Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление олова

    Олово имеет три кристаллические модификации. Как их можно получить (механическое разделение, обработка различными реактивами, изменение температуры и давления и т. п.)  [c.56]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]


    На основе гипотезы о нормальном законе распределения элементарных измерений сконструирована целевая функция для обработки экспериментальных тензиметрических данных.Преимущество предложенного метода перед обычно используемым методом обработки по линеаризованной модели проиллюстрировано с помощью математического экспериментирования, а также на примере обработки данных по давлению насыщенного пара тетраиодида олова. [c.191]

    Механизм реакции раскрывают также данные, полученные при дегидрировании циклогексана под атмосферным давлением на алюмоплатиновых катализаторах, модифицированных оловом [26, 27]. При введении в алюмоплатиновый катализатор от 2,2 до 4,2% (по массе) олова значительно снижается скорость образования бензола. Продукты реакции, наряду с бензолом, содержат циклогексен и крайне незначительные количества циклогексадиена. По-видимому, как и при отравлении алюмоплатинового катализатора серой, под влиянием олова изменяются относительные скорости отдельных стадий реакции, что позволяет выявить стадийный механизм реакции дегидрирования циклогексана  [c.14]

    Sn " , которые, как известно, увеличивают водородное перенапряжение, замедляют таким образом коррозию железа в кислотах и способствуют восстановлению органических веществ на железном катоде. Ионы Sn постоянно образуются на поверхности железа при коррозии оловянного покрытия, однако после растворения слоя олова их концентрация падает. Возможно также, что разность потенциалов пары железо—олово благоприятствует адсорбции и восстановлению на катоде органических деполяризаторов, в то время как при меньшей разности потенциалов эти процессы не протекают. Существенным недостатком консервной тары является так называемое водородное вспучивание, которое связано со значительным возрастанием давления водорода в банке. При этом допустимость использования консервов становится сомнительной, так как накопление газов в банке происходит и при разложении продуктов под действием бактерий. [c.240]

    При нагревании кислого раствора хлорного олова с железной проволокой давление внутри колбы, вследствие обильного выделения водорода и расширения воздуха, увеличивается при этом избыток газа выходит наружу через продольный разрез в резиновой трубке. Однако при уменьшении давления внутри колбы наружный воздух не может попасть в нее, так как, вследствие эластичности резины, стенки трубки в месте разреза плотно прижимаются одна к другой и обеспечивают достаточную герметичность. [c.459]


    Выше указывалось, что обычная коагуляция в системах с твердой дисперсионной средой невозможна из-за огромной вязкости среды, препятствующей столкновению частиц между собой. Однако все же некоторое укрупнение частиц в таких системах возможно за счет изотермической перегонки вещества дисперсной фазы. Такое укрупнение частиц наблюдается, например, при длительном нагревании рубинового стекла прй температуре, когда давление пара металла уже достаточно высоко. При очень высоких температурах, когда происходит плавление дисперсионной среды, в подобных системах может наблюдаться и истинная коагуляция. При этом, если среда прозрачна, меняется и цвет системы. Например, при высокой температуре красный цвет рубинового стекла переходит в фиолетовый, а затем в синий вследствие агрегации частиц. Интересно, что двуокись олова, присутствующая в стекле, оказывает защитное действие и препятствует образованию агрегатов. [c.397]

    На практике в качестве промежуточных соединений в рассматриваемом галогенидном методе используют летучие галоге-ниды, под которыми условно подразумевают галогениды, имеющие давление насыщенного пара при 500 К более 10 Па, и для которых разработаны достаточно эффективные методы очистки. Из рассмотрения свойств галогенидов элементов периодической системы следует, что возможности галогенидного метода достаточно высоки (рис. 1). Действительно, как видно из рис. 1, летучие галогениды имеют более чем 20 элементов, в то время как галогенидный метод используется для глубокой очистки лишь некоторых из них (бор, галлий, олово, мышьяк, сурьма, висмут, молибден, вольфрам). Расширению возможностей галогенидного метода может способствовать и более широкое использование реакций термораспада летучих галогенидов (иодидов). Однако следует иметь в виду, что при повышенных температурах, обычно характерных для процесса термораспада, возрастает веро- [c.12]

