Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектроскопия отношение

    В неконденсированных структурах отношение циклопентила к циклогексилу, по данным масс-спектроскопии, составляет 2 1, однако эта цифра не подтверждается данными инфракрасного анализа и остается под сомнением. [c.28]

    Весьма перспективен метод масс-спектроскопии, основанный на определении массы (т) или отношения массы к ее заряду mie) и на определении относительного количества ионов, получаемых из исследуемой смеси частиц. Можно точно измерить массы ионизированных частиц на основании данных, полученных при разделении их в пространстве и во времени. Заряженные частицы разделяют, пропуская их через электрическое и магнитное поле. Полученный масс-спектр состоит из отдельных линий различной интенсивности и толщины. Линии регистрируют фотографическим (масс-спектрография) и электрическим способами (масс-спектрометрия). [c.451]


    Выделенные индивидуальные продукты НПАВ анализировали методами масс-спектроскопии, газожидкостной хроматографии и элементного анализа. По отношению количества разрушенного НПАВ М к исходному количеству его Мд рассчитывалась степень химической деструкции [c.114]

    Масс-спектроскопия с электрогидродинамической ионизацией представляет собой метод, в основу которого положено распыление разбавленных растворов полимеров с помощью шприца в электрическом поле при напряжении 10 кВ в атмосфере азота при атмосферном давлении. При прохождении газовой смеси через систему сопло — сепаратор образуется молекулярный пучок смеси ионов и нейтральных молекул, имеющий сверхзвуковую скорость, энергия измеряется с помощью коллектора ионов, включающего выталкивающий электрод и кювету Фарадея. Оценка скорости пучка ( 500—1000 м/с) позволяет произвести расчет отношения MJz для макроионов (М — масса иона и z — число элементарных зарядов). [c.374]

    Масс-спектроскопия — метод изучения химического строения, состава и свойств веществ путем определения массы (чаще отношения массы к заряду т/е) и числа ионов, получаемых при ионизации газообразных веществ. Каждое вещество при ионизации дает спектр ионов различной массы и заряда, обычно называемый масс-спектром. Масс-спектр — индивидуальная характеристика вещества. [c.28]

    При этом следует учитывать, что в действительности в методе ИК-спектроскопии количественно может быть определено в лучшем случае не более двух десятков параметров. Наличие гетеросоединений сильно ухудшает возможности метода из-за больших искажений формы спектральных линий, вызванных меж-молекулярным взаимодействием в таких смесях (например, водородными связями), при этом число параметров, поддающихся расчету, доходит до двухтрех. В масс-спектральном методе некоторые осколочные ионы приобретают строение, отличное от исходного, а единственная характеристика иона — масса (точнее, отношение массы к заряду м е), очевидно, ничего не говорит о его строении. В результате одной и той же массе иона соответствуют фрагменты самого разнообразного строения, и чем больше масса иона, тем этот набор больше. [c.232]

    Оо фокусирующие устройства, используемые в масс-спектроскопия, фокусируют — ионные лучи лишь в одной плоскости, и потому они эквивалентны цилиндрическим линзам. Были описаны приборы, в которых применены все эти методы фокусировки первого и более высокого порядка. Известны также методы получения идеальной двойной фокусировки были сконструированы приборы, использующие подобные системы. Еще один важный метод фокусировки пучка ионов — по времени пролета , используется в масс-спектрометрах, которые описаны позже. В этом методе все ионы с определенным отношением массы к заряду достигают коллектора в одно и то же время и могут быть отделены от ионов с иным отношением массы к заряду, которые попадают на этот же самый коллектор в иное время. [c.17]


    Фокусировка по направлению, которая должна была быть получена согласно оптической аналогии с системой линз, отсутствует действие полей аналогично действию ахроматической системы призм. Здесь в пучке, однородном по массе, но неоднородном по энергии, дисперсия, обусловленная электростатическим полем, приводит к спектру по скоростям. Эта дисперсия компенсируется магнитным полем. Линии фокуса ионов с различным отношением массы к заряду лежат в одной плоскости. Таким образом, для регистрации всего масс-спектра может быть использована фотопластинка. Позднее на основе прибора Астона были сконструированы масс-спектроскопы [1473, 1990] и другие устройства с фокусировкой по скорости [1760]. [c.18]

