран и т. п. Вначале образуется цинк-органическая соль, которая затем, аналогично гриньяровским соединениям, присоединяется к карбонильной группе альдегида или кетона. После разложения водой получают эфир З-оксикарбоновой кислоты или (вследствие последующего отщепления воды от -оксиэфира) эфир [c.192]

    Из других органических производных элементов II группы следует сказать о цинк- и ртутьорганических соединениях. Они имеют меньшее значение, что связано прежде всего с относительной сложностью их синтеза (например, цинкорганических соединений). Однако эти соединения могут быть использованы для получения многих органических веществ, например спиртов. По реакционной способности цинкорганические соединения значительно уступают магний-органическим соединениям. Так, в обычных условиях они не реагируют с двуокисью углерода, очень чувствительны к действию влаги и часто воспламеняются на воздухе. Реакции ципкалкилов с водой, спиртами, кислородом и др., в основном, подобны реакциям с реактивами Гриньяра, но менее удобны в обращении. В последнее время цинкорганические соединения используются в качестве катализаторов при реакциях полимеризации. [c.176]

    Цинк, кадмий и ртуть по своему химическому поведению несколько напоминают переходные элементы первой группы (близкие значения электроотрицательности сходство в растворимости и окраске ряда соединений). В то же время благодаря наличию полностью заполненных -орбиталей, у этих элементов не может происходить стабилизации под действием поля лигандов. В связи с этим их стереохимия практически полностью определяется размерами ионов. Реакции 2п + и Сс12+ в значительной мере соответствуют реакциям Mg + С<1 + проявляет также сходство с Си +. [c.652]

    Эта реакция проводилась под действием многих реагентов, чаще всего используется цинк, магний и иодид-ион 327а], реже — фениллитий, фенилгидразин, хлорид хрома (И), нафталин-натрий [328], N3—КНз [329], ЫагЗ в ДМФ [330] и алюмогидрид лития [331]. Реация дает хорошие выходы, но с синтетической точки зрения она не слишком выгодна, так как исходные выг(-дигалогениды приходится получать путем присоединения галогена к двойной связи (т. 3, реакция 15-27). Однако ее преимущество состоит в том, что положение двойной связи в продукте заранее точно известно. Например, из соединений типа X—С—СХг—С—X или X—С—СХ = С можно получить аллены, которые труднодоступны другими методами [332]. Путем 1,4-элиминирования были получены кумулены  [c.70]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    К переходным элементам периодической таблицы химических элементов Д. И. Менделеева относят те из них, у которых заполняется предвнешняя й-оболочка. За исключением цинка, кадмия и ртути, все они имеют недостроенную -оболочку. Цинк, кадмий и ртуть относят к переходным элементам, поскольку они близки им по ряду свойств. Отличаются же они проявлением единственной степени окисления + 2 и в этом отношении похожи на з-элемен-ты — щелочноземельные металлы, с которыми они находятся в одной группе. Как отмечалось в предыдущей главе, переходные элементы побочной подгруппы III группы также имеют одну степень окисления +3. Все же остальные переходные элементы отличает разнообразие проявляемых степеней окисления, обилие окислительновосстановительных реакций, широкое изменение кислотно-основных свойств в соединениях. Наличие неспаренных й-электронов приводит к проявлению широкого круга магнитных, электрических и оптических свойств этих элементов. [c.154]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Реакция восстановления соединений мышьяка до арсина АзНз (фармакопейная). Небольшие массы арсенитов, арсенатов или других соединений мышьяка (при содержании -0,001—0,1 мг мышьяка) открывают очень чувствительной реакцией восстановления соединений мышьяка до газообразного арсина АзНз, который идентифицируют реакциями с нитратом серебра AgN03 или хлоридом ртути(П) Hg . Реакцию получения АзНз проводят в кислой среде (H2SO4 или НС1) восстановитель — часто металлический цинк (точнее — водород в момент выделения, об1)азую-щийся при растворении металлического цинка в кислотах)  [c.444]

    Электродный потенциал В этом случае металл будет заряжаться положи-.металла может быть тельно. Разность потенциалов между пластиной ме-положительным и И1 талла и раствором зависит от природы металла и отрицательным концентрации ионов, участвуюпгих в равновесии у поверхности металла. Цинк приобретает более положительный потенциал, чем медь, так как более склонен к растворению-переходу в ионное состояние, чем к осаждению в виде металла. Два металла — цинк и медь, погруженные в раствор их ионов, могут быть соединены так, как это показано на рис. 13.1, образуя электрохимическую ячейку. Растворы сульфатов цинка и меди (И) разделены пористой перегородкой. Металлические пластины — это электроды ячейки, соединенные через вольтметр. Поскольку на электродах протекают реакции [c.305]

    Анализ зависимости поляризуемости цинковьгх покрытий от содержания в них железа показывает влияние структурных составляющих сплавов. В однофазной области твердого раствора процесс коррозионного разрушения контролируется скоростями анодной и катодной реакций, и скорость коррозии составляет 0,05 г/(м ч). Наибольшая коррозионная стойкость приходится на область диаграммы железо — цинк, содержащей 8-17 % цинка, что связано, по-видимому, с появлением Г-фазы, являющейся химическим соединением на базе твердого раствора, стехиометрический состав которого соответствует формуле Резгпю- Наличие химического соединения вызьшает увеличение перенапряжения катодного процесса более значительное, чем для чистого цинка. Скорость коррозии сплава при содержании 8,5 % цинка составляет 0,02 г/ (м ч), а при 17,3 % - 0,01 г/ (м ч). Дальнейшее увеличение [c.55]

    Цинкорганические соединения. Цинкорганические соединения получаются нагреванием иодистых алкилов с цинком. Реакция протекает в две фазы. Сначала образуется смешанное металлорганическое соединение, например кристаллический цинк-иодэтил [c.123]

    Гриньяр взял за основу известную реакцию Зайцева—взаимодействие иодистых алкилов с цинком—и заменил цинк магнием, использовав в качестве растворителя безводный эфир. Этим область применения металлорганических соединений значительно расширилась, так как магний является более активным металлом и может реагировать не только с иодистыми (как цинк), но и с бромистыми и хлористыми алкилами и арилами (см. стр. 124). В 1912 г. Грииьяру за открытие магнийорганических соединений была присуждена Нобелевская премия. [c.123]


Смотреть страницы где упоминается термин Цинк и его соединения реакции: [c.187]    [c.243]    [c.458]    [c.208]    [c.343]    [c.200]    [c.176]    [c.321]    [c.331]    [c.356]    [c.327]    [c.55]   
Перекись водорода (1958) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции органических соединений цинка

Реакции с цинк- и кадмийорганическими соединениями

Реакция галоидных алкилов с различными соединениями, содержащими СОj группу в присутствии цинка (реакция Зайцева)

СИНТЕЗ КЕТОНОВ ИЗ ГАЛОИДАНГИДРИДОВ КИСЛОТ И МЕТАЛЛООРГАНИЧЕСКИХ СОЕДИНЕНИЙ МАГНИЯ, ЦИНКА И КАДМИЯ Механизм реакции

Цинк реакция его с виниловыми соединениями

Цинк, реакции



© 2025 chem21.info Реклама на сайте