    Теплотами фазовых превращений называют тепловые эффекты полиморфных переходов, плавления, испарения и сублимации. Полиморфные переходы, т. е. процессы превращения одних кристаллических форм вещества в другие в последовательности возрастания температуры могут быть двух типов экзотермические (моно-тропные)—необратимые, односторонне осуществимые, и эндотермические (энантиотропные)—обратимые, двусторонне осуществимые. Примерами полиморфизма могут служить переходы серого олова в белое или моноклинной серы в ромбическую. Процессы плавления, сублимации и испарения во всех случаях являются эндотермическими (в направлении возрастания температуры). С повышением температуры теплота парообразования любого вещества уменьшается и при критической температуре обращается в нуль. Фазовые превращения при условии постоянства давления осуществляются при строго определенной температуре. [c.22]

    По способности проводить электрический ток вещества делятся на проводники, полупроводники и изоляторы (диэлектрики). Такое деление довольно условно. Нет веществ, абсолютно не способных проводить электрический ток, и иногда трудно отнести вещество к тому или иному классу. Электропроводимость зависит от температуры, давления, чистоты вещества (содержание примесей), кристаллической структуры (ср., например, алмаз и графит, белое и серое олово), характера химических связей и других факторов. [c.179]

    Обратимое превращение двух полиморфных модификаций друг в друга называется энантиотропным. Энантиотропное превращение совершается при определенном давлении и температуре. Для энантиотропного превращения ДС° = 0. Если полиморфное превращение необратимо и одна из модификаций вещества во всем интервале температур, начиная от абсолютного нуля, термодинамически неустойчива, то такое превращение называют монотропным. Превращение белого олова в серое — пример энантиотропного превращения, а алмаза в графит — монотропного перехода. [c.223]

    Резкое отличие в получении алмаза и p-BN относится к выбору катализаторов и, по-видимому, к механизму превращения а-ВЫ в р-ВЫ. Естественно, что с химической точки зрения нитрид бора гораздо более сложное вещество (соединение двух элементов), чем графит или алмаз. Поэтому для нитрида бора следует ожидать гораздо большего разнообразия химических реакций при взаимодействии его с какими-либо веществами. Каталитический синтез р-ВЫ и до настоящего времени служит предметом тщательных исследований, и здесь проблема много сложней, чем при синтезе алмаза. Далеко не полный список веществ-активаторов синтеза кубического нитрида бора включает следующие соединения нитриды, гидриды, амиды щелочных и щелочноземельных металлов, сурьма, олово, вода, мочевина. Поэтому взгляды на механизм каталитического превращения весьма различны. Предполагается, например, образование комплексов между катализатором и нитридом бора, которые имеют относительно низкую температуру плавления. Один из таких комплексов ЫзЫ-ВЫ выделен из реакционной шихты и хорошо изучен. В полученном расплаве растворяется а-ВЫ и, распадаясь на молекулярные фрагменты, превращается в р-ВЫ, так как давления и температуры процесса соответствуют термодинамической устойчивости последнего. [c.146]


    Зависимость температуры плавления олова от давления (н/м ) описывается выражением [c.133]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле вещества, например кислород О2 и озон Оз, или различной кристаллической структурой образующихся модификаций, например олово серое и белое. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. Полиморфные модификации могут иметь не только простые вещества, но и соединения. Например, для 81С известно более сорока модификаций. Для обозначения аллотропных и полиморфных модификаций используют греческие буквы а, р, 7 и т. д., где а — самая низкотемпературная модификация. При нагревании до определенной температуры происходит переход к следующей модификации, которая обычно имеет менее плотную упаковку. [c.245]

Рис. Х-75. Диаграмма состояния олова прн высоких давлениях (тыс. ат). Рис. Х-75. <a href="/info/1022489">Диаграмма состояния олова</a> прн высоких давлениях (тыс. ат).
    В структурной химии роль естественных единиц играют изолированные атомы, по вытекающий отсюда способ выбора нуля отсчета, так же как и предыдущий, неудобен для экспериментальной термохимии. Поэтому по договоренности, принятой в 1931 г., при термохимических расчетах для каждого химического элемента в качестве исходного состояния, энергия которого условно принимается за нулевую, выбирается состояние простого вещества, устойчивого при 25°С и давлении в 1 атм. Например, это будет Нг (г), Ог (г), С (графит), S (ромб) и т. п. Правда, имеется несколько исключений. Например, за стандартное состояние для фосфора принят Р (черный), а для олова — Sn (серое). В термохимических таблицах в качестве основного справочного материала приводят молярные стандартные теплоты образования из простых веществ. Их обозначают соответственно Aft/° или Например, [c.33]

    Некоторые металлы (железо, олово, титан, кобальт и др.) обладают свойством полиморфизма. Они могут существовать в нескольких кристаллических формах, именуемых модификациями, каждая из которых стабильна в определенной области температур и давлений. Для чистого железа при атмосферном давлении известны три модификации  [c.168]

