Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая структура и прочност

    Качество смазок зависит от свойств и концентрации загустителя, а также от свойств загущаемого масла его вязкости и химического состава. Прочность коллоидной структуры смазок улучшается стабилизаторами, которыми служат вода, щелочи, высоко- и [c.375]

    Во всех случаях с увеличением молекулярной массы прочность полимеров возрастает. Кроме сил межмолекулярного взаимодействия на свойства полимеров существенное влияние оказывают межмолекулярные зацепления, которые также соединяют друг с другом отдельные группы макромолекул. Поэтому перелом кривой зависимости вязкости при нулевой скорости сдвига от молекулярной массы (рис. 2.3) обычно объясняют появлением молекулярных зацеплений. Уровень реализации сил межмолекулярного взаимодействия зависит от расстояния между участвующими во взаимодействии элементами химической структуры, поскольку в первом приближении эти силы убывают пропорционально седьмой степени этого расстояния. Поэтому рассмотрим состояния, в которых может существовать полимер и которые характеризуются различными значениями удельного объема и разной степенью молекулярной упорядоченности. [c.40]


    Современная теория твердения цементов в бетонах — теория полу-чения строительных материалов и деталей с заданной структурой, высокой прочностью и долговечностью — разрабатывается только в настоящее время и именно в связи с развитием физико-химической механики. До сих пор не выяснены вопросы физико-химического синтеза прочности в мелкокристаллических телах, закономерности, связывающие механические свойства их кристаллизационных структур с условиями возникновения и развития новой кристаллической дисперсной фазы, размером кристалликов и условиями их срастания. Но и в металлофизике до последнего времени игнорировалась роль важнейших физико-химических факторов, например, в процессах обработки металлов, в усталостной и длительной прочности, трении и износе в машиноведении и особенно в жаропрочности, где определяющим в основном является отсутствие резко понижающих прочность поверхностно-активных примесей, прежде всего самих поверхностноактивных металлов. Эти вопросы в настоящее время все больше интересуют передовых металловедов, механиков и физиков именно с позиций физико-химической механики. [c.209]

    Размеры макромолекул полимерных соединений настолько превышают размеры молекул низкомолекулярных веществ, что форма макромолекулы, как и химическая структура ее элементарных звеньев, оказывают решающее влияние на физические и механические характеристики материалов. Макромолекулам линейной формы свойственна высокая гибкость, приводящая к непрерывным конформационным изменениям. Чем длиннее цепи линейного полимера и больше полярность структуры его звеньев, тем выше силы их взаимного сцепления. Внешне это проявляется в большей прочности и твердости полимера, в повышении температуры размягчения и снижении текучести при повышенной температуре. Чем меньше силы межмолекулярного сцепления, тем богаче набор различных конформаций, которые может иметь макромолекула в результате тепловых колебательных движений. Большую гибкость полимерной цепи придает связь углерод — углерод. Звенья кислорода или серы, вкрапленные в углеродные цепи в ви e простых эфирных связей, способствуют усилению колебательного движения, повышая эластичность полимера, снижая температуру стеклования и размягчения. [c.763]

    Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом. [c.129]


    Эффективность модифицирования полипропилена каучуками зависит от многих факторов, в т. ч. от степени совместимости модификатора с полипропиленом. Для достижения необходимого совмещения компонентов используются горячие смесители тяжелого типа, в которых совмещение происходит за счет больших сдвиговых напряжений и высоких температур. Такая технология не всегда дает хорошие результаты при модификации полипропилена жесткие условия переработки снижают термостабильность и прочность полипропилена, который в силу особенностей химической структуры подвергается деструкции. [c.457]

    Электрическая прочность материала определяется наименьшим напряжением, которое вызывает полную потерю стандартным образцом диэлектрических свойств (т.е. материал становится проводником ). Это сопровождается разрушением химической структуры материала главным образом вследствие термической деструкции. Полярные полимеры имеют большую электрическую прочность, чем неполярные электрическая прочность резко уменьшается при переходе из стеклообразного в высокоэластическое состояние, а 1 акже при введении наполнителя. [c.553]

