Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий определение методом адсорбци

    В последнее время наибольшее признание, благодаря большой точности, применимости для сорбентов любой структуры и быстроте, получило определение поверхности катализаторов хроматографическим методом тепловой десорбции [50—52]. В работе [53] излагается методика определения поверхности на установке, устройство которой ясно из рис. IX.6. В качестве адсорбата авторы рекомендуют аргон ( =15,4 А ), газа-носителя — гелий. До проведения измерений навески катализаторов тренировались 40 мин в токе гелия при 200—250° С. После тренировки колонки (не прерывая тока газа) поочередно присоединяли к четырехходовым крана.м. Затем все колонки одновременно охлаждали жидким азотом. После 3—12 мин адсорбции отдельно для каждого образца проводилась десорбция при комнатной температуре, длившаяся 0,5—1 мин. Количество адсорбировавшегося газа определялось интегралом по адсорбционному пику. Расчет поверхности производился упрощенно по методу Те.м-кина [54], исходя из приближенных значений —Яг [см. уравнение (IX. 5)] и табулированной зависимости и/у при заданной температуре. Отклонения измерений от метода БЭТ составляли 4—6%. При расчете по двум точкам производительность установки составляла 2 образца в час. [c.400]


    Для определения содержания иммобилизованного белка можно в принципе использовать все известные методы, применяющиеся при работе с растворимыми белками. Однако из-за светорассеяния, характерного для гелей агарозы, быстрого оседания их частиц, а также адсорбции красителей на гелях в определение содержания белка внесены отдельные модификации. Могут быть рекомендованы спектрофотометрический и колориметрический методы. [c.84]

    Белки обычно избирательно адсорбируются на твердых фазах самых разных типов. Поэтому адсорбционные методы, особенно колоночная хроматография, широко используются для разделения белков. Применение таких методов часто позволяет получить наибольшую степень очистки белков, что в случае фе рментов означает максимально возможное повышение их удельной активности. Хотя колоночная хроматография служит идеальным способом оптимального разделения белков, не следует забывать и о методах адсорбции в объеме , так как это очень быстрые и потому весьма полезные методы, когда время имеет первостепенное значение (см. также гл. 7). Важнейшими адсорбентами белков являются ионообменники, фосфат кальция (в виде геля или в кристаллической форме) и разнообразные аффинные адсорбенты, созданные для ферментов определенных типов. Все эти вопросы вслед за общим введением в теорию адсорбционной хроматографии обсуждаются в данной главе применительно к выделению белков. [c.91]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Часть такого золя высушивалась в вакууме, в результате чего образовывался стекловидный прозрачный силикагель с удельной поверхностью всего лишь 45 м /г (определена по адсорбции азота). Другая часть разбавленного золя доводилась до значения pH 6 и подвергалась старению в течение 1 ч при 25°С, затем снова устанавливалось значение pH 2. Размер частиц золя возрастал при этом до 23 А, на что указывала величина удельной поверхности 1215 м /г. Когда такой золь высушивался тем же вакуумным методом, то полученный гель, внешне похожий на предыдущий, имел удельную поверхность, определенную по адсорбции азота, 626 м /г. [c.70]


    Адсорбционные опыты проводились стандартным объемным методом. Общая поверхность образцов определялась по физической адсорбции азота и рассчитывалась по БЭТ [9]. Относительная ошибка опытов не превышала 5%. Перед измерением каждой изотермы адсорбции образец катализатора тренировался в вакууме мм рт. ст. в течение 6 ч при температуре 470° С. Последовательность определения изотерм следующая после калибровки адсорбционной ампулы по гелию снималась изотерма адсорбции азота при —183° С, затем — водорода при 20° С и, наконец, окиси углерода при 20° С. В параллельных опытах последовательность адсорбционных измерений повторялась, только изотермы адсорбции окиси углерода определялись при —183° С с целью сравнения их величин хемосорбции с данными, полученными при 20° С. [c.178]