    Проблема разделения и сбора образцов для идентификации упростилась бы, если бы последующие качественные определения могли быть проведены с небольшими пробами. При комбинировании методов газо-жидкостной хроматографии и масс-спектроскопии были достигнуты некоторые успехи в этом отношении. Инфракрасную спектрофотометрию труднее использовать в сочетании с газовой хроматографией особенно в тех случаях, когда необходимо собрать и идентифицировать следы компонентов. Некоторые успехи были достигнуты в результате увеличения объема пробы, подвергаемой предварительному разделению с помощью газовой хроматографии, и уменьшения количества вещества, требуемого для последующего исследования методом инфракрасной спектрофотометрии. [c.324]

    Эти методы анализа являются наиболее универсальными и могут быть использованы для определения концентрации подавляющего большинства изотопов [3]. Понятие масс-спектрометрии включает в себя методы разделения в пространстве или во времени ионов с различным отношением массы т к заряду е при прохождении ими электрических или магнитных полей в условиях высокого вакуума с последующей регистрацией интенсивности полученных ионных пучков. По способу регистрации ионных пучков приборы подразделяются на масс-спектроскопы (регистрация на экране осциллографа), масс-спектрографы (регистрация на фотопластине) и масс-спектрометры [c.89]

    Хромато-спектральные методы. Наиболее распространена хромато-масс-спектроскопия [179, 184]. Давление на входе в ионный источник масс-спектрометра поддерживается обычно равным 10 —10 Па (10 —10 мм, рт. ст.), при этом с помощью специальных устройств (сепараторов) повышается концентрация анализируемых веществ в выходящем из колонки (обычно капиллярной) элюате. Современная аппаратура обеспечивает получение полной развертки масс-спектров за время, существенно меньшее продолжительности элюирования хроматографической зоны (порядка секунд и даже долей секунды), благодаря чему может быть проведена идентификация веществ в случае их неполного разделения в колонке. Предложено также непрерывно регистрировать интенсивность трех фиксированных линий масс-спектров отношение этих величин для каждого из компонентов анализируемой смеси является основой для их идентификации. [c.194]

    Инфракрасная спектроскопия и масе-спектрометрия. Одним из часто применяемых методов идентификации компонентов смеси является анализ их методом инфракрасной спектроскопии или масс-снектрометрии. Другой возможный способ — параллельные анализы на хроматографе и спектральном приборе. Однако наибольший интерес представляет непосредственное соединение масс-спектрометра с хроматографической колонкой [35, 62]. Установка импульсного масс-спектрометра между колонкой и детектором хроматографа позволяет проводить непрерывную идентификацию и определять степень чистоты компонентов, соответствующих хроматографическим пикам, так как на осциллографе [63] можно получить до 2000 масс-спектров в 1 с. Идентификацию можно провести и более простым способом, если во время выхода пика осуществлять развертку, позволяющую определять массу молекулярного иона [64]. Таль-розе и др. [65] предложили непрерывно регистрировать интенсивность трех фиксированных линий масс-спектров. Отношения этих величин для каждого из компонентов анализируемой смеси является основой для их идентификации. [c.200]

    Все рассказанное здесь о карбониевых ионах отнюдь не носит характер лирического отступления. Напротив, это имеет прямое отношение к масс-спектроскопии, поскольку при электронном ударе тоже образуются катионы, и правила поведения у них в основном те же, что у катионов, возникающих в колбе. Конечно, тот факт, что в колбе они [c.128]

