Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Целлюлоза и ее производные структура

    III. Поверхностно-активные вещества, обладающие способностью к образованию гелеподобных структур (т. е. в известной мере твердообразных, см. 5 гл. IX) в адсорбционных слоях и в объемах фаз. При этом в некоторых случаях относящиеся сюда ПАВ могут и не иметь высокой поверхностной активности. Большинство ПАВ, принадлежащих к этой группе, — высокомолекулярные, природные или синтетические вещества преимущественно сложного строения, с большим числом полярных групп (белки, глюкозиды, производные целлюлозы, поливиниловый спирт и т. п.). Такие вещества используются как высокоэффективные стабилизаторы умеренно концентрированных дисперсных систем различной природы пен, эмульсий, суспензий. ПАВ этой группы могут выступать как пластификаторы высококонцентрированных дисперсии (паст). Механизм действия этих веществ рассматривается в гл. IX—XI. [c.74]


    Перспективной и быстро развивающейся областью использования стабилизации дисперсных систем различной природы являются процессы микрокапсулирования порошков и капель жидкости. Микро-капсулирование — это создание на поверхности малых капель или частиц защитных пленок, предотвращающих контакт защищаемого вещества с внешней средой. Такие пленки, образованные высокомолекулярными веществами, в некотором смысле близки по структуре и назначению к мембранам клеток. Основными путями микрокапсулирования являются адсорбция пленкообразующих высокомолекулярных веществ, либо выделение на поверхности частиц пленки новой жидкой фазы (коацервация) пленки подвергаются обработке (введение дубителей, изменение pH, температуры) с целью придания им твердообразных свойств. Для получения пленок используются различные природные н синтетические вещества белки (желатина, альбумин), полисахариды, производные целлюлозы, поливиниловый спирт, поли-винилацетат и др. [c.304]

    Помимо чисто научного интереса, который естественно вызывает структура такого уникального образования, как стенка растительной клетки, вопрос этот имеет крупное практическое значение. Знание тонкой структуры и подробностей формирования микрофибрилл и клеточной стенки в целом составляет солидную часть научного фундамента целлюлозной промышленности и производства натурального и искусственного волокна на основе целлюлозы. Характерным примером может служить непосредственная связь гелеобразующих свойств таких синтетических производных целлюлозы, как карбоксиметил-целлюлозы и частично метилированные целлюлозы, с распределением аморфных и кристаллических участков в исходном целлюлозном материале. [c.155]

    Полимерцементные материалы относятся к композиционным вяжущим, получаемым на основе неорганической составляющей (портландцемент, глиноземистый цемент, гипс и др.) в сочетании с органическим компонентом [20]. В качестве органического компонента используются водорастворимые материалы (эпоксидные, карбамидные и фура-новые смолы, производные целлюлозы и др.) и водные дисперсии полимеров (поливинилацетат, латексы, эмульсии кремнийорганических полимеров). Применяются также мономерные и олигомерные соединения, которые полимеризуются при гидратации вяжущего материала под действием отвер-дителей и инициаторов, температуры, рН-среды и т. п. Полимерный компонент вводится либо в воду затворения, а затем используется при приготовлении растворной или бетонной смеси, либо вводится в виде порошкообразного компонента в состав сухой смеси на основе вяжущего вещества, а затем при затворении растворной или бетонной смеси водой диспергируется в водной среде, а при твердении растворов полимеризуется [10]. Свойства получаемых материалов зависят от многих факторов вида и качества цемента, вида полимера, полимерцемент-ного отношения (П/Ц), водоцементного отношения (В/Ц) и др. Полимерцементное отношение определяется как отношение массовой доли полимера (в расчете на сухое вещество) и цемента в композиционном вяжущем. Для полимерцементных материалов характерно отношение П/Ц > 0,2-0,4, когда полимерная фаза образует в цементном камне органическую структуру. При П/Ц = 0,2-0,25 кристаллизационно-коагуляционная структура цементного камня в местах дефектов (полы, трещины) укрепляется полимерной составляющей, что и обусловливает формирование более прочной и эластичной структуры. При П/Ц > 0,25 полимер образует непрерывную полимерную сетку. В полимерцементных композициях не наблюдается взаимодействие между органической и неорганической фазами [20]. Органические фазы взаимодействуют с гид-ратными фазами только за счет ионных и водородных связей и сил Ван-дер-Ваальса. В присутствии полимерных добавок изменяется кинетика гидратации портландцемента, причем с ростом П/Ц наблюдается замедление скорости взаимодействия цемента с водой. [c.295]