    Величины удельных поверхностей, определенные различными методами, для большинства изученных катализаторов и адсорбентов хорошо совпадают друг с другом. Исключение составляет алюмогель, для которого удельные поверхности, определенные по адсорбции фенола и дифенилсульфида 8 = = 230 и 210 лг /г), значительно меньше, чем по адсорбции уксусной кислоты и теплоте смачивания 8 = 340 и 385 м /г). Это, по-видимому, объясняется тем, что алюмо гель имел большое количество микропор, в которые ограничен доступ относительно крупным молекулам фенола и дифенилсульфида. Большинство изученных пористых тел относится к второму (алюмосиликаты, силикагель КСК-4) и четвертому (опоки) тинам сорбентов по классификации [c.200]

    Определение количества масла, адсорбированного порошком кремнезема, является косвенным методом определения пористости масло сначала заполняет микропоры геля, а затем макропоры, или пространство между частицами геля или агрегатами. Когда масло, например, льняное, смешивается с кремнеземом, то масса остается порошкообразной, пока не заполнятся микро- и макропоры, после чего перестает быть рыхлой и может формоваться [34]. Путем сравнения адсорбции масла при постоянной удельной поверхности может быть оценена плотность упаковки (дальнейшее обсуждение вопроса о. микро- и макропорах смотри в разделе 5,6 этой главы). [c.134]

    В настоящее время применяют ряд способов хроматографического определения гелия и аргона. Однако применяемые способы детектирования мало чувствительны для измерения малых концентраций и недостаточны для определения концентраций гелия и аргона в природных углеводородных газах с требуемой точностью 10 4 объем. %. В связи с этим гелий и аргон в природных газах определяют известным классическим методом, основанным на поглощении всех компонентов природных газов, кроме гелия, неона, аргона и других редких гааов металлическим кальцием при температуре 750—800° С с последующим разделением гелия — неона и аргона — криптона — ксенона адсорбцией на активированном угле при температуре жидкого азота. Этот анализ позволяет определять содержание гелия в природных углеводородных газах с точностью не менее 0,001% при объеме пробы 20 мл, [c.33]

    Метод зонального электрофореза имеет и некоторые недостатки. С его помощью нельзя произвести прямого определения скорости миграции белков. Между исследуемыми белками и поддерживающей средой возможны нежелательные взаимодействия, в результате которых часть белка адсорбируется в среде. Адсорбция происходит сильнее всего на бумаге, менее выражена на ацетат-целлю-лозной мембране и практически ничтожна в агаровом геле. [c.12]

    Метод, разработанный Грубером [88], основан на специфической необратимой адсорбции окнси углерода на поверхности металлов при комнатной температуре. Поверхность образца металла вначале освобождалась от хемосорбированной окиси нагреванием при 500° в токе водорода в течение 2 нас, после этого образец охлаждался до 25° в токе гелия и в поток гелия вводили импульс окиси углерода. Смесь газов дважды проходила через катарометр до и после слоя образца. На ленте самописца вычерчивались два пика площади под пиками соответствовали количеству СО до и после адсорбции. Из разности площадей двух пиков вычислялось количество адсорбированной СО. Грубер изучил влияние температуры, размера частиц, скорости потока и количества введенной СО на результаты исследования платиновых катализаторов, в которых площадь поверхности металла на поверхности окиси алюминия составляла 1% всей площади поверхности. Экспериментальная ошибка в определении поглощения СО составляла 5%. [c.386]

    В другом пикнометрическом методе определения удельной поверхности используется стандартная ячейка для быстрого измерения в обычных условиях объемов твердых веществ до 50 см с точностью 0,1 см . Так как адсорбция приводит к заниженным отсчетам, это удобный метод для измерения адсорбции и истинной скелетной плотности [195, 196]. Удельную поверхность можно определить, когда известны кт и истинный объем твердого тела. Скелетный объем можно определить по весу и скелетной плотности или прямым измерением по гелию, как описано ниже. [c.55]


    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]

