Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция определение количества

    Если определение удельной поверхности осуществляется с помощью этих процессов, возможны два источника ошибок неполнота протекания реакции слева направо и недостаточная точность определения количества атомов металла, связывающих или Ня при монослойном покрытии. При комнатной температуре реакция (12) протекает на платине, возможно, и не полностью об этом уже кратко говорилось выше, однако возможная ошибка, по-видимому, не больше чем неопределенность стехиометрии хемосорбции О,,. На палладии реакции идут значительно легче, чем на платине другие благородные металлы по своей реакционной способности, вероятно, близки к платине. Стехиометрия хемосорбции Н., на очень маленьких частицах металла однозначно не установлена, но на больших частицах каждый поверхностный атом платины, вероятно, связывается с одним атомом Н (т. е. Хт=2). Однако, как было показано выше, стехиометрия хемосорбции кислорода довольно неопределенна, и поэтому, несмотря на потенциально возможное увеличение чувствительности (в три раза), метод титрования [c.314]


    Для приготовления катализатора к необходимому количеству окиси алюминия добавляют соль кальция, заливают определенным количеством раствора азотнокислого никеля и тщательно перемешивают. Затем катализаторную массу сушат при температуре 120—125° С в течение 6—8 ч. Высушенную массу измельчают до фракции 0,4—0,1 мм, добавляют 4—5 вес.% графита и таблетируют (диаметр таблеток 5, высота 4 мм). Удельная поверхность синтезированного нами катализатора составляет 49 м г, а активная поверхность по хемосорбции кислорода — 7,15 м г Ni. [c.21]

    Известен ряд попыток использовать хемосорбцию водорода для определения количества адсорбирующего компонента на поверхности снлава. Если поверхность сплава содержит атомы [c.439]

    Одним из наиболее интересных применений спектроскопии к исследованию адсорбции может быть определение количества адсорбированных молекул и поверхностных химических соединений. Такое определение должно основываться прежде всего на знании коэффициента поглощения и зависимости его от заполнения поверхности адсорбирующимися молекулами. Большой материал по величинам коэффициентов поглощения отдельных групп молекул в газообразном, жидком и адсорбированном состояниях представлен в книге Литтла [8]. Результаты проведенных исследований показывают, что для многих случаев хемосорбции и адсорбции,, например для адсорбции бутенов пористым стеклом [79], коэффициенты поглощения групп СН в адсорбированных молекулах меньше соответствующих значений для растворов в неполярных растворителях и уменьшаются по мере уменьшения покрытия поверхности. Коэффициенты же экстинкции кетонов, адсорбированных кальциевым монтмориллонитом, превышают аналогичные величины для их растворов в неполярном растворителе и быстро уменьшаются по мере увеличения заполнения поверхности [80, 81]. [c.58]

    Метод меченых молекул, напротив, давно уже сочетается с хроматографией, а радиохроматография сделала его особенно доступным и действенным. Метод меченых молекул получил значительно более широкое развитие в каталитических исследованиях. Сюда относятся исследования неоднородности поверхности [39], величины поверхности [40, 41], взаимодействия адсорбированных на поверхности катализатора веществ [42, 43], каталитической кинетики [44—46], включая определение стехиометрических чисел. Имеются также варианты применения метода изотопного разбавления для определения количества адсорбированных продуктов. В работе [47] определяли количества адсорбированных продуктов из смесей. На АШз адсорбированная смесь спирта и эфира, меченных радиоуглеродом, вытеснялась определенными количествами обычных спирта и эфира по удельной радиоактивности продуктов рассчитывались количества спирта и эфира на поверхности. Подобный метод в ином варианте применялся при исследовании хемосорбции изобутана на алюмосиликатных катализаторах в упомянутой работе [43], где было установлено три различных типа хемосорбции изобутана. [c.38]


    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]

    Согласно взглядам Волькенштейна, микродефекты имеют как биографическое, так и тепловое происхождение. Для создания дефектов последнего типа может потребоваться затрата определенного количества энергии. Хемосорбция представляет собой реакцию между хемосорбируемым атомом и микродефектом. Теплота хемосорбции равна алгебраической сумме теплот этих элементарных реакций и отрицательных теплот образования новых (тепловых) микродефектов, которые образуют новые адсорбционные участки. Эта концепция исходит из того, что поверхность по существу не является неоднородной, а наблюдаемая неоднородность создается в результате хемосорбционного процесса. Поскольку при этом расходуется энергия, теплота хемосорбции падает с заполнением. [c.126]