    Перенос такой пленки, имеющей толщину в несколько сот А, на опорную сетку дает возможность рассматривать ее или в газовой камере, или после высушивания непосредственно в прямом электронном пучке. Б последнем случае необходимо убедиться, что высушивание не приводит к существенным различиям по сравнению со структурой, наблюдаемой при рассмотрении в невысушенном виде в газовой камере. Эксперименты показывают, что для студней из жесткоцепных полимеров (например, целлюлозы и ее производных) структура студня фиксируется еще до сушки и высыхание объекта не вызывает заметного изменения структуры пленок. Подробности методики и полученные таким путем результаты были описаны в ряде работ [17— 21] здесь следует привести лишь некоторые типичные виды структуры двухфазных студней. [c.104]

    В заключение можнс рекомендовать следующую дополнительную литературу по изучению целлюлозы о структуре целлюлозы [41, 68, 164, 166, 170, 263, 705, 758, 765, 841, 893, 977, 1306, 1359, 1363, 1373, 1392, 1582, 1583, 1595, 1618, 1884, 1885, 1890, 1908] о составе целлюлозы [193, 402, 473, 1038, 1255, 1307, 1325, 1417, 1452, 1584, 1755, 1845] о производных целлюлозы [3, 7, 142, 232, 238, 239, 305, 404, 406, 498—500, 569, 573, 574, 576, 622, 709, 722, 774, 854, 947, 969, 976, 1012, 1129, 1274, 1317, 1319, 1337, 1375, 1410, 1440, 1507, 1555, 1604, 1756, 1771, 1892, 1893] и о других [c.413]

    Основной составной частью древесины кроме целлюлозы я других полисахаридов является соединение несахарного происхождения— лиг , поли л<ер с очень сложной структурой, производной от пропилбензола. [c.213]

    Сильнейшим фактором стабилизации, позволяющим получать весьма устойчивые дисперсные системы, является структурномеханический барьер, возникающий в результате адсорбции на поверхности низко- и высокомолекулярных ПАВ. При этом качестве стабилизаторов могут выступать даже слабые ПАВ, но способные к образованию гелеобразных структур в адсорбционном слое. В частности, многие природные полимеры - глюкозиды, белки, производные целлюлозы, обладающие в пределах молекулы участками с разной гидрофильностью, относят к группе так называемых защитных коллоидов. [c.42]

    Необходимо отметить, что нелинейный, экстремальный характер зависимостей структурно-механических свойств безглинистых растворов наблюдается при изменении величины последнего, концентрации полимеров и производных целлюлозы, ПАВ, что указывает на справедливость молекулярно-кинетического подхода к объяснению механизма формирования надмолекулярной структуры в поро- [c.15]

    Безжировые кремы. Эти кремы предназначены для ухода за очень жирной кожей лида, а также в качестве масок. Они представляют собой твердые гели, которые плавятся перед нанесением на поверхность лица, или высоковязкие золи, легко теряющие воду после применения и образующие гладкую эластичную пленку. Для получения этих препаратов применяют различные желирующие вещества трагакант, желатин, казеин, реже — крахмал и производные целлюлозы. Для получения более эластичной структуры в состав гелей вводят глицерин, сорбит и др. Безжировые кремы с большим содержанием глицерина обладают высокой эффективностью. [c.178]