    Карнаухов, Буянова и Гудкова [14] исследовали кислотные свойства алюмосиликатного катализатора и окиси алюминия по адсорбции аммиака. Определение количества адсорбированного аммиака производилось фронтальным методом. Газом-носителем служил гелий, а для определения времени выхода из колонки неадсорбируемого газа применялся аргон. Количество химически связанного аммиака определялось по разности адсорбированного и десорбированного аммиака. Определение кислотности производилось при температурах 200—260° С. [c.118]

    В настоящей работе описываются опыты по определению адсорбции газовых ионов на металлических и стеклянных поверхностях. Работа ограничивается почти исключительно ионами инертных газов—гелия, неона, аргона и криптона. Было проведено лишь небольшое количество опытов с азотом и кислородом. Применяемый метод состоит скорее в определении десорбционных свойств, чем адсорбционных после сорбции на поверхности мишени прп бомбардировке ее попами удаляли газ нагреванием. Система непрерывно откачивалась количество выделяющегося газа определяли интегрированием давления по времени. Преимущество этого метода но сравнению с методом работы в замкнутой системе состоит в том, что сорбция может быть проведена в простых и легко контролируемых условиях при постоянном и низком фоновом давлении. Однако такой метод не позволял провести точного сравнения количеств выделившегося [c.534]

    В табл. 56, взятой у Баркера[ "], иллюстрируется эффект активирования для различных углей. Баркер отмечает, что насыпной вес активированного угля ниже, чем первичного угля, в то время как истинная плотность активированного угля (определенная по методу с гелием) много выше плотности исходного угля. Это указывает иа увеличение объема пор в процессе активации. Однако из седьмого столбца видно, что объем пор увеличился в два раза, в то время как адсорбция четыреххлористого углерода при 24 и давлении насыщения, приведенная во втором столбце, увеличилась от 13 до 39 раз. Последний столбец таблицы показывает, что в исходных углях всего лишь 5—10% пор заполнено адсорбируемым веществом при давлении насыщения. Поскольку при насыщении адсорбируемое вещество заполняет все доступные моле-к "лам поры, очевидно, что большинство пор исходных [c.487]

    Наиболее точные данные о величине удельной поверхности тонкоиз-мельченных кристаллов получаются при определении методом адсорбции азота или гелия. Однако методы адсорбции очень трудоемки и сложны. В настоящее время разработан новый метод адсорбции—метод нестационарной-фильтрации разреженного газа через порошкообразное тело, который сравнительно прост, нетрудоемок и дает результаты, хорошо согласующиеся с ре-чvльтaтaми других методов (см. дополнительную литературу). Прим. перев. [c.310]

    Хорошо известно, что пористые массы силикагеля или окиси алюминия можно получить высушиванием гелей этих окислов, и они часто используются в качестве носителей для металлов. Металлы, на которые едкие щелочи не действуют, можно приготовить в виде очень пористых масс, сплавляя с алюминием и выщелачивая алюминий едкой щелочью. Огромное увеличение поверхности, достигаемое при этом, иллюстрируется приготовлением [33] никеля Ренея из сплава с удельной поверхностью 0,4 м /г. Путем экстраполяции кривой время выщелачивания — поверхность величина последней непосредственно после приготовления препарата найдена равной приблизительно 142 /г, по данным определения физической адсорбции газа по методу точки В , описанному в ближайшем разделе. Адсорбционные кривые, изображенные на рис. 26 с указанием точки В для каждой из них, показывают, что поверхность уменьшается при старении, по-видимому, в результате медленного роста кристалликов большего размера за счет более мелких. [c.165]

