Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера соединения, реакция с ароматическими углеводородами

    В загрязненной атмосфере диоксид серы, оксиды азота и углеводороды присутствуют одновременно. Облучение олефинов с прямой цепью и ароматических соединений в присутствии диоксида серы и оксидов азота приводит к образованию значительного количества аэрозолей. Скорость реакции для диоксида азота зависит от соотношения реагентов. [c.32]


    Началом всех реакций является насыщение гетероциклического кольца, затем происходит разрыв гидрированного кольца в различных положениях с образованием первичных и вторичных аминов. Следующая стадия — дальнейший гидрогенолиз с образованием ароматических углеводородов с короткими боковыми цепями, парафиновых углеводородов и свободного аммиака. Соединения, содержащие азот, гидрируются труднее серо- и кислородсодержащих соединений, а также диеновых и олефиновых углеводородов. [c.222]

    Гидрогенизационные процессы осуществляют путем контакта нефтяной фракции с водородом в присутствии определенного катализатора и в соответствующих условиях, В процессе гидрогенизации углеводородов протекают следующие основные реакции гидрокрекинг алканов и циклопарафинов гидрирование непредельных и ароматических углеводородов гидродеалкилирование ароматических углеводородов гидроизомеризация всех классов углеводородов. Соединения, содержащие серу, азот, кислород, подвергаются, как правило, гидрогенолизу. [c.234]

    Рассмотрение взаимодействия компонентов тяжелого нефтяного сырья с водородом показывает, что все виды гетеросоединений и вое группы углеводородов могут подвергаться глубоким химическим превращениям в процессе каталитической переработки под давлением водорода. При переработке различных видов сырья глубина превращения каждого из компонентов в значительной мере зависит от состава сырья, т. е. от присутствия в зоне реакции других компонентов. Взаимное влияние присутствующих в сырье соединений связано с их различной способностью адсорбироваться на поверхности катализатора. Некоторые соединения, например серо- и азотсодержащие, ароматические углеводороды (особенно конденсированные), обладают повышенной адсорбционной способностью. При этом их устойчивость в условиях реакции и скорость взаимодействия с водородом весьма различны. В результате наиболее устойчивые и медленно реагирующие соединения с повышенной адсорбционной способностью могут блокировать поверхность катализатора и препятствовать превращениям других компонентов сырья. Глубина превращения компонентов сырья и направление основных реакций определяются условиями процесса и видом катализатора. [c.303]

    Вяжущие свойства связующего проявляются как в процессе приготовления анодной массы, так и при формировании самообжигающихся анодов. При смешении сухой шихты со связующим оно растекается на поверхности коксовых частиц, частично заполняя их поры, и тем самым создает прочную связь между отдельными зернами. В связи с этим особо важное значение приобретают поверхностные свойства и вязкостно-температурные характеристики связующих веществ, зависящие от их химического состава и происхождения. Вязкость связующего должна обеспечить достаточную пластичность и текучесть анодной массы, однако протекание его между зернами кокса в электролизной ванне недопустимо., Спекающая способность связующего проявляется в процессе формирования анода или обжига электрода оно должно цементировать отдельные зерна сухой шихты, выполняя роль коксовых мостиков. Спекающая способность является обобщающей характеристикой связующего и в первом приближении оценивается коксуемостью нефтяного остатка, а в конечном счете — показателями качества обожженных изделий (механической прочностью, удельным электросопротивлением, реакционной способностью и др ) Из всех нефтепродуктов вяжущими и спекающими свойствами в наибольшей степени обладают нефтяные остатки, ресурсы которых весьма велики. Однако все они характеризуются недостаточными значениями коксуемости (10—25% по Конрадсону), некоторые из них имеют малую адгезионную способность, высокое содержание серы. Поэтому они не могут быть использованы в производстве электродной продукции без дополнительной обработки, приводящей к изменению их химического состава и свойств. Лучшими следует считать связующие вещества, которые имеют коксовое число по Конрадсону 40—50% и температуру размягчения 80—90 °С по К и Ш. Такие свойства связующих веществ обусловливаются химическим составом, т. е. оптимальным соотношением в них различного класса соединений и прежде всего асфальтенов, смол, высококонденсированных ароматических углеводородов, карбенов и карбоидов. Особо важное значение придается группе тяжелых ароматических углеводородов, которая способствует протеканию при обжиге изделий реакций конденсации. [c.75]