    При изготовлении вискозного и медноаммиачного волокон из природной целлюлозы получают растворимые производные, из растворов которых формуют волокна требуемой формы, длины, тонины и с нужными физико-механическими свойствами. При формовании таких волокон в осадительной ванне происходит регенерирование целлюлозы, образуются так называемые гидратцеллюлозные волокна. По относительной молекулярной массе, физической структуре, форме упаковки и расположению макромолекул, а также по ряду других особенностей строения волокна из регенерированной целлюлозы существенно отличаются от природных целлюлозных волокон — хлопка и льна. [c.21]

    В последние годы 3. А. Роговиным с сотр. получены новые классы производных целлюлозы — фосфор-, фтор-, кремний-, ртуть- и оловосодержащие простые и сложные эфиры целлюлозы, производные дезоксицеллюлозы, разнообразные привитые сополимеры. Эти работы в 1980 г. отмечены Государственной премией СССР. Систематические исследования закономерностей синтеза таких сополимеров целлюлозы, изучение их структуры и свойств позволили разработать основу для промышленного производства модифицированных целлюлозных материалов новых типов, [207]. [c.135]

    Необходимость повысить водостойкость, прочность и термоизоляционные свойства газонаполненных материалов на основе производных неллю.лозы и других типов высокополимеров побудила технологов развить работы в направлении изыскания достаточно простых способов придания таким материалам ячеистой или пенистойструктуры.В связи сэтим в ряде патентов, опубликованных в период 1937—1941 гг., описываются способы получения на основе эфиров целлюлозы ячеистых материалов (пенопластов). Так, для придания производным целлюлозы ячеистой структуры рекомендуется смешивать при 40° вязкий раствор нитро- или ацетилцеллюлозы в лег- [c.55]


    По Ребиндеру, структурно-механический барьер возникает при адсорбции молекул ПАВ, которые могут быть не сильно поверхностно-активными для данной границы раздела фаз, но способны к образованию гелеобразного структурированного слоя на межфазной границе (ПАВ третьей и четвертой групп по классификации, приведенной в 3 гл. И). Этот слой подобен трехмерной структуре — гелю, который может возникать в растворах ряда веществ при достаточной их концентрации. К таким веществам относятся глюкозиды, белки, производные целлюлозы (карбоксиметилцеллюлоза) и другие так называемые защитные коллоиды — высокомолекулярные вещества со сложным строением молекул, которые имеют области меньшей и большей гидрофильности в пределах одной молекулы. По отноше-лию к дисперсиям гидрофильных порошков в неполярных жидкостях высокой стабилизирующей способностью обладают многие маслорастворимые ПАВ, способные прочно (химически) адсорбироваться на поверхности гидрофильных частиц. Стабилизированные таким путем лиофобные системы приобретают свойства дисперсий данного стабилизатора, т. е. становятся лиофилизованнымн. По Ребиндеру, следующие условия определяют высокую эффективность структурно-механического барьера. [c.261]

    Дисахариды. — Наиболее распространенными в природе дисахаридами являются сахаро за (тростниковый сахар), лактоза (молочный сахар) и мальтоза, причем последняя в свободном состоянии встречается довольно редко. Большое значение имеют дисахариды мальтоза и целлобиоза, поскольку они представляют собой продукты гидролиза крахмала и целлюлозы соответственно. По растворимости в воде дисахариды очень сходны с моносахаридами. Сахароза значительно менее устойчива к действию кислот, чем метилгликозиды, и легко расщепляется на О-глюкозу и -фруктозу при кислотном гидролизе, а также под действием фермента инвертазы. Сахароза не восстанавливает фелингову жидкость и не дает производных с фенилгидразином, откуда следует, что обе ее структурные единицы не содержат свободных гликозидных гидроксилов, являющихся потенциальными карбонильными группами и, следовательно, в сахарозе оба моносахарида связаны друг с другом гликозидными связями. В отличие от большинства сахаров сахароза легко кристаллизуется, по-видимому, из-за того, что она не подвергается мутаротации в растворе. Циклическая структура обоих моносахаридов сахарозы доказана путем гидролиза ее октаметилового эфира (Хеуорс, 1916). [c.555]