    Весьма перспективны методы масс-спектроскопии, основанные на точном измерении масс ионизированных частиц и молекул посредством разделения в пространстве и во времени заряженных частиц, имеющих различные величины отношения их массы к величине заряда. Разделения достигают, пропуская такие частицы через электрическое и магнитное поля. Разделенные в масс-спектрографе пучки частиц различной массы в своей совокупности образуют спектр , фиксируемый на фотографической пластинке в виде ряда отдельных линий. Можно определять содержание примесей в анализируемом образце вещества до 0,0001%. Точность анализа равна 0,1—0,2%. Проводят анализы углеводородов, сталей, газов, нефти. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения их компонентов. Масс-спектральный метод комбинируют также с хроматографией (см. ниже), инфракрасной и ультрафиолетовой спектроскопией. [c.568]


    Масс-спектроскопией называется метод разделения ионизованных атомов, молекул и радикалов при прохождении в электрическом и магнитом полях за счет разницы в значениях /п/е (т. е. отношения массы иона к заряду его) и на основе этого — точного определения их масс. В зависимости от приемов регистрации разделенных таким образом ионов электрическим или фотографическим способом метод именуется масс-спектрометрией или масс-спектрографией и аппараты для разделения и выполнения определения массовых чисел — масс-спектрометрами и масс-спектрографами. [c.49]

    В то же время надо иметь в виду и некоторые особенности ЯМР-спектроскопии, несколько ограничивающие ее применение. Наиболее серьезным ограничением является малая сравнительно, например, с ИК- или масс-спектроскопией чувствительность. Минимально необходимое для съемки спектра ЯМР количество вещества зависит от числа и ширины линий в спектре и от типа спектрометра (обычно для ПМР нужно не менее 10 мг вещества). Требуется также достаточно высокая концентрация раствора, как правило, не меньше 0,01 моль/л. Существует ряд способов повышения чувствительности — применение специальных датчиков, накопление спектров и др. В тех случаях, когда лимитирующим является ограниченное количество исследуемого вещества, используют датчики с образцом малого объема в шарообразной или капиллярной ампуле. Для съемки спектров растворов, в которых из-за малой растворимости вещества или низкого содержания изотопа концентрация резонирующих ядер мала, сконструированы датчики для ампул большого объема диаметром до 30 мм, вместо обычных 5— 10 мм. При накоплении спектр сканируется многократно и суммируется в памяти ЭВМ. Так как интенсивность сигнала пропорциональна числу сканирований N, а средняя интенсивность шума пропорциональна yN, отношение сигнал/шум возрастает в УЛ раз. Кардинальное повышение чувствительности (в десятки и сотни раз) достигается с помощью Фурье-спектроскопии [4]. [c.107]

    В 1943 г. было сделано важное открытие распад природного радиоизотопа калия-40 частично (на 12%) идет в сторону образования аргона-40. Развитие масс-спектроскопии позволило использовать это открытие для исчисления абсолютного возраста горных пород и минералов. Такие каменные часы играют выдающуюся роль в прогнозировании месторождений полезных ископаемых и в изучении геологической истории Земли. Метод сводится к измерению отношения концентраций аргона-40 каль- [c.207]

    Наиболее важной характеристикой масс-спектроскопа является метод, которым осуществляется фокусировка ионного пучка. Эту характеристику очень удобно использовать при разделении приборов иа отдельные типы. Фокусировка улучшает степень разделения соседних масс, увеличивает интенсивность измеряемого ионного пучка и, таким образом, делает измерение интенсивности и положения пучка более точным. Область применения того или иного масс-спектроскопа определяется в большой степени эффективностью фокусировки. Возможны следующие типы фокусировки, использующиеся для концентрирования ионов одинаковой массы в пучок фокусировка по направлению, в которой ионный пучок формируется из ионов, имеющих различное начальное направление, но одинаковую скорость, фокусировка по скорости, в которой ионный пучок формируется из ионов, имеющих различную скорость, но предполагается, что все они обладали одним и тем же начальным направлением. В случае двойной фокусировки ионный пучок формируется из ионов, обладающих различной начальной скоростью и направлением. За редкими исключениями, фокусирующие устройства, используемые в масс-спектроскопии, фокусируют ионные лучи лишь в одной плоскости, и потому они эквивалентны цилиндрическим линзам. Были описаны приборы, в которых применены все эти методы фокусировки первого и более высокого порядка. Известны также методы получения идеальной двойной фокусировки были сконструированы приборы, использующие подобные системы. Еще один важный метод фокусировки пучка > ионов — по времени пролета , используется в масс-спектрометрах, которые описаны позже. В этом методе все ионы с определенным отношением массы к заряду достигают коллектора в одно и то же время и могут быть отделены от ионов с иным отношением массы к заряду, которые попадают на этот же самый коллектор в иное время. [c.17]