    Баррер и Гроув [4, 5] приняли, что полученные ими результаты характеризуют величину полной поверхности, включая поверхность несквозных капилляров. Поэтому в уравнении (И) член, выражающий кнудсеновский поток, может считаться мерой соударений молекул с наружной поверхностью частиц и, следовательно, может служить характеристикой внешней поверхности каждой частицы. В то же время член, соответствующий ламинарному потоку, мон ет считаться мерой шероховатости поверхности всех нор, которые доступны для молекул, используемых в качестве зонда. Краус и Росс [10] высказали некоторое сомнение относительно возможности измерения величины поверхности несквозных капилляров. Хотя при использовании азота в качестве газа, проникающего в поры, найденные значения величины поверхности превосходно совпадали с полученными по методу БЭТ (определения поверхности по методу БЭТ проводились с использованием азота при —196°), при определении величины тех же поверхностей с помощью гелия наблюдалось менее удовлетворительное совпадение. Величины поверхности, полученные при использовании гелия по методу неуста-новившегося потока, не менее чем на 20% превышают величины поверхности, полученные при адсорбции азота. Поэтому было сделано предположение, что гелий обладает способностью проникать в некоторые узкие капилляры, недоступные для азота. [c.165]

    Адсорбция газов углем при низких температурах стала применяться для определения гелия в газах еще в 20-х годах. При температуре жидкого воздуха или жидкого азота все газы, кроме гелия, поглощались углем. Откачав гелий, можно количественно определить его содержание в том газе, который был введен в баллончик с углем. Этот метод анализа на гелий и другие редкие газы разрабатывался первоначально Ш. Муре, А. Мак-Леннаном и др., а затем А. И. Лукашуком, В. Г. Хлопиным, В. А. Соколовым, К. П. Флоренским, В. Г. Фастовским и др. [c.223]

    На относительно ранней стадии процесса полимеризации имеется возможность получить характеристику полимерного кремнезема или же кремнеземных частиц, выраженную величиной удельной поверхности раздела кремнезем—вода. Это выполняется измерением адсорбции гидроксил-ионов в области pH 4— 9 (рН-метр фирмы Бекман с электродом тииа Е) в почти насыщенном солевом растворе, что позволяет измерять плотность поверхностного заряда кремнезема вплоть до ее макси.мальной величины. Этот метод был разработан Сирсо.м [85] для определения величины удельной поверхности коллоидных частиц и гелей. Было обнаружено, что при быстром титровании можно получать воспроизводимые результаты, но только на золях с размером частиц 3—4 нм при з дельной поверхности, приближающейся к 1000 м г. [c.278]

    Микропористость в коллоидных частицах в некоторых случаях может быть продемонстрирована методом малоугловой дифракции рентгеновских лучей. Когда определяемый таким методом размер частиц оказывается значительно меньшим, чем размер, подсчитанный из величины удельной поверхности, которая измерялась по адсорбции азота или наблюдалась по электронно-микроскопическим снимкам, то это означает, что подобные частицы составлены из еще меньших дискретных единичных образований, их упаковка так плотна и получающиеся при этом поры настолько малы, что молекулы азота в них не проникают [72]. Большая часть гелей состоит из первичных частиц, пронизанных порами, доступными молекулам азота. Однако Ледерер, Шурц и Янцон [73] сообщили, что, по-видимому, в полученных ими определенных разновидностях гелей кремнезема наблюдалась некоторая внутренняя поверхность, поскольку соответствующие высокие значения гидратации для таких гелей, равные 0,15—0,26 г НгО/г 5102, должны означать наличие высокой пористости. [c.446]

    При создании точных функциональных полимерных мембран с помощью радиационно-индуцированной полимеризации и контроля процесса прививки весьма полезно знать молекулярно-массовое распределение в прививке. В частности, длина и плотность полимерных цепей, привитых на микрофильтровальные мембраны из триацетатцеллюлозы, определяют проницаемость жидкости и адсорбцию молекул на созданной мембране. Например, молекулярно-массовое распределение метилметакрилата, привитого на триацетатцеллюлозу, было найдено с помощью кислотного гидролиза подложки. Молекулярно-массовое распределение определялось также методом гель-проникающей хроматографии [71]. Этот метод эффективен только если можно разрушить подложку. Например, при прививке натурального каучука обработка озоном является очень удобным процессом для разрушения сегментов каучука с оставлением цепи пластполимера нетронутыми [72]. Альтернативой является окисление надбензойной кислотой [73]. Осмометрию или измерение вязкости раствора можно использовать для определения молекулярной массы изолированной некаучуковой фракции. [c.221]