    Для оценки биологических функций биополимера необходимо иметь четкое представление о том, в каких биологических структурах находится данный биополимер и какие его свойства необходимы для успешного функционирования этих структур необходимо также связать свойства биополимера с химической структурой. Поэтому вначале кратко будет рассмотрено современное состояние вопроса о цитохимической и гистохимической локализации углеводсодержащих биополимеров и вопроса о связи структуры и биологической функции полисахаридов. В пределах этой главы мы не будем проводить четкого различия между полисахаридами и углеводсодержащими биополимерами смешанного типа, поскольку биологические функции последних чаще всего связаны именно с присутствием в составе молекулы углеводных остатков. С другой стороны полисахариды обычно встречаются в клеточных структурах в виде комплексов различной степени прочности с другими природными биополимерами. [c.598]

    Разработка методов воздействия на дисперсные структуры с целью регулирования их реологических свойств привела н зарождению физико-химической механики, включающей также физико-химическую теорию прочности и деформации твердых тел и материалов. Рассмотрение ее проблем выходит за пределы данной статьи. [c.8]

    Процессы деформации и разрушения твердых тел, их пластичность и прочность определяются следующими основными группами факторов а) характером межатомных взаимодействий (т. е. обусловливаемой химическим составом прочностью связей и строением решетки идеального кристалла) б) реальной ( вторичной ) структурой твердого тела, включающей совокупность таких дефектов, цак границы зе- [c.163]

    Так как при омылении молекулярная масса пленки остается прежней, не изменяется существенно и рентгенограмма. Незначительное же изменение механической прочности, очевидно, происходит вследствие изменения химической структуры продукта. Отщепление ацетильных групп увеличивает межмолекулярное взаимодействие между цепями [c.166]

    На практике в большинстве случаев наблюдается наложение и медленный рост дефектов в материале при напряжениях значительно меньше критического напряжения, оцениваемого по уравнению (1У.2). В результате наблюдается зависимость разрушающего напряжения от продолжительности действия сил. При этом под дефектами следует понимать не только микро- и субмикротрещины, но и прочие неоднородности структуры материала, приводящие к местным концентрациям напряжений или упругой энергии (полости, включения, вакансии, нарушения кристаллической и химической структуры, а также энергетические неоднородности, возникающие в результате флуктуации теплового движения атомов и молекул и др.) [8, с. 268]. Эти обстоятельства предопределяют кинетический характер прочности при температурах, достаточно далеких от абсолютного нуля. [c.112]

    Специально проведенные исследования [107,124—126] показали, что именно о-изомер обладает наибольшей склонностью к циклизации, тогда как вероятность циклизации п и л-изомеров приблизительно одинакова. Более того, оказалось, что имеет место корреляция между прочностью полимера при растяжении и таким интегральным показателем топологической структуры сетчатого полимера, как концентрация золь-фракции [124] (рис. 35). Этот факт свидетельствует, с одной стороны, о том, что прочностные свойства исследованных полимеров зависят от их топологической структуры, с другой — что имеется жесткая связь между молекулярным и топологическим уровнем, так как довольно незначительные изменения в химической структуре исходных эпоксидных мономеров и отвердителей (их изомерия) оказываются весьма существенными для топологической структуры этих полимеров и в конечном счете для физико-механических свойств. [c.233]


    Проблема механической прочности и износостойкости сорбентов, катализаторов и их носителей приобретает все большее значение в связи с интенсификацией технологических процессов в химической промышленности — повышением скорости потока, а также использованием кипящего слоя. В противоположность научному подходу к решению основных проблем гетерогенного катализа — выяснению природы активности катализаторов, а также роли пористой структуры и внутренней поверхности пор зерна, доступной в данных условиях [1, 2, 3]— изучение механической прочности сорбентов и катализаторов проводилось до сих пор чисто эмпирически характеристики их прочности и стойкости экспериментально определяются произвольно выбранными условными приемами, и пока неизвестны попытки разработки физико-химической теории прочности пористых дисперсных тел. [c.21]