    Из всех нефтепродуктов вяжущими и спекающими свойствами в наибольшей степени обладают нефтяные остатки, ресурсы которых весьма велики. Однако все они характеризуются недостаточными значениями коксуемости (10—25% по Конрадсону), некоторые из них имеют малую адгезионную способность, высокое содержание серы. Поэтому они не могут быть использованы в производстве электродной продукции без дополнительной обработки, приводящей к изменению их химического состава и свойств. Лучшими следует считать связующие вещества, которые имеют коксовое число по Конрадсону 40—50% и температуру размягчения 80—90 °С по К и Ш. Такие свойства связующих веществ обусловливаются химическим составом, т. е. оптимальным соотношением в них различного класса соединений и прежде всего асфальтенов, смол, высококонденсированных ароматических углеводородов, карбенов и карбоидов. Особо важное значение придается группе тяжелых ароматических углеводородов, которая способствует протеканию при обжиге изделий реакций конденсации. [c.75]

    Объемная скорость углеводородного сырья. Эффективное снижение содержания сернистых соединений и бициклических ароматических углеводородов в сырье каталитического крекинга достигается при значительно меньших объемных скоростях, чем обычно требуемые при гидроочистке бензина и средних дистиллятных фракций. Влияние объемной скорости на снижение содержания серы и бициклических ароматических углеводородов в циркулирующем крекинг-газойле при гидрировании на промышленном сульфидном никельмолибденовом катализаторе (на носителе) представлено на рис. 6. Эти типичные кривые характеризуют применявшийся катализатор, сырье и режим процесса и приведены лишь для иллюстрации. Однако очевидно, что при объемной скорости 1 ч реакция приближается к завершению (или равновесию) при меньших объемных скоростях степень превращения увеличивается незначительно. [c.215]

    Каталитическое гидрирование (гидроочистка) служит для удаления или видоизменения нежелательных примесей, содержащихся в нефтяных дистиллятах (например, соединений серы и азота, олефинов). В зависимости от режима реакции ароматические углеводороды в большей или меньшей степени гидрируются. Гидроочистка занимает важное место среди процессов очистки масел благодаря незначительным материальным потерям в этом процессе. Различают три вида гидроочистки в производстве смазочных масел и специальных продуктов, однако эта дифференциация не всегда точна. [c.73]

    Сернистые соединения на катализаторах риформинга превращаются в сероводород, который адсорбируется на катализаторе и подавляет (ингибирует) гидрирующую-дегидрирующую функцию катализатора. На катализаторе, дезактивированном серой, замедляются реакции образования ароматических углеводородов как из нафтенов, так и особенно из парафиновых углеводородов (дегидроциклизация). [c.25]

    Уменьшение общего количества колец в гидрогенизатах, полученных при каталитическом гидрировании высокомолекулярных конденсированных бициклоароматических соединений нефти, объясняется главным образом реакцией гидрогенизола сернистых гетероциклических соединений, сопутствующих этой фракции, и, возможно, отчасти гидрогенолизом пентаметиленовых колец. Полициклические конденсированные системы, образованные шестичленными карбоциклическими кольцами, в этих условиях могут лишь насыщаться водородом в результате гидрирования ароматических ядер, не изменяя своего углеродного скелета. При гидрировании высокомолекулярных конденсированных бициклоароматических соединений из радченковской нефти [5, 6] в присутствии N1 Ренея к моменту полного удаления из них серы 54% всех ароматических ядер сполна насыщаются водородом, переходя в циклопарафиновые структуры, а 33% конденсированных ароматических ядер гидрируются частично, переходя в углеводороды ряда бензола, в которых бензольное кольцо соединено в конденсированной циклической структуре с несколькими полиметиленовыми кольцами. [c.229]