    Таким образом, в зависимости от характера заполнения энергетических зон кристалла электронами атомная решетка может принадлежать металлам, полуметаллам, полупроводникам или диэлектрикам. Мы видим также, что принадлежность к тому или иному классу веществ определяется не только строением атома, но и кристаллической структурой вещества. Ярким примером может служить олово, существующее в двух аллотропных модификациях серое со структурой алмаза — полупроводник и белое с тетрагональной кристаллической решеткой — металл. Точно так же воздействие внешних условий может оказать существенное влияние например неметалл фосфор при давлениях выше 40 тыс. атмосфер становится металлом. [c.138]

    Скорости роста. Скорости роста усов (исключая настоящие усы) при атмосферном давлении обычно имеют величину от 10 до 10 см сек. Так, усы ртути (метод В) растут со скоростью 1,4 X X 10 см сек, усы меди (метод 3) — 2 10 см сек, а усы железа (метод 3) — 2,5 10 см сек. Усы давления олова (метод Б) имеют скорость роста 5 10 см сек, тогда как настоящие усы при атмосферном давлении растут со скоростью 10 см сек, а иногда и гораздо медленее. [c.291]

    Метаморфические породы возникают в результате качественного изменения магматических и осадочных пород под воздействие VI высоких давлений и температур. Так, глины по мере погружен и I на глубину уплотняются и превращаются в глинистые сланцы, а кварцевые пески и песчаники — в кварциты. Известняки превращаются в мраморы. В метаморфических породах содержатся многк е ценные полезные ископаемые — железо, медь, свинец, цинк, золото, олово, вольфрам и др. [c.45]

    Жидкофазпое хлорирование углеводородов проводится под давлением. При этом в качестве переносчиков хлора могут использоваться хлориды фосфора, сурьмы, железа, олова и некоторых других элементов. Для тех же целей годны тетраэтилсвинец, диазометан и другие соединения [135]. В качестве гетерогенных катализаторов используют кизельгур, пемзу, активированный уголь и окись алюминия. Указанные вещества применяют или в чистом виде или пропитывают солями различных металлов. Часто для указанных целей применяют соли меди. [c.119]

    При лужении на поверхность вкладышей наносится тонкий слой оловянного сплава. Для баббита Б83 используется чистое олово, для остальных марок оловянистых баббитов наносится слой третника или припой ПОСС-46 (3—4% олова, 5—6% сурьмы, остальное — свинец). Заливку подшипников баббитом можно проводить вручную, центробежным способом и под давлением. [c.163]

    Незначительные изменения давления практически не влияют на состояние системы, поэтому, применяя правило фаз и определяя условную ва-риантность системы, можно пользоваться соотношением Сусл = К—Ф + 1. Так, жидкий расплав (одна фаза) является системой условно двухвариантной (Сусл = 2). Состав расплава и его температуру можно изменять независимо (в соответствующих пределах). Пусть сплав, содержащий 17 вес.% (10 атомн.%) свинца, находится первоначально при температуре более высокой, чем температура плавления олова, например в состоянии, изображаемом точкой А. Охлаждение его показано на нашей диаграмме вертикальной прямой АВ, причем при температуре 232°С в состоянии расплава не произойдет каких-либо изменений, и лишь когда температура понизится до 208° С, из жидкого расплава начнут выделяться кристаллы олова с небольшим (около 2%) содержанием растворенного в нем свинца. Система становится двухфазной и, следовательно, условно одновариантной (Су(.,л=1). При дальнейшем охлаждении будет продолжаться выделение твердого раствора р, вследствие чего остающийся жидкий расплав становится богаче свинцом, и по мере повышения его процентного содержания температура выделения твердого раствора понижается. Состояния двухфазной системы представляются точками прямой ВС,, а состояния жидкого расплава — соответствующими точками кривой ВЭ, как показано стрелками. Процесс будет протекать, пока температура не понизится до эвтектической температуры, при которой начнут выделяться и кристаллы свинца, содержащие 19,5% растворенного в них олова. Система станет таким образом трехфазной и, следовательно, условно безвариантной (С усл = 0). Температура будет оставаться постоянной, пока не отвердеет весь расплав. Таким образом, процесс отвердевания сплава происходит не при одной температуре, а в некотором температурном интервале — от температуры начала кристаллизации до эвтектической. Для сплавов любого состава в этой системе эвтектическая температура (183,3° С) является температурой, при которой происходит окончательное отвердевание расплава. В диаграмме рис. 117 линия солидуса в центральной части диаграммы представляется изотермой 183,3° С, а в обеих областях более разбавленных растворов — кривыми, соединяющими эту изотерму с точками, отвечающими температурам плавления чистых компонентов. Линия ВЭ, изображающая изменение состава жидкой фазы в процессе кристаллизации, носит название пути кристаллизации. [c.341]