    Государственные общесоюзные стандарты (ГОСТ) на красители составляются по следующему плану название красителя, эмпирическая формула, структурная формула, молекулярный вес, класс красителей, к которому относится данный краситель по химической структуре, группа красителей, к которой относится данный краситель по технической классификации, т-основная область применения красителя, прочность окрасок, спектрофотометрическая кривая, внешний вид, концентрация по отношению к типовому эталону в процентах оттенок, степень измельчения, содержание нерастворимых в воде примесей, правила приемки, методы испытаний, упаковка и маркировка. [c.30]

    Если внешним проявлением старения резин в свободном состоянии является изменение прочности, эластичности, твердости, окраски и других свойств, то при старении статически деформированных резин наблюдается также химическая релаксация и накопление остаточной деформации, развивающиеся со значительно большими скоростями, чем изменение других свойств. Химическая релаксация и накопление остаточной деформации связаны с перестройкой химической структуры вулканизата. Однако в этой области старения еще отсутствуют признаки перерождения материала. [c.56]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Конденсационно-кристаллизационные структуры, возникающие при иепосредственном контакте частиц дисперсной фазы, как правило, получают из коагуляционных структур прн уменьшении толщины межчастичных слоев и их прорыве. Сначала образуются так называемые точечные (или атомные) контакты между частицами, когда площадь контакта пе превышает площади нескольких атомных ячеек. Связь в этих контактах кроме ван-дер-ваальсовых сил обусловлена также химическими силами. Прочность химических связей можно оценить по следующей формуле  [c.385]

    При исследовании влияния химических реагентов на Р содержание иммобилизованной жидкости в пробах поддерживали постоянным в результате постоянного объема нор в сухих образцах глин. Было установлено, что в водных растворах химических реагентов прочность структур, образующихся при набухании паст глин, зависит в основном от химического состава и концентрации реагента. При величине набухания, большей чем в воде (пептизация глин), сущ(зствует зависимость чем больше набухание, тем меньше величина Р ц. При набухании, меньшем чем в воде, ни влажность, ни ко )ффициент набухания не могут служить однозначными показателями, предопределяющими изменение прочности структуры паст глин. Так, при одинаковых величинах набухания и влажности глинистых паст, набухших в растворах определенных концентраций хлористого натрия, КМЦ-350, хлористого кальция и силиката натрия величина Рщ соответственно равна 482, 153, 247 и 500 гс/см [49]. [c.40]

    Водорастворимый биополимер ХЗ, образующийся при воздействии бактерий рода ксантомонас па углеводы, представляет собой соединение со сложной химической структурой. Выпускается н порошкообразном виде. Биополимер ХЗ обеспечивает необходимую вязкость в пресной, морской воде и в насыщенных растворах солей одно- и двухвалентных металлов без применения иных присадок. Кажущаяся вязкость увеличивается прямо пропорционально концентрации биополимера, независимо от базисной жидкости. Структурная вязкость также увеличивается с повышением концентрации биополимера, но более ярко выражена при высоком содержании солей. Прочность геля в насыщенном солевом растворе значительно ниже, чем в пресной и морской воде. Добавки биополимера ХЗ снижают также водоотдачу пресных и минерализованных промывочных жидкостей, но с ростом минерализации в меньшей мере. Для более эффективного снижения водоотдачи сильноминерализованных безглинистых или малоглинистых промывочных жидкостей могут быть применены КМЦ, крахмал, лигносульфонаты и др. Вязкость водных растворов может быть значительно повышена путем образования сетчатой структуры (сшивки) биополимера. Такая сшивка наиболее эффективно происходит при введении в водный раствор биополимера, при надлежащем регулировании величины pH, солей трехвалентного хрома. Щелочность среды относительно слабо влияет на кажущуюся вязкость в широких пределах величины pH (от 7 до 12). [c.154]

    В зависимости от того, является ли изменение свойств полимера под воздействием влаги обратимым пли необратимым после удаления влаги из материала, зюздействие воды на полимер определяют как физическое или химическое. Необратимые изменения свойств материала при химическом воздействии соировоя даются изменением химической структуры полимера. Физическое воздействие вызывает обратимые изменения свойств полимера при этом физическое воздействие может быть как поверхностным, так и объемным. Следствием проникновения воды в полимер в процессе объемной диффузии при обратимом воздействин является уменьшение взаимодействия мегкду макромолекулами, связанными друг с другом силами Ван-дер-Ваальса, что, в свою очередь, снижает прочность материала, увеличивает гибкость макромолекулярных цепей, в результате чего снижается температура стеклования и температура хрупкости, создаются условия для ускоренного протекания релаксационных процессов. [c.73]