    Полная библиография по вышеприведенным методам вплоть до 1950 г. собрана в справочном руководстве [120]. Для исследовательских целей простейшим доступным методом обычно является влажное или сухое просеивание. Однако Ван ден Хул и Ликлема [121] рассмотрели важный вопрос о взаимозависимости размеров первичных частиц и размеров агрегатов, а также исследовали различные методы, особенно отрицательную адсорбцию. Этот метод может оказаться практичным для кремнеземных гелей, имеющих определенные размеры пор. [c.655]

    Вандерваальсовский диаметр молекулы воды примерно равен 3,5 А. Поэтому использование воды вместо гелия исключает из определяемого общего объема пор те поры, диаметр которых равен или меньше 3,5А, но больше 2А. Это может внести небольшую погрешность при исследовании адсорбции некоторых газов, например углекислоты или окиси углерода (вандерваальсовский диаметр равен 2,8 А). Для адсорбции подавляющего количества газов, паров или растворенных веществ поры таких размеров недоступны и поэтому их можно исключить из суммарной пористости активных углей. Следует подчеркнуть в этой связи, что расхождения в определении суммарного объема пор активных углей ртутно-гелиевым методом и методом измерения водопогло-щаемостп не превышают 5% [169]. [c.74]

    Исследование адсорбции двуокиси углерода на цеолитах газо-хроматографическим методом связано с трудностями. Во-первых, поскольку молекула Oj обладает большим квадрупольным моментом (3,2 GSE-единиц), она адсорбируется цеолитами специфически. Во-вторых, надо учитывать, что при газо-хроматографических определениях на цеолитах существенную роль играет внутренняя диффузия в узких каналах пористых кристаллов цеолитов. Кроме того, при адсорбции на цеолитах, особенно в случае специфически адсорбирующихся молекул, большое значение имеет степень обезвоживания цеолитов. В работе исследовалась адсорбция двуокиси углерода кристаллическими порошкообразными образцами цеолитов NaX и NaA. Исследования проводили на хроматографе Цвет-1 с катарометром. Колонку с образцом ежедневно перед опытом прогревали в токе осушенного гелия в течение 2—3 час нри 450— 500° С. [c.459]

    В книге изложены современные представления об адсорбции и хроматографии синтетических высокомолекулярных веществ рассмотрены теоретические и методические основы гель-проникающей и тонкослойной хроматографии полимеров показана возможность применения этих методов для разделения олигомеров и полимеров, определения молекулярно-массового распределения, композиционной однородности сополимеров и др. В книге рассматриваются различные сочетания хроматографических и других методов, которые могут бьггь использованы для анализа сложных полимерных систем. [c.2]

    Иетод основан на адсорбции азота твердым телом из потока смеси азот — гелий при температуре жидкого азота и последующей десорбции азота путем повышения температуры образца, что достигается удалением хладоагента. Количество азота, сорбированного при соответствуюш,ем парциальном давлении его в смеси, определялось по площади десорбционного пика, так как он симмет ричнее, чем пик адсорбции (рис. 33). Давление насыщенных паров азота Р равнялось 835 мм рт. ст. Для определения количества азота, приходящегося на монослойное покрытие адсорбента, проводилось несколько определений при различных парциальных давлениях азота. Расчет удельной поверхности производился графически методом БЭТ. Показано хорошее соответствие результатов, полученных вакуумным и хроматографическим методами. Принципиа.льная схема установки приведена на рис. 34. [c.105]

    Пирингер и Татару [60] предложили газо-хроматографический метод измерения металлической поверхности путем определения хемосорбции водорода на металлах. Количество адсорбированного или растворенного водорода определялось с помощью катарометра (по десорбции его) в токе инертного газа (азот, аргон, гелий). Пользуясь температурной зависимостью скорости десорбции водорода, эти авторы рассчитали теплоту десорбции, которая составляла для палладиевого катализатора 8,8 ккал/молъ. Это значение находилось в хорошем соответствии с данными калориметрического измерения при 30° С (8,7 ккал1молъ). Метод позволяет осуществлять адсорбцию водорода при различных температурах и парциальных давлениях водорода. Этим методом изучено изменение удельной металлической поверхности от степени спекания катали- [c.115]