    Мазуты содержащие 15,8—4,0% асфальтенов, 1,86— 2,04% серы и 0,27—0,84% азота и кислорода, гидрировали на плавающем и стационарном катализаторах. Показаны преимущества замены плавающих катализаторов стационарными, а также возникающие при этом трудности, связанные с отравлением катализатора Изучалось влияние условий процесса на скорости реакций гидрирования и расщепления. Достаточно глубокое гидрирование ароматизированного сырья происходит при давлениях 200 кгс/см и выше, скорость зависит от химического состава сырья и может изменяться в широких пределах. Гидрирование полициклических соединений протекает последовательно, наиболее медленной ступенью является гидрирование моноциклических ароматических углеводородов [c.50]

    Катализаторами гидрирования ароматических систем могут быть нее металлы VIH группы, но в промышленности применяют главным образом никель на носителях, особенно на СгаОз. С таким контактом достаточная скорость процесса достигается при 120— 200°С. П )и этом, в отличие от олефинов, необходимо повышенное давление (1—5 МПа)—не только для ускорения реакции, но и для увеличения равновесной степени конверсии, так как термодинамические отношения в этом случае менее благоприятны для гидрирования. Ароматические углеводороды нужно предварительно очищать от соединений серы, являющихся контактными ядами. [c.499]


    Каталитические действия наблюдаются в очень многих случаях химических превращений. Можно без преувеличения сказать, что всякая реакция может быть ускорена и замедлена подходящим катализатором. Для этого очень часто достаточно присутствия весьма незначительного количества каталитически действующего вещества Так, достаточно присутствия очень небольшого количества мелкораздробленной платины, чтобы реакция водорода с кислородом, происходящая при высокой температуре, имела место при обыкновенной комнатной температуре. Превращение ацети лена в ароматические углеводороды в присутствии угля проходит, как мы видели выше, медленно в отсутствии этого катализатора, и громадные массы ацетилена могут быть переведены в бензол с помощью небольшого количества активированного угля, употребляемого в масках Зелинского. Небольшое количество платины способно превратить большие массы двуокиси серы в трехокись, ускоряя соединение кислорода с двуокисью. На этом каталитичес- [c.104]

    При гидрировании нефтяных фракций в реакции вступают углеводороды всех классов — алканы, цикланы, ароматические и алкены, чрезвычайно разнообразные по молекулярному строению. В реакцию могут вступать также органические соединения, содержащие серу, азот, кислород и в некоторых случаях металлы. По молекулярным весам реагирующие компоненты охватывают весь диапазон от газа до соединений или комплексов, молекулярный вес которых настолько велик, что их можно выделить из жидкой фазы центрифугированием Присутствие таких коллоидных частиц было недавно доказано экспериментально [63]. Считают, что осадок, полученный центрифугированием под действием центробежной силы, достигающей 80 000 , состоит из асфальтенов. Средний молекулярный вес таких частиц [c.120]

    К реакциям первого типа относятся реакции гидрирования олефинов и ароматических колец, восстановление органической серы, соединений кислорода и азота в соответствующие углеводороды, НгЗ, Н2О и ННз. Реакции проводятся при температурах от 200° С и выше. Реакции второго типа, как, например, изомеризация и расщепление, требуют более высоких температур порядка 400° С. Активность катализатора повышается в присутствии серы и уменьшается при наличии соединений азота и кислорода, кроме того, эти элементы влияют на температуру, при которой происходит реакция. [c.268]

    При крекинге циклических алкилированных углеводородов с алкильными цепями, содержащими три атома углерода и более, происходит распад — отрыв боковой цепи от кольца, а при термическом крекинге в большинстве случаев получается разрыв цепи. Для би- и полициклических нафтеновых углеводородов параллельно реакции распада — разрыва кольца в присутствии алюмосиликатных катализаторов — интенсивно течет реакция дегидрирования с образованием ароматических углеводородов. Выделяющийся водород при реакции дегидрогенизации нафтеновых углеводородов и конденсации ароматических и непредельных с образованием кокса в значительной мере перераспределяется и обеспечивает образование предельных углеводородов в продуктах крекинга. Особенно интенсивно протекают превращения ненредельных соединений, образовавшихся в результате распада. Реакции изомеризации, полимеризации, дегидроциклизации, насыщения водородом олефиновых углеводородов в значительной мере предопределяют состав получаемых продуктов крекинга. Характерной реакцией для каталитического крекинга является глубокий распад сернистых соединений, за счет реакции перераспределения водорода происходит интенсивное образование сероводорода. С газами процесса удаляется до 50% серы, содержащейся в сырье. [c.82]