    Помимо важной роли в комбинированных методах анализа меюды разделения и концентрирования имеют для аналитической химии суперэкотоксикантов самостоятельную ценность. Далеко не всегда можно проанализировать образец без предварительного выделения определяемых соединений из природной матрицы. При этом, как правило, возникает необходимость их концентрирования по отношению к матричным компонентам, присутствующим в растворе или в газовой фазе. Даже такие методы, как хромато-масс-спектрометрия и газовая хроматография в сочетании с ИК-спектроскопией, не всегда могут решить задачи следового анализа. Целью концентрирования является снижение нижнего предела обнаружения, тогда как разделение позволяет упростить анализ и устранить влияние мешающих веществ [c.199]

    В пособии представлен качественный анализ элементов и определение структурных фрагментов основных классов органических соединений, что дает возможность экспериментатору убедиться в получении вещества заданной структуры. Особенно информативными в этом отношении являются физико-химические (инструментальные) методы анализа, такие, как ИК, УФ, ЯМР спектроскопия, масс-спектрометрия, а также различные виды хроматографии, большинство из которых отражены в настоящем практикуме. [c.8]

    Метод ИК-спектроскопии дает сведения о содержании тех или иных структурных единиц в образце в виде числа этих единиц, приходящегося на определенное число (обычно 100 или 1000) углеродных атомов. Напомним, что это отношение является отношением среднечисленных (по числу молекул) значений числа искомых единиц и числа атомов С в образце, или среднемассовым отношением числа искомых единиц к числу атомов С в макромолекуле. Пусть - число макромолекул с молекулярной массой Л/,- и числом искомых структурных единиц 5,у. Тогда общее число искомых единиц в образце равно [c.129]

    Для элементного анализа главным образом используют рентгеновскую спектроскопию. Ее преимуществами являются простая процедура количественной обработки, высокие отношения сигнал/шум (см. также рис. 10.2-10). Недостатки рентгеновского анализа в варианте АЭМ вытекают из чрезвычайно малого объема, в котором происходит взаимодействие. Например, для образца толщиной 10 нм при диаметре пучка 10 нм объем, в котором происходит возбуждение, составляет всего 10 мкм , что соответствует анализируемой массе приблизительно 10" -10 г. Кроме того, эффективность сбора рентгеновских лучей определяется пространственным углом детектора. Вследствие изотропного характера рентгеновского излучения только часть фотонов (10 -10" ) регистрируется детектором. Это ограничивает пределы обнаружения рентгеновского микроанализа до 10 °-10" г, если энергодисперсионные детекторы с большим углом сбора фотонов установлены близко к месту электронного воздействия. Пространственное разрешение (например, при получении профиля концентраций поперек межфазной границы) составляет величину порядка 10-20 нм. [c.338]

    На основании комплексного качественного и количественного анализа сложных низкомолекулярных летучих продуктов окисления высших моноолефинов методами ИК-спектроскопии и хромато-масс-спект-рометрии, в летучих продуктах жидкофазного окисления промышленных фракций а-олефинов идентифицированы следующие классы органических соединений углеводороды (предельные, непредельные, ароматические), альдегиды, спирты, кислоты, эфиры, перекиси. Основными компонентами легколетучих продуктов окисления являются альдегиды (до 87%), представленные главным образом соединениями, содержащими два или три углеродных атома в молекуле. За ними в количественном отношении следуют гидроксилсодержащие соединения и углеводороды, содержание которых с увеличением глубины окисления растет от 5—8% до 12—15% мол. Данные по составу летучих продуктов также представляют интерес для выяснения механизма жидкофазного окисления а-олефинов. [c.57]