    Определение кислотности катализаторов. Для определения количества кислых мест на поверхности некоторых кислотных катализаторов по хемосорбции аммиака был использован фронтальный хроматографический метод. Физически адсорбирован- [c.118]

    Следует отметить, что в процессе дейтерообмена также может произойти дополнительная молекулярная адсорбция воды, а в некоторых случаях и ее хемосорбция. Однако можно показать (см. [2]), что учет дополнительных адсорбционных явлений, происходящих в процессе изотопного обмена, не влияет на вид окончательного выражения для определения количества групп ОН. Для простоты изложения такие дополнительные явления здесь не учитываются. [c.252]

    Нужные для калибровки газовых хроматографов газовые смеси с известным содержанием компонентов получают, вводя определенные количества искомых веществ в поток газа-носителя посредством шприца или крана-дозатора. Способ регистрации сигнала зависит от устройства регистрирующей системы. Хотя эта процедура кажется простой и надежной, однако при работе с малыми концентрациями или с веществами, склонными к хемосорбции, возникают осложнения. При вводе в газовый хроматограф проб с малыми концентрациями реакционноспособных веществ следует принять меры, чтобы эти концентрации соответствовали концентрациям стандартных смесей. [c.95]

    Иногда удельная хемосорбция оказывается неизвестной, а ее экспериментальное определение довольно сложно. В этом случае вместо расчета абсолютного значения поверхности компонентов сложных катализаторов ограничиваются оценкой их дисперсности, представляющей собой отношение количества хемосорбированных атомов газа к числу атомов металла в расчете на все его количество в исследованной навеске. [c.88]

    Для достижения высокой активности первостепенное значение имеют два фактора общая внутренняя поверхность катализатора и внешняя поверхность экструдата. Последний фактор указывает, что реакция протекает в диффузионной области. Чем меньше размер экструдата, тем выше его активность. Но при этом растет гидравлическое сопротивление слоя катализатора, а на повышение давления газа для преодоления этого сопротивления требуются дополнительные затраты. Поэтому нужно учитывать влияние размера и формы экструдата, а также найти компромисс между величинами внутренней и внешней поверхности. Внутренняя поверхность в основном регулируется за счет изменения количества добавляемого оксида кремния. Влияние количества оксида кремния на удельную поверхность катализаторов видно из табл. 1. Хотя общая поверхность катализатора постоянно растет с увеличением содержания 5102, поверхность металлического железа, измеренная по хемосорбции СО после восстановления катализатора, уменьшается, начиная с определенного содержания 5102. [c.172]


    Количество газа, адсорбируемого в результате физической адсорбции, много больше, чем при хемосорбции. Химическая адсорбция происходит только на определенных активных центрах, которые представляют собой незначительную часть поверхности адсорбента. Для физической адсорбции имеет значение только величина поверхности адсорбента, на хемосорбцию оказывает влияние физическое состояние поверхности и ее химический состав. [c.219]

    Следует отметить, что крутой подъем изотермы при малых равновесных концентрациях является следствием того, что последние количества адсорбтива десорбируются с поверхности адсорбента с большим трудом. Например, чтобы удалить следы газа, адсорбировавшегося на внутренней поверхности, некоторые приборы необходимо длительно вакуумировать, иногда даже при повышенной температуре. На идеальной изотерме физической адсорбции не наблюдается никаких резких перегибов, проявляющихся иногда на изотермах хемосорбции. Это указывает на то, что при физической адсорбции не образуется определенных соединений между адсорбентом и адсорбтивом. [c.37]