    Установка типа 35-6. Установка предназначена для получения бензола и толуола из фракций 62—105°С или только бензола из фракции 62—85°С. Мощность установки 300 тыс. т/год. В схеме установки (рис. 40) не предусмотрена гидроочистка сырья. В на-I стоящее время все такие установки дооборудованы отдельными блоками гидроочистки. Схема блока гидроочистки такая же, как и на установке 35-11. Для обеспечения селективной и стабильной работы катализатора сырье должно подвергаться глубокой очистке от сернистых и азотистых соединений, а так же от воды. Гидро-очищенное и тщательно осушенное сырье, содержащее серы не более 0,0005 вес. % (5 ррт), в смеси с циркулирующим газом (влажность газа не более 30 мг1м ) подвергается риформингу в трех последовательно включенных реакторах. Нагрев исходной смеси и межреакторный ступенчатый подогрев осуществляют в многокамерном огневом трубчатом подогревателе. Так как установка предназначена для получения ароматических углеводородов, в схему включен реактор для гидрирования содержащихся в дистилляте непредельных углеводородов. Реакция гидрирования протекает при 280—320 °С. Стабильный дистиллят направляется на выделение ароматических углеводородов. Поскольку проектная схема не предусматривала блока гидроочистки, на установке имеется система очистки циркулирующего газа от сероводорода раствором моноэтаноламина и осушки газа диэтиленгликолем. При эксплуатации установки с блоком гидроочистки эти секции выключаются из работы. [c.101]

    Теплота реакции гидрирования насыщенных алкенов и ароматических углеводородов значительно выше теплоты реакции разложения соединений серы. Это обстоятельство и создает возможность проводить гидрообессеривание прямогонных продуктов в реакторах при мягких условиях без снятия тепла реакции и умеренном повышении температуры продуктов на выходе из реактора. [c.53]

    Количественное изменение и перераспределение группового химического состава обусловлено отличиями в характере взаимодействия серы с различными групповыми химическими фракциями сырья. Увеличение содержания легких и средних ароматических углеводородов может объясняться взаимодействием кластеров серы, обладающих псевдо-ароматическим характером, с ароматическим кольцом углеводородов с образованием межмолекулярных связей. В результате протекания реакций и возможного образования полисульфидных мостиков увеличивается количество соединений, определяемых методом ГХС как смолы, а связывание полициклических ароматических углеводородов приводит к уменьшению содержания соединений, определяемых как тяжелые ароматические углеводороды. Ниже представлена возможная схема взаимодействия серы с разными радикалами  [c.10]

    Сул ирование ароматических соединений триоксидом серы проводится двумя способами. Первый применяется для малолетучих веществ и заключается в сульфировании парами SO3, разбавленными воздухом. Второй вариант состоит в проведении реакции при -10 °С в жидком диоксиде серы, в котором растворимы как SO3, так и ароматический углеводород. [c.468]

    Химические анализы кокса показали, что в его органической части массовое содержание углерода 80—86%, водорода 3—5%, серы 4—7%, азота — 1%, кислорода 4—8%. Отложения обычно представляют собой смесь органических и неорганических веществ, причем на отдельных участках органическое вещество в отложениях достигает практически 100%. Можно считать установленным, что причина образования коксовых отложений — реакции жидкофазного автоокисления реакцнонноспособных компонентов сырья растворенным кислородом. При переработке прямогопных бензиновых фракций такими компонентами являются сераорганические соединения и ароматические углеводороды, при переработке бензинов вторичного происхождения — непредельные углеводороды с сопряженными двойными связями. [c.108]