    Метод ЯМР спектроскопии высокого разрешения позволяет быстро и относительно просто получить значение среднечисленной молекулярной массы полимера в пределах 1-20 тысяч, т.е. для олигомеров. Молекулярная масса определяется по отношению суммарной площади сигналов всех протонов всех элементарных звеньев макромолекулы к площади сигналов от протонов концевых групп. Идентификация концевых групп проводится либо ЯМР спектроскопическим, либо другим независимым методом анализа. [c.269]

    Масс-спектроскопия основана на разделении заряженных частиц переменной массы способами электрического и магнитного полей. Основными частями масс-спектрометра являются ионизационная камера (ионы в ней образуются при электронной бомбардировке газообразных веществ), электрический потенциал для того, чтобы ускорить движение ионов, и магнитное поле, которое индуцирует угловое отклонение. Если изменить силу либо электрического, либо магнитного полей, то ионы могут быть соответственно разделены и собраны на основе отношения массы к заряду. Углеводороды ионизируют для того, чтобы получить определенные обрывы цепей. Так как такие обрывы характерны для углеводородного ряда, то поэтому возможны типовые анализы узкокипящих фракций в газообразных нефтепродуктах, смазочных маслах и парафинах однако [219—220] могут встречаться и смешанные структуры [222]. Необходимо использовать стандарты для калибровки спектрометра. [c.191]

    При постоянных внешних условиях ионы в зависимости ог отношения мас-к заряду описывают кривые движения с различными радиусам] , иа чем и овывается принцип разделения прн масс-спектроскопии. [c.146]

    МАСС-СПЕКТРОМЕТРЙЯ (маос-спектроскопия, маосчлект-ральный анализ), метод анализа в-ва путем определения массы (чаще, отношения массы к заряду т/г) и относит, кол-ва ионов, получаемых при ионизации исследуемого в-ва или уже присутствующих в изучаемой смеси. Совокупность значений т/г и отиосит. величии токов этих ионов, представленная в виде графика или таблицы, наз. масс-спектром в-ва (рис. I). [c.658]

    Масс-спектрометрия (масс-спектрография, масс-спектроскопия) — метод исследования вещества по спектру (набору) масс атомов и молекул, входящих в его состав. Метод заключается в том, что ионизированные атомы и молекулы вещества разделяют в электрических и магнитных полях по величине отношения массы к заряду иона (mie) и раздельно регистрируют на соответствующих приборах (масс-спект-ро.метрах). Из полученного масс-спектра находят величины масс и относительное содержание компонентов в исследуемом веществе. М.-с. применяют для точного определения масс ядер, анализа изотопного и химического состава вещества, уста-навлении структуры молекул и др. [c.80]

    Границы излагаемого материала отделяют его от конденси-роианных с другими циклами систем рассматриваемого типа. В монографии подробно освещены физико-химические и спектральные характеристики, методы получения, химические свойства неконденсированных 1,2,4-триазинов, Обширный материал, касающийся спектральных свойств соединений ряда 1,2,4-триазинов (ИК-, УФ-, ПМР, масс-спектроскопии), может быть использован при установлении строения новых соединений данного ряда. Принята классификация 1,2,4-триазинов по типу функциональных групп (заместителей) в триазиновом цикле. Последовательно рассмотрены алкил(арил)-, галоген-, амино-1,2,4-триазины. Значительное внимание уделено выделенным в отдельный раздел, как наиболее важным в практическом отношении асимметричным триазинам, имеющим заместитель в положении 4 кольца. Далее представлены карбонильные и дикар-бонильные соединения, а также карбоксилсодержащие триазины, т. е. охвачены практически все функциональные производные. Отдельно рассмотрены частично или полностью насыщенные [c.4]