    Для лакокрасочных покрытий, предназначенных для защиты металлов от коррозии в атмосферных условиях, важной характеристикой является паропроницаемость. По мнению ряда исследователей, проникновение влаги через полимерные материалы протекает по-разному в одних существуют постоянные зазоры и поры, через которые в основном проникают молекулы воды, в других же зазоры возникают кратковременно в результате теплового движения макромолекул. Типичным представителем первого класса полимеров являются фенолоформальдегидные смолы, производные целлюлозы, полистирола, полиэтилена. Ко второму классу относятся полимеры типа каучуков, обладающие значительной упругостью. Влагопроницае-мость, а также влагопоглощение (водонабухание) находятся в сильной зависимости от структуры органических полимеров. При этом различают полимеры с трехмерной структурой и линейные, Полимеры с трехмерной структурой, например фенольные смолы, отличаются сильно разветвленной молекулярной структурой, вследствие чего молекулам водяного пара и воды приходится преодолевать большой путь. Поэтому влагопрони-цаемость фенольных смол относительно мала. [c.115]

    Состав. Диспергируемые в воде целлюлозные полимеры получают посредством химической модификации нерастворимой в воде целлюлозы, которая образует главную цепь макромолекулы полимера. Хотя основная немодифицированная цепь целлюлозы состоит из повторяющихся ангидроглюкозных колец,, каждое из которых содержит три способные к замещению гидроксильные группы (рис. 11.11), волокнистая целлюлоза представляет собой сложную структурную смесь кристаллитов и аморфного материала. Следовательно, во время приготовления производных целлюлозы отдельные участки ее цепи обладают различной способностью к реакции замещения в зависимости от структуры, так что замещение оказывается неравномерным. [c.473]

    В первичную структуру многих Д. входит т. наз. сорбционный домен - фрагмент полипептвдной цепи, определяющий связывание молекулы фермента с поверхностью целлюлозы. У разл. Д. он локализован на С- или на N-конце молекулы и связан переходной областью с каталитич. доменом. Последний, при протеолитич. отщеплении сорбционного домена, способен катализировать гвдролиз производных целлюлозы в р-ре, но не активен по отношению к нерастворимым субсфа-там. [c.335]

    Из полисахаридов для иммобилизации наиболее часто используют целлюлозу, декстран, агарозу и их производные. Для придания химической устойчивости линейные цепи целлюлозы и дек-страна поперечно сшивают эпихлоргидрином. В полученные сетчатые структуры довольно легко вводят различные ионогенные группировки. Химической модификацией крахмала сшивающими агентами (формальдегид, глиоксаль, глутаровый альдегид) синтезирован новый носитель — губчатый крахмал, обладаюпщй повышенной устойчивостью к гликозидазам. [c.86]

    В настоящее время все большее внимание исследователей привлекают природные соединения - биополимеры, обладающие собственной физиологической активностью. К ним относятся такие чрезвычайно распространенные в природе вещества, как полисахарид целлюлоза и полиаминосахарид хитин. Одним из факторов, контролирующих механизм их биологической активности, является определяемая особенностями надмолекулярной структуры доступность реакционных центров для сольватирующих молекул растворителей. В этой связи проведенное в главе обобщение современных данных по строению кристаллических целлюлозы, хитина и хитозана (производное хитина) и анализ проблем растворения и сольватации этих веществ в различных растворителях являются актуальными и полезными для дальнейшего развития физикохимии углеводов и других сахаров. [c.7]