    Первая стадия этого процесса — синтез фталонитрилов — осуществляется при атмосферном давлении в интервале температур 350—480 С при четырехсемикратном избытке аммиака и кислорода. В качестве катализаторов используют окислы металлов переменной валентности, преимущественно на основе пятиокиси ванадия. Применение смеси окислов позволяет повысить активность и несколько улучшить селективность катализаторов. Наиболее часто предлагают использовать смеси окислов ванадия, олова и титана, ванадия и хрома, ванадия и молибдена рекомендуются также смеси окислов ванадия, титана, молибдена и висмута. Катализаторы могут применяться в виде сплавов, совместно осажден ных окислов или наноситься на окись алюминия, карборунд, силикагель, алюмосиликат и др. [c.286]

    Азотистые основания очищались по методике [16], акридин — перекристаллизацией из этилового спирта, затем возгонкой, индол — возгонкой, карбазол — хроматографической очисткой на окиси алюминия и возгонкой. Тетрахлориды титана и олова марки безводные также подвергались очистке в токе инертного газа. Были приготовлены 0,1- и 0,01-молярные растворы азоторганических соединений в декане и в очищенном дизельном топливе. Тетрахлориды титана и олова концентрации I и 0,1-молярные были-приготовлены в гептане. Гептан, используемый в Качестве растворителя солей металлов, подвергался очигтке 1-молярным раствором четыреххлористого титана, затем перегонкой над гидроокисью калия. Чистота растворителей контролировалась УФ-спектрами. Исследование проводили в боксе в атмосфере очищенного от кислорода и влаги аргона при комнатной температуре и атмосферном давлении. 100 мл азотистых соединений конЦейТраций 0,1- или  [c.117]

    Этиленциангидрин кипит при 221°. Он является важным промежуточным продуктом в производстве мономеров, способных к полимеризации. Дегидратация этиленциангидрина приводит к получению акрилонитрила СН2=СНСМ с выходом 80—90%. Реакцию осуществляют либо в паровой фазе при 300° над катализаторами дегидратации (активная окись алюминия), либо в жидкой фазе при кипении под атмосферным давлением в присутствии разнообразных катализаторов (металлическое олово, углекислый магний или сульфаминовая кислота)  [c.368]

    Деструктивному гидрированию при нагревании под давлением можно подвергать самые разнообразные вещества торф, полиозы, лигнин, смолы и т. д. В зависимости от характера исходного сырья, получаются различные продукты. Так, из крахмала или целлюлозы образуются глицерин, гликоли, спирты и др. Гидрирование лигнина над меднохромитным катализатором, содержащим немного никеля, при 300—335° или над сульфидом олова с добавкой йодоформа при 400 приводит к превращению лигнина на 75% в сложную смесь органических соединений, содержащую, кроме газа и воды, углеводороды, метанол, кетоны, циклические спирты, фенолы. Последние представляют наибольший интерес. Таким путем можно получать труднодоступные фенолы метил-, этил- и пропилметоксибензолы, метил-, этил- и пропилдиоксибензолы и др. [c.419]

    Исследована структура фуллеритовых и металл-фуллереновых плёнок с разными массовыми долями компонентов. Плёнки осаждались в вакууме при остаточном давлении воздуха не более 10" Па на подложки из стекла, кремния и Na I. Для получения металл-фуллереновых плёнок использовались два испарителя (отдельно для металла и фуллерена См)- В качестве металлов были выбраны медь, олово и алюминий. Технологическими параметрами являлись 1) температура подложки 2) температура испарителя фуллеренов 3) температура испарителя металла (для металл-фуллереновых плёнок) 4) расстояние между подложкой и испарителем фуллеренов 5) расстояние между подложкой и испар1ггелем металла (для металл-фуллереновых плёнок). [c.209]

    Смолы и осадки, образующиеся при окислении прямогонных реактивных и дизельных топлив, характеризуются высоким содержанием кислорода 45-50, серы 7-9, азота 0,5-2,0, зольных элементов (металлов) 7-9%. Среди зольных элементов обычно преобладают медь 1-3, цинк - до 1,0, кальций -до 1,0, железо, алюминий, олове и др. до 0,1%. Эти данные подтверждают активное участие в термохимических превращениях в топливах гетероатомных соединений, каталитическое н.ч. " кке металлов (медь, бронза) и химическое взаимодействие продуктов окисления с металлами. Зависимости осадкообразования в реактивных топливах от темперзт) . приведены на рис. 8. Снижение массы осадка при температ1 р2. 130- 90 С связано с повышением давления насыщенных паров (уменьшением доступа кислорода к поверхности топлива) и увеличением растворимости продуктов окисления в топливе. [c.87]