    Массы водорода, углерода, азота, которые вместе с кислородом являются наиболее распространенными элементами в химии, все в той или иной степени отличаются от целых чисел для водорода это отклонение наибольшее. Если массы атомных комбинаций можно определить с достаточной точностью, то состав этих соединений может быть получен только с использованием таблиц с точными значениями масс атомов. При этом, естественно, рассматриваемые соединения должны быть ограничены как в отношении числа включенных элементов, так и в отношении допустимого количества атомов данного элемента. С ограничениями, указанными в гл. 3, такое рассмотрение масс было осуще-ствлено. Использованные значения масс были даны Огата и Мацуда 11530], и хотя они несколько уступают по точности некоторым другим значениям, их точность вполне достаточна для решения поставленной задачи, особенно если иметь в виду, что наивысшая точность при измерении масс достигается только для очень небольшой шкалы масс, как объяснено ниже, и для указанных измерений важнее разность масс, а не их абсолютное значение. Прежде чем перейти к рассмотрению требований, предъявляемых к масс-спектрометрам, предназначенным для химической работы, в отношении точности измерения масс, таких конструктивных особенностей, как разрешающая способность и чувствительность, необходимо рассмотреть ошибки, могущие возникать при измерении масс в масс-спектроскопе, а также затруднения при работе со спектрографом и спектрометром. Будут также указаны способы преодоления этих трудностей. [c.46]

    Во время дискуссии на Лондонской конфереиц]ги по масс-спектроскопии, организованной Институтом нефти в 1953 г., впервые было обращено внимание иа важный источник ошибок при анализе свободных радикалов при помощи масс-спектрометра [1]. Было указано, что свободные радикалы, попавшие в ионизационную камеру масс-спектрометра из расположенного рядом реактора, за время своего пребывания в камере претерпевают множество столкновений со стенками. В процессе этих столкновений рекомбинация и другие реакции вызывают исчезновение свободных радикалов, приводя во многих случаях к значительному уменьшению их концентрации в ионизационной камере. Отношение наблюдаемой концентрации радикалов R к концентрации радикалов входящих в ионизационную камеру, определяется следующим выражением  [c.556]

    Масс-спектрометрия, масс-спектрография, масс-спектральный анализ, искровая масс-спектроскопия. При соударении быстро движущихся электронов с нейтральными молекулами анализируемого газа из последних выбивается один или несколько электронов, т.е. молекулы ионизируются, образуются положительно заряженные ионы. В результате одновременного действия электрического и магнитного полей происходит разделение частиц с разным отношением массы к заряду (масс-спектр). Различающиеся по массе частицы различно отклоняются в магнитном поле от отрицательно заряженного электрода. Метод позволяет находить количество и массу ионов, получаемых из исследуемого вещества. Масс-спектрометрию применяют для установления изотопного состава, определения микропримесей, для локального анализа полупроводниковых пленок, поверхностных загрязнений, послойного анализа (толщина слоев 3,5—10 нм) [46, 58, 59]. См. хромато-масс-спектрометрия. [c.19]

    Настоящая коллективная монография содержит 13 обзорных статей по ряду новых методов исследования структуры и свойств полимеров. Теоретические основы этих методов достаточно сложны, что отражает объективно существующую тенденцию каждый новый шаг в познании тайн природы дается, как правило, с большим трудом, чем предыдущий. То же самое можно сказать и в отношении инструментальной части методов, которая в большинстве случаев опирается на различные приборы промышленного производства. Описываемые в книге методы часто могут дать качественно новую информацию, а следовательно, заслуживают того, чтобы ими заниматься и их развивать. К таким методам относятся, например, акустическая эмиссия полимеров, находящихся под нагрузкой, масс-спектроскопия напряженных полимерных образцов, бриллюэновское рассеяние и квазиупругое рассеяние лазерного света в полимерных системах. Весьма изящной выглядит конструкция нанотензилометра, позволяющего изучать процесс растяжения полимерного монокристалла. В книге проводится обсуждение и других методов, пока еще сравнительно мало распространенных, но явно заслуживающих пристального внимания физиков и химиков, работающих в области высокомолекулярных соединений. [c.5]