    В процессе бактериальной сульфатредукции происходит фракционирование изотопов серы восстановленные продукты (в том числе и сера органическая) обогащаются легким изотопом, окисленные - тяжелым, т.е. в остаточном сульфате накапливается тяжелый изотоп. Об интенсивности процессов сульфатредукции можно судить по количеству образовавшегося сероводорода. На восстановление сульфатов израсходовалась какая-то часть ОВ, его потери на сульфатредукцию также прямо пропорциональны образовавшемуся количеству Н28. Та часть ОВ, которая не была утилизована бактериями, вскоре оказывается в составе вновь образованных полимерных структур — гуминовых веществ, объединяющих гуминовые и фульвовые кислоты. В осадках эти вешества образуются при конденсации автохтонного, в основном планктонного, материала (белки, углеводы и производные липидов) и (или) аллохтонного, принесенного с суши вещества (главным образом лигнин и целлюлоза). [c.133]

    Хлорирование в кислой среде является самым эффективным методом разрушения структуры остаточного лигнина в небеленых целлюлозах и часто использовалось на первых ступенях отбелки. Однако этот метод имеет ряд недостатков, из которых наиболее существенный - образование большого числа хлорированных органических соединений. Среди этих соединений обнаружены весьма токсичные, такие, например, как диоксины - группа хлорированных производных и-дибензодиоксина и дибензо-фурана. Так, 2,3,7,8-тетрахлор-и-дибензодиоксин обладает сильным мутагенным действием. [c.487]

    При образовании гидратцеллюлозы изменяется кристаллическая структура целлюлозы. Происходит переход кристаллической решетки целлюлозы I (через промежуточные производные - щелочную целлюлозу, сложные эфиры, донорно-акцепторные комплексы) в решетку целлюлозы И. Изменение положения целлюлозных цепей в элементарной ячейке и перераспределение водородных связей приводят и к увеличению содержания аморфной части в целлюлозе (уменьшению степени кристалличности), а также к общему разрыхлению структуры целлюлозы вследствие увеличения межкристаллитных пространств. Регенерирован[(ая И1 растворов целлюлоза оказывается при этом наименее упорядочепио , имеющей меньшую степень кристалличности по сравнению с мерсерию-ванной целлюлозой. [c.572]

    Свойства смешанных простых эфиров целльэлозы, в том числе растворимость, зависят от вида и массовой доли введенных заместителей и могут обеспечить смешанному эфиру спеьифическое применение, t том числе использование подобных эфиров с низкой степенью замещения для модифицирования це-.люлозы. Перспективное направление - получение функциональных производных целлюлозы. Так, благодаря пористой структуре функциональных производных их можно использовать для получения ионообменных материалов, применяемых в колоночной хроматографии. Эти производные получают в волокнистой, порошковой или гранулированной формах введением алкильных заместителей, содержащих ами1югруппы (для анионообменников) и сульфо- [c.617]

    Особый тип комплексов включения обнаружен в хиральных матрицах, образуемых набухщими производными микрокристаллической целлюлозы. Разделение на триацетилцеллюлозе, получаемой гетерогенным ацилированием с целью сохранения микрокристаллической структуры, как выяснилось, отчасти протекает по механизму стерического исключения. Так, в серии ароматических углеводородов (не обладающих в заметной степени способностью к образованию связей) бензол удерживается достаточно сильно, мезитилен (2,3,5-триметилбензол) — значительно слабее, а 1,3,5-тpи-/и/7e/ -бyтилбeнзoл не удерживается (полностью исключается). Объяснить это можно тем, что полисахаридные цепи имеют сильно переплетенную структуру и образуют своего рода двумерное молекулярное сито, допускающее включение определенных плоских ароматических структур и исключающее, по стерическим причинам, более объемные структуры. Кроме того, более сильное удерживание бензола (по сравнению с толуолом) заставляет предположить, например, наличие карманов в структуре каналов и возможность вторичных эффектов. [c.79]