    Пами были lUiMepeubi объемным методом пзотермы адсорбции гелия, неона и азота на ряде промышленных адсорбентов. Величина адсорбции при данном равновесном давлении определялась по разности объемов газа, измеряемой с точностью до 0,1 мл. Объем газового нростраиства ампулы с сорбентом измерялся путем наполнения ее гелием при высоких температурах. Относительная онтибка в определениях величины сорбции и равновесного давления составляла 2—5%. [c.130]

    Наиболее изящный метод определения величины частиц коллоидных систем заключается в использовании дифракции рентгеновских лучей, падающих под малыми углами, и в переносе на силикаты методов исследования целлюлозы . Эта теория несколько отличается при применении ее к системам с плотно упакованными частицами, имеющими лишь малые межчастичные свободные пространства, и к разбавленным коллоидным золям . Шал, Элкин и Росс показали, что такой метод можно применять к кремнезему или к смесям гелей кремнезема и глинозема для определения их пористости, что важно как мера адсорбции газа при низкой температуре (см. С. I, 7 и ниже) и для явлений капиллярной конденсации (см. А. III, 155 и ниже). Эта особая область применения методов дифракции рентгеновских лучей до сих пор интенсивно развивается, и в ней заложены перспективы для решения проблем, связанных с изучением силикатов, особенно систем вода — глина и подобных материалов, обладающих высокой активной поверхностью. Для практического применения метода малых углов прибор с двумя кристаллами, описанный Фаикухеном и Еллине-ком2, может оказаться особенно полезным он имеет две отражающие кальцитовые пластинки на пути для резко сфокусированного главного рентгеновского луча. Эти авторы изучали у-глинозем, нагретый при различных тем- [c.273]

    Хюттиг и Херман о использовали соотношение между давлением пара и диаметром капилляров, выведенное Кубелькой при изучении процесса дегидрации псевдоморфоз метакаолина (см. D. II, 14 и ниже). Таким образом, они объяснили явление адсорбции пара метанола на этих высоко дисперсных системах кремнезема и глинозема зависимостью от температуры во время предшествующей термической обработки. Кубелька и Прошка использовали аналогичный эффект переохлаждения расплавов в капиллярах геля кремнекислоты определенных диаметров и в качестве метода измерения поверхностного натяжения кристаллической фазы на ее границе с расплавом. На основе уравнения Томсона и снижения точки плавления благодаря влиянию капиллярного натяжения можно оценить степень переохлаждения, которая определяется тепловыми или, более точно, калориметрическими опытами. Величину osf можно вычислить, например, для воды и бензина. [c.289]

    Даже если вместо принятой выше величины использовать вандерваальсов радиус атома гелия (1,3 А), расчетная скелетная плотность (1,92 г/см ) меньше, чем определенная в опыте по вытеснению гелия при комнатной температуре (2,21 г/см ) [195]. Расхождения могут объясняться тем, что опыты проводились при температуре, недостаточно высокой для того, чтобы можно было пренебречь адсорбцией гелия. Пока не проделана дальнейшая работа по развитию этого метода, вероятно, самым значительным улучшением было бы исправление констант Генри приблизительно на 2 А нри их использовании для определения удельной поверхности. [c.55]


Смотреть страницы где упоминается термин Гелий определение методом адсорбци: [c.382]    [c.73]    [c.53]    [c.27]    [c.221]    [c.267]    [c.654]    [c.655]    [c.196]    [c.20]    [c.186]    [c.18]    [c.20]    [c.140]    [c.80]    [c.322]   
Газовый анализ (1955) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция гелия

Адсорбция определение

Адсорбция определение, методы



© 2025 chem21.info Реклама на сайте