    Какие же вещества могут представлять практическую опасность отравления при их всасывании через неповрежденную кожу Прежде всего это вещества, обладающие определенной степенью токсичности. Причем, учитывая сравнительно небольшую скорость всасывания веществ через кожу в сравнении, скажем, со скоростью всасывания через легкие, они должны обладать способностью вызывать отравление в очень малых количествах, быть высокотоксичными. Скорость всасывания этих веществ через кожу нередко сравнивают со скоростью всасывания из пищеварительного тракта. Большое значение имеет свойство их растворяться в жирах и липоидах в сочетании с растворимостью в воде. Определенную роль играет консистенция самого вещества или формы, в которой оно встречается в производственных условиях. Вязкие, клейкие жидкости при прочих равных условиях представляют большую опасность, так как они легко пристают к коже и хорошо удерживаются на ней. Механизм фиксации веществ на коже обусловлен различными физическими и химическими процессами. Вероятно, важную роль играют силы адгезии, электростатическое притяжение, адсорбция на поверхностных структурах кожи. Следует учитывать также возможность химического взаимодействия вещества на поверхности кожи (хемосорбция, образование комплексных соединений и др.). [c.42]

    Общая поверхность катализатора является основной его характеристикой. Обычно она определяется по методу БЭТ (Брунауэр, Эммет, Теллер), в котором исследуется зависимость-количества газа, адсорбированного твердым веществом, от общего давления при постоянной температуре. Техника этого определения и методика анализа полученных данных разработаны весьма подробно. Для получения надежных результатов измерения следует проводить с газом, имеющим малые молекулы сферической формы. Газ должен быть удобен в обращении и не склонен к хемосорбции. Обычно используют азот измерения проводятся в диапазоне относительных давлений Р/Ро 0,05 до 0,.3 и, следовательно, при низких температурах с использованием жидкого азота в качестве хладоагента. [c.37]

    Возможен также и другой подход — можно рассматривать медленную адсорбцию как перетекание водорода на носитель, которое совершенно не вносит вклада в адсорбцию на металле. Следует отметить, что перетекание водорода — установленное явление. Оно наглядно проявляется при адсорбции водорода на катализаторах платина — углеродный носитель. Например, адсорбция при 620 К и 40—80 кПа ( 300—600 мм рт. ст.) дает суммарное количество атомов водорода (за вычетом адсорбции на носителе), превышающее общее количество атомов платины в образце в 3—10 раз [43]. Кроме того, платина, диспергированная на окиси вольфрама(VI), значительно увеличивает скорость восстановления окисла водородом из-за перетекания адсорбированного водорода [54]. Явление перетекания наблюдается также при адсорбции кислорода, так, в частности, перетеканием объясняется увеличение скорости окисления угля в присутствии дисперсной платины [55]. Однако поверхностная подвижность адсорбированного кислорода значительно ниже, чем адсорбированного водорода, и в целом перетеканием адсорбированного кислорода в условиях, используемых при определении удельной поверхности металла по хемосорбции кислорода, можно пренебречь. [c.310]

    Результаты определения удельной поверхности дисперсных родиевых [67] и иридиевых [68] катализаторов методом хемосорбции кислорода также являются ненадежными. Тем не менее в работе [69] приводятся данные, показывающие, что поглощение кислорода на платине при комнатной температуре в отличие от хемосорбции водорода может зависеть от количества дефектов на поверхности частиц данного размера. [c.314]

    В настоящее время ясно, что при монослойном покрытии хемосорбированным водородом дисперсной платины величина Хт равна двум во всем интервале размеров частиц, для которых могут быть выполнены независимые (например, рентгенографическим и электронно-микроскопическим методами) определения размера, т. е. вплоть до 1,0 нм при электронно-микроскопическом определении [44, 64, 65, 69, 90]. Этому же значению Хт соответствуют и хемосорбционные данные, полученные для массивной платины. Частица платины диаметром 1,0 нм содержит около 100 атомов, и вопрос заключается в том, обоснован ли выбор Хт=2 для более мелких частиц или кластеров атомов. Сравнение данных по хемосорбции водорода при комнатной температуре с результатами изотопного обмена хемосорбированного водорода с дейтерием [66] свидетельствует о том, что Хт 2 и для частиц, содержащих всего около 6 атомов. Однако этот вывод требует дополнительного подтверждения, прежде чем его можно будет считать окончательным имеется достаточное количество данных о том, что для очень небольших частиц Хт<2 (см., в частности, [91, 92]), и это не может не вызывать обоснованных сомнений. Проще всего допустить, что значение Хт<2 обусловлено взаимодействием водорода с каким-либо источником кислорода в системе или вкладом перетекания на носитель и что влияние этих факторов сказывается сильнее при самых низких концентрациях платины и высоких температурах [c.323]