    Характерные свойства целлюлозы обусловлены тенденцией ее индивидуальных цепей образовывать микрофибриллы за счет меж-и внутримолекулярных водородных связей, что приводит к высоко-Упорядоченной структуре. Аналогичным образом микрофибриллы образуют волокно ось волокна расположена под углом к осям Микрофибрилл, а индивидуальные молекулы лежат параллельно си микрофибриллы. Такое регулярное расположение молекул достаточно для получения рентгенограмм, из которых видно, что структуры целлюлозы нз любого природного источника в основном налогичны [95], однако отличаются от структуры целлюлозы, ре-"1 Рированной из ее производных или выделенной из раствора, п кристаллической структуры, характерной для природной цел- [c.239]

    Модельные опыты с пирокатехином, его производными (замещенными пирокатехинами) и соответствующими ортохинонами не показали с исчерпывающей точностью, участвуют или нет подобные структуры в процессе покраснения. Однако нельзя не учитывать возможного присутствия ортохинонной структуры в лигносульфоновой кислоте. 3,3 -диметокси-4,4 -диоксистильбен при адсорбировании целлюлозой и окисленный в условиях, благоприятных покраснению целлюлозы до соответствующего стиль-бенхинона, давал окраску того же спектрального типа, как и покрасневшая целлюлоза. [c.46]

    Лиофилизированные суппозитории получают из водных суспензий или эмульсий, основной массой которых является активное вещество, тогда как количество вспомогательных веществ офаничено до минимума. Вспомогательными веществами, связывающими препарат и придающими суппозиториям соответствующую структуру, являются натуральные или синтетические многомолекулярные соединения (желатин, альгинаты, поливинилпирролидон, производные целлюлозы) или неорганичекие соединения (коллоидный кремнезем). Принцип изго- [c.437]

    По химическому строению хитин аналогичен целлюлозе. Эти два полисахарида сходны и по физико-химическим свойствам, и по биологической роли. Хитин не растворяется в воде, разбавленных растворах кислот и щелочей и органических растворителях его можно растворить без заметного расщепления только в концентрированных растворах некоторых нейтральных солей (тиоцианатов лития, кальция) при нагревании . Обработка хитина щелочами при нагревании вызывает частичную деструкцию и отщепление N-aцeтильныx групп, причем образуются так называемые хитозаны Нерастворимость хитина в значительной мере препятствует получению обычных производных полисахарида. Так, например, для исследования его структуры не удалось применить метод метилирования . [c.541]

    В книге рассматривается структура и ультраструктура древесины, приводятся методы анализа и сведения о химическом составе древесины различных пород. Излагаются строение и свойства основных компонентов древесины — целлюлозы, полиоз, лигнина. Значительное внимание уделяется экстрактивным веществам, строению и компонентам коры. Подробно рассматриваются реакции древесного комплекса в кислой и щелочной средах, его термопревращения, деструкция под действием света, ионизирующих излучений и микроорганизмов. Приводится обзор процессов и перспективных нетрадиционных способов варки и отбелки. Даны производные целлюлозы и оценка древесины и ее компонентов как источника химических продуктов и анергии. [c.2]

    Проблема пожелтения технической целлюлозы и бумаги имеет важное практическое значение. Считают, что красящие вещества образуются из лигнина и его производных и имеют структуру хинонов, хинонметидов и стильбенов [41]. [c.288]

    По пространственной конфигурации элементарного звена и форме макромолекулы целлюлозу относят к группе полужестко-цепных полимеров. Основной причиной повышенной жесткости является циклическая структура элементарного звена и наличие сильнополярных гидроксильных групп. Глюкопиранозный цикл может принимать восемь энергетически выгодных конформаций типа кресло и ванна , которые могут влиять на реакционную способность гидроксильных групп [I, с. 14] и предопределять поликристаллическую структуру целлюлозы. Что касается жесткости цепи, то оценить ее в невозмущенном 6-состоянии из-за отсутствия подходящих растворителей можно только по косвенным данным [10], хотя в ряде работ [11] приведены данные об асимметрии макромолекул целлюлозы и ее производных в растворе. Жесткость цепи может быть выражена расстоянием между концами макромолекулы й или статистическим сегментом А . Первая величина зависит от жесткости цепей и молекулярной массы, тогда как вторая характеризует только жесткость цепи. Предполагается, что макромолекула состоит из сегментов, причем положение каждого предыдущего сегмента совершенно независимо от последующего. Указанные величины связаны между собой выражением  [c.18]