    Нужно вспомнить, что общепринятая сернокислотная очистка всегда причиняла значительные неудобства. Смолистые и асфальтовые вещества, некоторые реакционноспособные соединения серы и азота и углеводороды не могут быть выделены в чистом виде. Кроме того, сброс продуктов реакции и извлечение отработанной кислоты затруднителен и дорог. При сольвептной экстракции, однако, продукты с высоким содержанием парафинов противостоят окислению и сравнительно свободны от коксообразующих веществ, которые извлекаются в виде экстракта, пригодного для дальнейших превращений, например в асфальт или котельное топливо. Экстракция используется в таких процессах, как обработка газойлей и керосиновых дистиллятов для получения высококачественных реактивных и дизельных топлив и для повышения качества исходного сырья каталитического крекинга [61]. Выделение ароматических углеводородов высокой концентрации этим методом применяется в больших масштабах. Он стал особенно важным в военных условиях 1940—1945 гг. для производства нитротолуола и для других химических производств [62, 63]. [c.275]

    Рассмотрение реакций серосодержащих соединений с водородом показывает, что их взаимодействие ведет к разложению молекулы с разрывом связей углерод — сера и образованию соответствующего углеводорода — алифатического, нафтенового, нафтено-ароматического или ароматического. На глубину разложения влияют условия реакции с повышением давления глубина превращения возрастает такое же влияние оказывает увеличение количества водорода при повышении температуры глубина превращения несколько снижается. Однако термодинамические расчеты, проведенные для ряда сульфидов и производных тиофена, показывают, что при применяемых обычно в гидрогенизац1ион ых процессах температуре и концентрации водорода возможно превращение на 90—997о [1]. [c.293]

    Процесс гидрокрекинга вакуумного дистиллята служит для получения реактивных и дазельных топлив, компонента высокоиндексных масел и сырья для каталитического крекинга. Из-за низкой октановой характеристики в процессе стараются получать как можно меньше бензина. Направление процесса, выход и качество образующихся продуктов во многом определяются качеством катализатора и исходного сьфья, условиями проведения процесса. Катализаторы гидрокрекинга являются полифункциональными системами и наряду с реакциями расщепления сырья должны обеспечить гидрогенолиз серо-, азот- и кислородсодержащих соединений и гидрирование полициклических, ароматических углеводородов. Для гидрокрекинга вакуумного дистиллята применяют катализаторы двух типов аморфные (оксикремнеземные или металлосиликатные) и цеолитсодержащие. Как правило, эти катализаторы содержат расщепляющий и гидрирующий компоненты. Их эффективность определяется как свойствами каждого компонента, так и вкладом в суммарную гидроконверсию [c.179]

    Сера. Значительный лнтерес представляют данные о действии серы на алюмоплатиновый катализатор, так как оно в известной мере подобно действию металлов IV группы (германия, олова, свинца). Дозированное осернение алюмоплатинового катализатора и, следо этельно, введение небольших количеств серы, хотя и снижает дегидрирующую активность катализатора, однако, подавляя гидрогенолиз парафинов, увеличивает селективность процесса, вследствие чего повышается выход ароматических углеводородов. С другой стороны, при значительном содержании серусодержащих соединений в сырье происходит отравление катализатора, в частности уменьшается его активность и селективность в реакции дегидроциклизации парафинов (табл. 2.13). Подобное явление наблюдается только, при умеренных температурах каталитического риформинга. Если же проводить процесс при высоких температурах (например, 525 " С) существенного ухудшения селективности не отмечено [120]. . [c.96]

    Гидрокрекинг представляет собой совокупность ряда параллельных и последовательных реакций расщепления парафиновых, нафтеновых и непредельных углеводородов, гидрирования ароматических и олефиновых углеводородов, деструктивного гидрирования, изомеризации и гидрогенолиза серо- и азотсодержащих соединений. В неблагоприятных условиях процесс может сопровождаться реакциями, противоположными основному направлению дегидрогенизацией некоторых алици-клических соединений, полимеризацией непредельных углеводородов и конденсацией их с ароматическими соединениями эти реакции приводят к коксообразованию. Под высоким давлением водорода реакции уплотнения молекул и дегидрирования подавляются и практически могут предотвращаться полностью [3, 4, 49—54]. [c.140]

    Химический путь образования нефтяных смол нз раститель-1П)го вещества Стадников видит в реакциях конденсации спиртов, альдегидов и кетонов в результате взаимодействия как самих зтих соединенпй между собой, так п вследствие реакций последних с сер-ппстьнш и азотистыми соединениями, а также с непредельными п ароматическими углеводородами. [c.443]