    Юнг считал, что вся молекулярно адсорбированная вода на поверхности кремнезема адсорбируется физически и может быть удалена вакуумированием при 120°. Эта точка зрения не согласуется с приведенными выше данными для кремнеземов и других окислов. Юнг предполагал, что при нагревании выше 170° поверхностные гидроксильные группы взаимодействуют с выделением молекул воды. Этот тип поверхностной реакции уже бьш рассмотрен ранее при исследовании процесса дегидроксилирования. Юнг установил, что после вакуумирования при температурах выше 400° поверхность может быть регидроксилирована в парах воды. Напуск паров воды на обработанную таким способом поверхность приводил к хемосорбции определенного количества воды, необходимой для регидроксилирования поверхности. Было найдено, что изотерма физической адсорбции воды была идентична изотерме снятой первоначально на образце, вакуумированном при комнатной температуре. [c.320]

    Цель работы — получение образцов аминоорганосилохрома путем хемосорбции аминопропилтриэтоксисилана и определение количества аминогрупп на поверхности силохрома. [c.73]

    Использование в качестве спектрального зонда иона трифенилкарбония, как можно показать [82], позволяет выявить механизм А-1 и исключить А-2 и В из дальнейшего рассмотрения. Нужно отметить, что если предварительная адсорбция олефина является необходимой предпосылкой адсорбции парафина, то ионы карбония не могут образоваться из молекул парафинов в системе, полностью освобожденной от олефина или олефинообразующих примесей. Поскольку сам трифенилметан определенно не может быть предшественником олефина, остается только два возможных источника олефиновых примесей, которые следует учитывать а именно поверхность катализатора и используемые реагенты. Первый из этих источников не принимается в расчет, поскольку весьма маловероятно, чтобы либо сами олефины, либо ионы карбония, адсорбированные на поверхности, выдержали используемую предварительную тренировку исчерпывающим окислением при 500° и откачиванием. Кроме того, так как была использована цельнопаянная стеклянная система без смазки и так как единственным присутствующим реагентом был сам трифенилметан, любой такой олефин должен был бы образоваться из примесей в этом реагенте, который был подвергнут жесткой очистке, и, как показано, имел общий уровень примесей ниже предела обнаружения. Для того чтобы исключить механизм В из дальнейшего рассмотрения, необходимо только показать, что в любом данном опыте образовалось больше ионов карбония, чем могло бы получиться в расчете на максимальное возможное количество олефиновых примесей. В опыте, результаты которого представлены на рис. 32, 1,8-10 г тщательно очищенного трифенилметана было нанесено в вакууме на образец катализатора, предварительно полностью освобожденного от адсорбированных олефинов или ионов карбония окислением и откачкой при 500°. При комнатной температуре поглощение возрастало весьма медленно в течение 740 час, однако после первых 170 час не наблюдалось существенного изменения. Хемосорбция общего количества трифенилметана соответствовала бы максимальному заполнению 5-10 ионов трифенилкарбония на 1 см имеющейся поверхности. Использование этой величины в качестве верхнего предела хемосорбированного количества требовало бы, чтобы реагент содержал примесей порядка 50 мол.%. В отдельном опыте с применением десятикратного избытка реагента и определением хемосорбированного количества методом экстракции был установлен более низкий предел необходимого количества примесей (15%). Обе эти величины чрезмерно высоки для использованного реагента. [c.71]

    На графике зависимости спектральных данных от степени заполнения поверхности (см. рис. 9) особенно важно определить точку, в которой завершается образование хемосорбированного монослоя. Трудность экспериментального определения хемосорбированного монослоя не является исключительной особенностью метода инфракрасной спектроскопии. Практически при всех экспериментальных исследованиях хемосорбции определение заполненного монослоя является до некоторой степени произвольным. На рис. 9 начальные горизонтальные участки кривых являются результатом того, что монослой определяли как количество, хемосорбированное при 35° С, а не как количество, хемосорбнрованное при температуре опыта (200°С), [c.27]