    Название процесса — мерсеризация — привнесено из текстильной промышленности, где процесс обработки щелочью применяется для облагораживания хлопчатобумажных тканей, и связано с Именем изобретателя процесса — Мерсером. Процесс мерсеризации в связи с его большой значимостью был объектом многочисленных исследований сначала в текстильной промышленности, а затем в промышленности, производящей вискозные волокна и некоторые другие продукты на основе производных целлюлозы (карбоксиметилцеллюлоза, оксиэтилцеллюлоза). При обработке целлюлозы растворами NaOH происходит ее набухание, сопровождающееся увеличением толщины волокон и сокращением их в длине, выделяется тепло, изменяется надмолекулярная и морфологическая структура, растворяются и удаляются из волокна низкомолекулярные фракции целлюлозы. В основе всего этого комплекса явлений лежит химическое взаимодействие целлюлозы с едким натром. [c.31]

    Колвин Дж Р Структура и образование целлюлозных микрофибрилл // Целлюлоза и ее производные / Ред Н Байклз, Л Сегал М, 1974 Т 2 С 20-46 [c.32]

    Среди продуктов деструкции лигнина, полученных в результате сульфгидратной варки древесины ели (pH 8,5, 100° С), обнаружены производные пирокатехина [72] Прокшин [73] приводит количественную характеристику образования пирокатехино-вых структур в сульфатном и ряде других препаратов лигнина В тиолигнине было найдено 0,06—0,09 молей таких структур на звено с молекулярным весом 180 Чиркин и Тищенко [74], изучая вещества, окрашивающие целлюлозу, обнаружили о-хиноидные группировки, возникшие в лигнине в результате гидролиза метоксильных групп и последующего превращения образовавшихся пирокатехиновых структур [c.349]

    Русняк и сотр. [38] показали, что прн подавлении максимумов существенную роль играют вес, размер и структура молекул поверхностноактивных веществ основные красители, имеющие различные молекулярные веса, но состоящие из молекул приблизительно одинакового размера, обладают примерно равной способностью подавлять максимумы напротив, производные целлюлозы, имеющие линейные цепи, подавляют максимум тем сильнее, чем выше их молекулярные веса. [c.409]

    Причина более низкой пластичности исходных целлюлозных волокон по сравнению с пластичностью фибрилл не ясна. Однако, может быть, что при образовании волокон в природе прп наложении друг на друга большого количества цепеобразных молекул целлюлозы сильно полярные гидроксильные группы, расположенные вдоль цепей, испытывают настолько большое взаимное притяжение, что оно вызывает поворот молекул, приводящий к более или менее полной нейтрализации силовых полей вокруг полярных групп. Такая ориентация приводит к минимуму количества направленных наружу гидроксильных групп на молекулах, расположенных по поверхности волокна. Результатом этого является понинчвние активности и, j eflOBaTenbHO, пластичности этой поверхности, фибриллирование при размоле неизбежно ведет к обнажению тех молекулярных поверхностей, которые в исходном волокне были в непосредственном соприкосновении с другими молекулами целлюлозы. Можно ожидать, что подобные поверхности могут обладать относительно высокой склонностью к реакции с водой. Химическое превращение целлюлозы в растворимые производные указывает на то, что размол очень мало или совсем не влияет на основную структуру молекулы целлюлозы, т. е. длина цв и вероятно остается неизмененной. [c.353]


Смотреть страницы где упоминается термин Целлюлоза и ее производные структура: [c.566]    [c.624]    [c.172]    [c.200]    [c.370]    [c.554]    [c.555]    [c.229]    [c.204]    [c.361]   
Химия полимеров (1965) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Целлюлоза и ее производные

производные структура



© 2025 chem21.info Реклама на сайте