    В процессе работы снижается не только кислотная, но и дегид-рирующая-гидрирующая функция катализатора, обусловленная активными центрами (платиной). Снижение дегидрирующей активности может быть обратимым и необратимым. В первом случае имеется в виду отравление серосодержащими соединениями. Алюмоплатиновый катализатор может работать при содержании серы в сырье 0,07—0,1% (масс.), однако при этом снижается его дегидрирующая активность и в результате — выход ароматических углеводородов. С переходом работы на сырье, практически не содержащее серы, активность катализатора восстанавливается и выход ароматики становится нормальным. Во втором случае катализатор при переходе на нормальные условия работы уже не восстанавливает своих первоначальных свойств, например при работе с сырьем, содержащим мышьяк и свинец. Соединения мышьяка и свинца образуют с платиной соединения (возможно, спла"Вы), неактивные в реакции дегидрирования. Избежать этих крайне неблагоприятных случаев можно, применяя гидроочистку сырья перед каталитическим риформингом. [c.150]

    Перечень органических химических промежуточных веществ, которые можно получить из моноолефиновых (этилена, пропилена, нормальных бутенов и изобутена), а также из диолефина, бутадиена и ароматических углеводородов (бензола, толуола, орто-, мета- и параксилолов) впечатляющ. Основные реакции были описаны в серии статей Л. Хэтча и С. Матара. Органические промежуточные соединения и конечные виды продукции, производимой из них, приведены в табл. 56. Среди конечных продуктов можно увидеть материалы, необходимые для экономического развития и роста благосостояния стран. Это прежде всего синтетические пластмассы на политеновой, полистироловой и полихлорви-ниловой основе синтетические волокна (нейлон и полиэфирный дакрон), синтетические резины, получаемые из бутадиена и изо- бутилена полиуретановая пена, лаки, специальные растворители и т. п. [c.252]

    На глубину превращения, выход и состав продуктов реакции, продолжительность работы катализатора большое влияние оказывает подготовка сырья, которое может быть облагорожено предварительной гидроочисткой для снижения содержания сернистых и азотистых соединений, а также частичного перехода полициклических ароматических углеводородов в алкиларома-тические с меньшим числом колец. Предварительная гидроочистка сырья позволяет повысить выход бензина, снизить коксообразование и увеличить срок работы катализатора, а также на порядок уменьшить содержание серы в бензине и газойле. Поэтому установки каталитического крекинга для эффективной переработки тяжелого сернистого сырья комбинируют с установками гидроочистки. Например, в состав современной комбинированной установки Г-43-107 мощностью по сырью 2 млн. т в год входят гидроочистка вакуумного дистиллята, каталитический крекинг, ректификация и газофракционирован ие продуктов крекинга. В блоке каталитического крекинга используется цеолитсодержащий катализатор, который обеспечивает высокий выход бензина и компонента дизельного топлива — легкого газойля. [c.28]

    Реакция диспропорционирования радикалов ароматических углеводородов является одним из частных случаев одного из наибо.хее общих законов, управляющих процессами в органической химии. Этот закон может быть сформулирован следующим образом реакции самопроизвольного превращения органических молекул, без участия посторонних соединений, всегда идут в сторону накопления в одной части системы максимально обуглеро-женных молекул или частей молекулы, а в другой — соединений или частей молекулы, обогащенных водородом, кислородом, серой и азотом органическая молекула стремится к состоянию минимального уровня свободной энергии, перестраивая "свою структуру в направлении возникновения группировок атомов, близких к углекислоте, воде, метану, графи. у, сероводороду, aMMHaiiy и другим веществам, т. е. к соединениям с минимальным уровнем термодинамического химического потенциала. [c.111]