    Наиболее изученным в этом отношении оказался поливинилхлорид (ПВХ). Установлено, что отщепляющийся вследствие де-1 идрохлорирования ПВХ хлористый водород катализирует дальнейшую деструкцию полимера. Этот процесс, как следует из рис. ЧП-4, сильно ускоряется кислородом воздуха. Чем выше содержание кислорода в газовой фазе, тем больше выход хлористого водорода в процессе термостарения. По-видимому, кислород поглощается раньше, чем наступает отщепление хлористого водорода. Отсюда следует, что первичной стадией деструкции ПВХ является его окисление, сопровождающееся образованием гидроперекисей. Однако такие группы до сих пор не обнаружены, зато с помощью ИК-спектроскопии обнаружены группы С = 0, а с помощью масс-спектроскопии — и вода. Это указывает на то, что окисление ПВХ, как и других полимеров, протекает все же через соответствующие гидроперекиси, но особенностью является уже гетеролитический (а не гомолитический) его распад под воздействием хлористого водорода. Опуская предшествующие стадии взаимодействия с кислородом воздуха, суммарную схему деструкции ПВХ можно представить в следующем виде  [c.377]

    Имеются также программы, решающие обратные задачи. Для каждой гипотетической структуры строится ИК- или масс-спектр. В этом случае после сравнения гипотетической структуры и экспериментального спектра на выходе опознающей системы выдаются чрезвычайно сильные гипотезы (очень вероятные структуры). Такие программы опознавания на основании данных масс-спектроскопии описаны в работах [64, 65]. Центральной частью этих программ является генератор структур, использующий алгоритм, изложенный выше для построения структур, соответствующих масс-спектрам. В работе [64]i рассмотрен пример, в котором генератор структур по данной суммарной формуле gHigO строит все возможные 1936 нециклические структурные формулы (включены и неустойчивые изомеры). Отсев невероятных для наблюдаемого масс-спектра структур производится следующим образом. Из накопленного практического опыта известно, что, например, спектры кетонов должны содержать осколки, массовые числа которых связаны с массой молекулярного иона следующим отношением  [c.82]

    Первые сообщения о наблюдении ЯМР появились в 1957 году, когда П. Лаутербур опубликовал свои работы, касающиеся простейших классов органических соединений. Однако методика регистрации спектров была очень трудоемкой. Тем не менее уже эти первые сообщения показали, что прямое наблюдение ядер углерода имеет много преимуществ перед аналогичными исследованиями на протонах. В начальный период использование спектроскопии ЯМР было сильно ограничено из-за трудности проведения эксперимента, связанной с низким спектральным разрешением. Вследствие малого содержания ядер (1,1 % по отношению к ядрам приходилось работать только с соединениями, имеющими высокую растворимость и небольшую молекулярную массу. Несмотря на это, уже к середине 60-х годов методом ЯМР удалось изучить многие классы органических соединений. [c.136]

    Методами масс-спектрометрии и лазерной спектроскопии определяют отношение констант скорости каналов а и б и распределение энергии в продуктах реакции. Используя эти данные и расчеты по теории РРКМ, получают информацию об энергии возбуждения молекулы H3NO2 и потенциальном барьере Eq для канала б. Ниже представлены определенные таким способом потенциальные барьеры для некоторых реакций  [c.150]


Смотреть страницы где упоминается термин Масс-спектроскопия отношение: [c.15]    [c.75]    [c.73]    [c.26]    [c.321]    [c.535]    [c.101]    [c.350]    [c.347]    [c.207]   
Физические методы в неорганической химии (1967) -- [ c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектроскопия



© 2025 chem21.info Реклама на сайте