    Удобно ввести величину б, обозначающую долю поверхности, покрытую адсорбатом. Принимается, что поверхность покрыта монослоем и 6 равно единице, когда каждый доступный участок занят. Число доступных участков па 1 см изменяется при переходе от одной кристаллографической плоскости к другой оно также зависит от размера частиц адсорбата. На грани (110) вольфрама имеется 1,4-10 участков н-а 1 см однако, поскольку поперечник атома цезия почти вдвое больше поперечника атома вольфрама, только один из каждых четырех участков доступен для атома цезия. Для атома адсорбата, обладающего тем же размером, что и атом вольфрама, все участки будут доступными. На грани (100) вольфрама имеется 1,0-10 участков на 1 см опять-таки вследствие большого размера атома цезия доступен только один участок из четырех. Из этих данных следует, что число адсорбированных атомов при 6 = 1,00 на грани (110) на 40% больше, чем на грани (100). Было бы логично определить М0Н0 СЛ0Й как число атомов, адсорбированных на 1 см при. 0= 1,00. При таком определении количество, адсорбированное на 1 см при монослое, будет зависеть от типа кристаллографической плоскости. Понятие о монослое введено в связи с тем, что некоторые свойства поверхности резко изменяются при достижении монослоя. Было бы весьма желатель ным, чтобы при употреблении термина монослой в любой научной работе ему давалось четкое определение. Иногда монослой определяется как наибольшее число атомоВ адсорбата, которые могут уместиться на 1 см поверхности независимо от природы адсорбента. Подобное определение моглО бы быть пригодно в случае физической адсорбции, при которой структура поверхности мало влияет на количество адсорбирующегося вещества однако оно не оправдано в случае хемосорбции, при которой структура поверхности адсорбента сильно влияет на его адсорбционные свойства. [c.161]

    Причини, по которым данное соединение является хорошим ингибитором для железа и плохим для цинка или наоборот, могут быть связаны также со специфическим электронным взаимодействием полярных групп с металлом (хемосорбцией). Последний фактор в определенных случаях более важен, чем стерический, определяющий возможности для плотнейшей упаковки адсорбированных молекул. Это можно проиллюстрировать очень значительным ингибирующим действием оксида углерода СО, растворенного в соляной кислоте, на коррозию в ней нержавеющей стали [36] (степень защиты 99,8%, в 6,3 М растворе НС1 при 25 °С). Об этом же свидетельствует защита железа, обеспечиваемая малым количеством иодида в разбавленных растворах Н2504 [35, 37, 38]. Как СО, так и иодид хемосорбируются на поверхности металла, препятствуя в основном протеканию анодной реакции [39]. Кеше [40] показал, что 10" т К1 значительно лучше ингибирует железо в 0,5 т растворе N32804 с pH = 1 (степень защиты 89 %), чем в растворе с pH = 2,5 (степень защиты 17 %). Это показывает, что адсорбция иодида в этом интервале pH зависит от значения pH [c.270]

    Можно сравнить полученный результат с чнс.пом центров хемосорбции хинолина, определенным экспериментально Милсом, Бедекером и Обладом [14] для катализатора, сходного с нримс-ненным нами, но содержащего 12,5% окиси алюминия. Хинолин является сильным ингибитором для реакции крекинга кумола, т. е. он прочно хемосорбируется на центрах, активных ио отношению к реакции крекинга. Кроме того, известно, что активцость катализатора в реакции крекинга кумола асимптотически приближается к нулю по мере увеличения количества хемосорбированного хинолина. Отсюда следует, что число центров адсорбции хинолина должно быть равным или большим, чем число центров крекинга кумола. Результаты определения числа центров адсорбции хинолина на 1 м приведены в табл. 7 как видно из [c.337]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    В условиях необратимой хемосорбции органических веществ на электродах можно применять метод, предложенный Н. А. Балашовой, Электрод помещают в электролит с радиоактивным органическим веществом, выдерживают в нем определенный промежуток времени для установлени,ч стационарного адсорбционного состояния, а затем извлекают и промывают раствором фона для удаленггп следов радиоактивного раствора с поверхности. Сравнивая радиоактивность подготовленного таким образом электрода с радиоактивностью эталона, определяют количество адсорбированного органического вещества. [c.29]

    Аналогичный подход к определению состава продукта хемосорбции метанола на гладком Р1-электроде, но в потенциостатических условиях поляризации был использован в работах В. С. Багоцкого, Ю. Б. Васильева и сотр. Количество отщепившегося водорода ан " определялось интегрированием /, -кри-вой, снятой после начала адсорбции СН3ОН при 0,4 В (при этих Ег хемосорбированные частицы окисляются медленно), а АСадс — анодным импульсом. Катодными импульсами находились ДС °н. Близость всех трех полученных величин в любой момент адсорбции позволила заключить о диссоциативной адсорбции согласно уравнению (3.44). [c.101]