    Любое из индивидуальных соединений содержится в сырой нефти, естественно, в небольших количествах, поэтому до его выделения необходимо повысить концентрацию. Перегонкой можно грубо отделить широкую фракцию Се—Са, но даже в этой фракции содержание ароматических углеводородов довольно низкое. Цнкло-дегидрогенизацию алканов в арены осуществляют при высоких температурах и давлениях в присутствии металлических катализаторов. Обычно в качестве катализатора используют платину (плат-форминг) на оксиде алюминия высокой чистоты. На металлических центрах осуществляются реакции гидрогенизации — дегидрогенизации, а кислотные центры на оксиде алюминия необходимы для катализа процесса изомеризации. Реакции гидрокрекинга могут проходить на центрах общего типа. Платину обычно наносят на носитель в виде платинохлористоводородной кислоты, которая также образует кислотные центры на оксиде алюминия. Количество платины в катализаторе колеблется от 0,3 до 1,0% по массе, а процесс происходит при 500—525°С и давлении от 1,0-10 до 4,0-10 Па. Поверхность катализатора может легко дезактивироваться сернистыми соединениями и отложением кокса. Поэтому исходное сырье обессеривают до содержания серы <3 м. д. по массе и реакцию проводят в присутствии водорода, чтобы избежать отложения кокса. [c.323]

    Основная проблема заключается в том, как прикрепить субстрат к полимеру в химии ароматических углеводородов и алифатических соединений это делают с помощью функциональной группы (схемы 2 и 4), такой, как карбоновая кислота или амин, что может ограничивать выбор субстрата в альтернативном методе используют бесследную связку, такую, как силан, который может быть удален, например, при отщеплении водорода от места прикрепления, но этот метод не очень удобен. В этом смысле гетероциклы имеют преимущества Прикрепление к носителю может быть осуществлено с помощью методов [3], подобных описанным выше, а также с помощью кольцевого гетероатома, особенно атома азота в азолах [4] (схема 1) или гетероатома в случае образования гетероциклического кольца на конечной стадии процесса [5] — часто бывает легко проводить реакцию таким образом, чтобы конечная стадия циклизации (образование гетероцикла) сопровождалась одновременным отделением конечного продукта от носителя (схема 3). Атом серы представляет собой удобную связку при синтезе гетероциклов, поскольку он используется как уходящая группа (даже лучше после превращения в сульфоксид [6] или сульфон [7]), что способствует отделению от носителя (схема 5). Для полного обсуждения реакционной способности гетероциклов, использованных в приведенных примерах, следует обращаться к предьщущим главам. [c.673]

    Катализаторы типа молибдата кобальта применяют для удаления ацетиленовых соединений из газов пиролиза — обычно после выделения ароматических углеводородов и кислотных газов. Промышленный процесс чаще всего проводят при следующих условиях давление 5,2—15,7 ат и выше, температура 177—316° С, объемная скорость 500—1000 ч . Для повышения избирательности гидрирования ацетиленовых углеводородов и снижения скорости образования полимерных отложений во время реакции к поступающему газу добавляют водяной пар. По мере образования полимерных отложений активность катализатора постепенно снижается и, в конце концов, необходимо его регенерировать. Снижение активности можно компенсировать, прогрессивно повышая температуру процесса. Катализатор в известной мере отравляется небольшими количествами сернистых соединений, содерн ащимися в газе, но вредное влияние серы также можно устранить повышением температуры процесса. Загрязненный катализатор регенерируют (обычно после 4—6 недель работы) обработкой водяным паром или смесью водяного пара с воздухом и последующим восстановлением водородом прп 400—455° С [32]. Содержание ацетиленовых углеводородов удается снизить с 1—2% до менее 0,001% при крайне незначительной потере олефинов. [c.338]

    Легко соединяясь с кислородом, серой или хлором, а также — с магний-комплексами окись углерода не образует устойчивых соединений с галоидовородными кислотами. Однако, при взаимодействии хлористого водорода с окисью углерода все же происходит обычное для с присоединение НС1 и образование непрочного хлористого формила Н-С0-С1, который в присутствии хлористой меди и хлористого алюминия вступает в реакцию с ароматическими углеводородами, образуя альдегиды (метод Гаттермана-Коха). Эта реакция идет также и при замене окиси углерода пентакарбонилом, железа [c.52]


Смотреть страницы где упоминается термин Сера соединения, реакция с ароматическими углеводородами: [c.110]    [c.621]    [c.235]    [c.17]    [c.225]    [c.164]    [c.124]    [c.231]    [c.164]    [c.295]    [c.221]    [c.366]    [c.46]    [c.55]    [c.584]    [c.324]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.16 , c.163 , c.649 , c.668 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды, реакции

Серы соединения

Серы соединения реакции



© 2025 chem21.info Реклама на сайте