    Стекло химически очень стойко, но хрупко, что препятствует широкому применению его для изготовления труб и аппаратуры химических производств. Прочность стекол повышают, придавая им мелкокристаллическую структуру. В результате управляемой кристаллизации расплавленных стекол удается получить очень мелкокристаллические однородные материалы — ситаллы (стеклокристаллы), прочность которых иногда более чем в 5 раз превышает прочность исходных стекол и приближается к прочности чугуна. Стекловолокно используют для изготовления световодов. [c.452]

    Итак, разрушение полимеров под действием нагрузки происходит в результате проскальзывания макромолекул относите ть- НО друг друга и разрыва химических связей назовем это механическим фактором) и сопровождается необратимым изменением структуры вследствие интенсивного протекания механохимических реакций химический фактор) Прочность повышается с ростом степену ориентации макромолекул в направлении действия силы и снижается с увеличением дефектности материала. [c.343]

    Многие полиорганофосфазены обладают хорошими пленкообразующими свойствами конечно, для этого они должны иметь высокую молекулярную массу и однородную химическую структуру. Отмечается, что прочность пленок на разрыв поли[бис(трифторэтокси)фосфазена] существенно зависит от молекулярной массы полимера [83]. Высокие значения разрывной прочности -2000 кгс/см ) реализуются только при высокой молекулярной массе —10 млн. Данные схемы 11. Д и табл. 11.6 наглядно демонстрируют, какое большое влияние на прочность полифосфазеновых пленок оказывает разнозвенность полимера. [c.353]

    Пространственная сшивка ПВС осуществляется радиационным [158] или химическим путем. Первый способ, в случае медицинского назначения продукта, считается более предпочтительным, так как при радиа(ционной сшивке практически не происходит изменения химической структуры полимерной основы и в нее не вводятся инородные ункциональные группы, способные оказывать побочное биологическое воздействие. В зависимости от дозы облучения 7-лучами или электронами водных растворов ПВС может быть достигнута различная степень сшивки, а следовательно, и различная набухаемость и механическая прочность получаемых гидрогелей. Дегидратация и последующий нагрев поливинилспиртовых гидрогелей вызывает образование в них кристаллических областей, проявляющих себя при приложении нагрузки как дополнительные узлы сшивки. При повторном набухании при температуре ниже 45 °С вода проникает только в аморфную фазу, благодаря чему степень набухания сшитого таким способом ПВС снижается, а механическая прочность возрастает. Гидрогели, полученные из редкосшитого и частично кристаллизованного ПВС, предложены для изготовления суставных хрящей [157]. [c.161]

    Другое применение — нанесение кремнеземного покрытия на органическое волокно, когда нить должна подвергаться пиролизу с целью формирования новой химической структуры, но при этом в процессе температурного воздействия в течение определенного периода такое волокно необходимо поддерживать механически, по мере того как оно проходит через пластичное состояние. Бернетт и Загер [555] покрывали полиакри-лонитриловые волокна коллоидным кремнеземом, чтобы обеспечивать их механическое усиление до тех пор, пока в процессе нагревания волокно приобретет новое состояние—структуру с поперечными связями, способную самостоятельно поддерживать необходимую механическую прочность. Благодаря улучшенным фрикционным свойствам волокон ткани получаются более прочными к истиранию [556], Для применения к волоконным тканям пирогенный кремнезем предварительно диспергируется в воде с добавлением ПАВ [557]. Благодаря нанесению окрашенных окспдов металла с добавлением коллоидного кремнезема и с последующим нагреванием для придания такому покрытию прочного связывания с подложкой предотвращается эффект проскальзывания стеклянных волокон и одновременно приобретается стойкое окрашивание поверхности волокна [558]. Чтобы не допускать проскальзывания нитей в узелках при изготовлении рыболовных сетей из найлона, на такие узлы наносится смесь, состоящая из коллоидного кремнезема с добавлением СНз[Н2Ы(СН2)4]51(ОЕ1)2 и воды [559]. [c.588]