    Наряду с рассмотренными выше силами в адсорбции большую роль могут играть и силы химического средства, под действием которых между молекулами адсорбата и поверхностью образуются химические связи. Такой процесс называется химической адсорбцией или хемосорбцией. Он аналогичен химической реакции и поэтому характеризуется высокой специфичностью (избирательностью), т. е. для определенного адсорбата количество хемосорбиро-ванного вещества очень чувствительно к химической природе адсорбента (хемосорбента). Например, оксид углерода СО удерживается на поверхности меди и платины сравнительно слабо, о чем можно судить по незначительному сдвигу частоты колебаний молекулы СО в инфракрасном спектре поглощения. В случае ни- [c.317]

    В предыдущих главах было показано, как физическая адсорб ция может быть использована для определения удельной поверх ности твердых тел. Речь идет о площади поверхности, доступно молекулам адсорбата. Эта площадь состоит как из площади внешней поверхности, так и из площади поверхности тех пор в которые могут проникать молекулы адсорбируемых веществ В отличие от физической адсорбции хемосорбцию можно исполь зовать для оценки площади той части поверхности, которая об ладает некоторыми особыми свойствами например, хемосорб цию можно применить для оценки площади поверхности металла нанесенного на инертную подложку катализатора, или для оцен ки количества и активности кислотных центров на поверхности окиси алюминия. [c.284]

    Поэтому метод определения удельной поверхности окислов по данным хемосорбции кислорода пока еще только разрабатывается. Особое внимание следует уделить интерпретации полученных результатов, если действительно существуют необходимые основные сведения для этих целей. Тем не менее этим методом удалось вычислить удельную поверхность окиси хрома в алюмохромовых катализаторах [27]. Образец сначала восстановили водородом, откачали при 500° и определили величину адсорбции кислорода при —195°. А после откачки образца при —78° вновь была определена изотерма адсорбции кислорода. Обе изотермы практически параллельны, и хемосорбированное количество рассчитывалось по разнице в величинах адсорбции при одних и тех же давлениях. Удельная поверхность окиси хрома была вычислена на основании предположения, что кислород должен хемосорбироваться на недеформированной грани (001) а-окиси хрома. Для катализаторов с небольшим содержанием окиси хрома (приблизительно до 1%) вычисленная таким образом площадь поверхности окиси хрома оказалась равной значению, рассчитанному из допущения, что окись хрома покрывает окись алюминия в виде монослоя с параметрами, характерными для недеформированной грани (001) а-окиси хрома (табл. 56). Для катализаторов с большим содержанием окиси хрома площадь поверхности, вычисленная по величинам хемосорбции кислорода, оказалась меньше площади, занимаемой монослоем окиси хрома. В результате был сделан вывод, что в этих случаях окись хрома скапливается в виде микрокристалликов. [c.295]

    В связи с широким применением азота для определения удельной поверхности по данным физической адсорбции (см. раздел 2.8) весьма важно выяснить, возможна ли хемосорбция этого газа. Как оказалось, хемосорбция азота происходит, вероятно, на всех металлах. Количественные исследования Бика [8] показали, что и никель и железо способны хемосорбировать азот даже при —183° [59]. Изучая адсорбцию азота на сконденсированных пленках этих двух металлов, Бик нашел, что изотермы адсорбции практически горизонтальны при давлениях от Ю-" до 10 мм рт. ст., что указывает на прочную хемосорбцию. Теплота адсорбции не слишком велика, для железа она составляет примерно 10 ккал-моль при малых заполнениях и примерно 5 ккал-моль- при высоких заполнениях. Количество молекул азота, поглощенных при насыщении, т, е. по завершении образования монослоя, было равно количеству поглощенных подобных образом молекул водорода. Так как молекула водорода занимает два центра на поверхности металла, было принято, что это справедливо и для азота, хотя диссоциация молекулы азота на атомы в этих условиях едва ли возможна. При комнатной температуре быстрая хемосорбция практически незаметна происходит медленная активированная хемосорбция азота с весьма высокими теплотами порядка 70—40 ккал мoлъ- вначале и 16 ккал-моль- при высоких заполнениях. При наиболее высоких изученных давлениях активированная хемосорбция охватывает около 20% всех центров на поверхности при комнатной температуре или почти 50%—при 100°. В этом случае, вероятно, возможна диссоциация молекулы азота на атомы. [c.302]