    В зависимости от внешних условий (температура, давление) некоторые вещества способны существовать в нескольких состояниях с различной кристаллической структурой, называемых полиморфными модификациями. Так, графит и алмаз — полиморфные модификации углерода, серое и белое олово — модификации металлического олова, арагонит и кальцит — полиморфные модификации карбоната кальция СаСОз. [c.163]

    С увеличением давления скорость перехода р-5п—>-а-5п снижается, так как плотность серого олова (5,8 г/см ) меньше, чем у белого (7,3 г/см ). Сопоставление плотностей полиморфных модификаций олова и зтлерода показывает необычность свойств олова высокотемпературная модификация — белое олово — более плотная по сравнению с низкотемпературной модификацией у углерода, наоборот, плотность алмаза (3,5 г/см ) выше, чем у графита (2,3 г/см ). [c.223]

    Аналогичные явления наблюдались нри действии давления на реакции полимеризации элементорганических мономеров, содержащих вместо кремния другие элементы германий, олово, свинец. Исследования полимеризации веществ, находящихся в твердом состоянии, под давлением крайне немногочисленны. Методами рентгенографии, ИК спектроскопии и электронной спектроскопии исследовались продукты полимеризации аценафтилена, диаценафтилена, полиаценафтилена и пентацина и продукты взаимодействия (сополимеризации) теграцианэти-лена с периленом и нафталином. Опыты проводились при 25 и давлении в диапазоне от 0,4 до 35 ГПа. [c.202]

    Давление паров ртути над амальгамой, содержа-гцей 1,14 г олова и 100 г ртути, равно 754,1 мм рт. ст. Определить давление паров чистой ртути при той же температуре. [c.173]

    Схема электрохимической обработки металла представлена на рис. XVI.7. Обрабатываемое изделие служит анодом и растворяется цри прохождении тока. К отрицательному полюсу источника тока подключается катод (инструмент), обычно изготавливаемый из стали. На катоде выделяется водород. Между электродами сохраняется небольшой зазор, по мере растворения анода передвигают катод, чтобы сохранить малое расстояние между анодом и катодом. В зазор между электродами подается под давлением раствор электролита, в данной установке через полость в центре катода. Раствор электролита выносит из межэлектродного пространства продукты анодного растворения и газообразные продукты катодной реакции. Последние затем удаляются в атмосферу, а продукты растворения тем или иным способом выводятся из раствора электролита. В качестве растворов электролитов для обработки сталей и многих цветных металлов (никель, медь, кобальт, титан) и их сплавов применяется раствор Na l для обработки алюминия, цинка, олова и [c.422]

    Выше 550 °С германий станойит ся пластичным я поддается механической обработке. Плавление его сопровождается увеличением плотности (примерно На 5%) И алектропроводности (примерно в 15 раз). В жидком германии каждый его атом имеет 8 ближайших соседей с i (GeGe) = 2,70 А. По мере повышения давления температура плавления германия последовательно снижается и при 180 тыс. ат становится равной 347 °С. Электросопротивление чистого германия с повышением давления возрастает (но при 115 тыс. ат ои приобретает свойства металла). Напротив, у олова и свинца оно уменьшается (рис. Х-74). [c.626]

    Для обычной формы олова характерна структура, в которой каждый его атом имеет четырех соседей на расстояниях 3,02 А и еще двух на расстояниях 3,18 А. Для с в и н ц а — структура, в которой каждыц его атом имеет 12 равноотстоящих — на 3,50 А — соседей. В отличие от германия температуры плавления обоих этих металлов с повышением давления возрастают (у свинца при 30 тыс. ат приблизительно до 520 °С). Как видно из рис. Х-75, у олова при высоких давлениях возникает иная кристаллическая структура (объем которой составляет лишь 0,65 от обычной). Координаты тройной точки на рис. Х-75 лежат при 34 тыс. ат и 318 °С. [c.626]


Смотреть страницы где упоминается термин Давление олова: [c.196]    [c.182]    [c.515]    [c.242]    [c.319]    [c.54]    [c.54]    [c.327]    [c.156]    [c.133]    [c.133]    [c.373]    [c.258]    [c.356]    [c.626]   
Неорганические хлориды (1980) -- [ c.217 ]

Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Четыреххлористое олово давление паров



© 2025 chem21.info Реклама на сайте