    В работе Уэбба [53] для определения кислотности поверхности окиси алюминия была применена хемосорбция аммиака при 175° и давлении 10 мм рт. ст. в течение 30 мин. Затем образец откачивали 2 час при 175° через ловушку с жидким азотом, не удаленное в этих условиях с поверхности окиси алюминия количество аммиака считали мерой кислотности. Для выяснения характера кислотных центров температуру откачки образца поднимали каждый раз на 25° длительность откачки при каждой температуре составляла 30 мин. На кривой 1 рис. 144 нанесены [c.306]

    За последние годы сделано несколько попыток применить проточные методы для определения хемосорбции и, следовательно, для определения удельной поверхности металлов в многокомпонентных катализаторах. Хьюс, Харстен и Сиг [87] первыми применили для этой цели окись углерода. Количество окиси углерода, адсорбированное из смеси с гелием, было определено посредством фронтального анализа, при этом концентрация окиси углерода измерялась радиохимически с применением С0. [c.386]

    Уравнение Лэнгмюра в отсутствие хемосорбции удовлетворит1зльно описывает завйсимость величины адсорбции от концентрации многих веществ в жидкой фазе. Оно показывает также, что существует предел адсорбции, увеличение концентрации раствора выше определенного значения не ведет к увеличению количества адсорбированного вещества. [c.421]

    Наиболее известным примером использования селективной хемосорбции для определения удельной поверхности неметаллического компонента является измерение адсорбции двуокиси углерода на окиси калия в промотированных железных катализаторах синтеза а.ммиака [117]. В этих катализаторах содержится, например, до 1,6% К2О в качестве промотора и - 10% AI2O3 в качестве стабилизатора. Адсорбцию проводят при 195 К, повышая давление двуокиси углерода до 80 кПа ( 600 мм рт. ст.). В указанных условиях происходит и физическая и химическая адсорбция газа количество последнего принимают равным тому количеству адсорбата, которое не откачивается при 273 К- Результаты более поздних исследований [118, 119] показывают, что первоначальное предположение, согласно которому двуокись углерода хемосорбируется только на поверхности окиси калия, следует тщательно проверить, поскольку известно, что при 195 К двуокись углерода быстро и прочно адсорбируется на чистом железе. Даже допуская, что при монослойном покрытии железа двуокисью углерода Хт 10, нельзя не прийти к выводу, что по крайней мере некоторая часть хемо-сорбированной двуокиси углерода, отнесенная к адсорбции на окиси калия, должна протекать на железе. Возможно, что хемосорбция двуокиси углерода на поверхности железа снижается до миниму.ма в результате присутствия адсорбированного (остаточного) кислорода, и это может объяснять, почему дисперсные железные катализаторы без окиси калия не хемосорбируют значительного количества двуокиси углерода. [c.331]

    Величина поглощения газа даже при самых благоприятных условиях существенно меняется в зависимости от химической природы окисла и температуры и обычно включает активированную адсорбцию. Например, окись меди (И) [120] и окись кобальта (И) [121] легко адсорбируют сверхмонослойиое количество кислорода при комнатной температуре, в то время как окись никеля в подобных условиях хемосорбирует обычно только 10—20% монослоя, что связано, по-видимому, с трудностью удаления с поверхности окиси никеля предварительно адсорбированного кислорода. Степень покрытия поверхности разных окислов га-типа водородо.м или окисью углерода также существенно различается. В целом хемосорбция таких газов, как кислород, водород или окись углерода, открывает довольно широкие возможности определения удельной поверхности окислов. В то же время индивидуальные свойства окислов настолько различны, что, прежде чем переходить к количественным измерениям, необходимо иметь детальные данные по хемосорбцион-ным свойства.м отдельных компонентов, [c.332]


Смотреть страницы где упоминается термин Хемосорбция определение количества: [c.137]    [c.133]    [c.79]    [c.166]    [c.542]    [c.334]    [c.101]    [c.104]    [c.266]    [c.304]    [c.327]    [c.329]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция



© 2025 chem21.info Реклама на сайте