    Требования к полимерным матрицам, представленные в табл. 11.2, можно разделить на три фуппы 1) прочность, жесткость, теплостойкость 2) пластичность, вязкость разрушения, ударная вязкость, 3) пере-рабатываемость, технологичность связующего. При модификации материала матрицы, изменении условий, химической структуры, степени химической сшивки с улучшением свойств одной группы, автоматически ухудшаются другие. [c.135]

    Реальная химическая структура поверхности достаточно сложна и сведений о ее свойствах и возможности сочетания с клеем бывает часто недостаточно или они вовсе отсутствуют. Поэтому для выбора оптимального способа обработки поверхности следует проводить обширные эксиериментальные работы. Суть подготовки поверхности иод склеивание заключается ч том, чтобы с помощью химических, электрохимических, механических процессов, использования модифицирующих добавок, адгезионных грунтов или других способов изменить природу поверхности субстрата, сделать ее более активной при контакте с клеем для получения требуемой прочности [34, с. 70—89]. Прн окончательном выборе способа подготовки поверхности следует учитывать конструкторские и технологические особенности соединения и изделия в целом, а также условия эксплуа-таццц. [c.120]

    В настоящей главе в общих чертах было рассмотрено влияние различных факторов на характеристики прочности. Задачей конструкторов и технологов, работающих в области полимерных материалов, является учет общих закономерностей прочности при создании полимерных материалов с заданными свойствами. При этом необходимо учитывать как особенности строения полимеров, так и режимы эксплуатации изделий. Большое разнообразие химических структур различных полимерных материалов и разнообра зие ингредиентов, применяемых в полимерных композициях, дает в этом отношении технологам-полимерщикам практически неограниченные возможности. [c.221]

    Таким образом, химическая модификация поверхности склеиваемых материалов — один из эффективных способов повышения прочности клеевых соединений. Уже рассматривалось применение аппретов для обработки стекла, возможно также применение продуктов, содержащих реакционноспособные метакри-ловые, винильные, аминогруппы и легко гидролизуемые ацетоксигруппы для модификации поверхности других материалов, в частности полимеров. Их наносят на склеиваемые поверхности в виде разбавленных растворов. После удаления растворителя наносят клеевой слой и склеивают. Наличие полярных групп обеспечивает надежную связь металл — подслой — клей в условиях повышенной влажности и температуры. Изменение химической структуры поверхностного слоя полимеров может быть достигнуто путем прививки к ним полярных мономеров, например эфиров метакриловой кислоты. Такую прививку можно осуществить при ультрафиолетовом, рентгеновском или радиационном облучении. [c.53]

    В таких условиях исследовалось поведение пленок из 3-гут-таперчи в процессах адгезионного разрушения. Было показано, что скорость эмиттирующих электронов находится в прямой зависимости от адгезионной прочности исследуемого полимера, т. е. от его химической структуры. Интересно отметить значительное увеличение интенсивности эмиссии при облучении исследуемого образца видимым светом, что доказывает возникновение в этих процессах свободных радикалов. Попытки получить те же эффекты в случае упругой деформации полимера при растяжении (до разрушения образца) показали, что в этом случае явления, вызванные механическим воздействием, не сопровождаются эмиссией электронов. [c.29]

    Отмечается большое значение реакций сшивания в технологии пластмасс . В области аминопластюв проведены работы по выяснению химической структуры сшитых смол и ее влияния на технологические и прочностные свойства полимеров (прочность на разрыв, ударную вязкость, модуль эластичности) , а также диэлектрические свойства аминопластов > (последние две работы касаются свойств анилино- и анилинофеволформальде-гидных смол). Ряд работ посвящен физическим, механическим, химическим и электрическим свойствам анилиновых смол и пластмасс > > антиадгезионным свойствам аминопластов . [c.351]

    На рис. 52 и 53 приведены сравнительные данные о прочности при растяжении и удлинении эластомеров на основе ППГ-2000, полиэфира 50 50 и полиэфира 80 20 , имеющих vJV, равное 1,87-10" , и содержащих 1,42 жсугб уретановых групп в 1000 г полимера, а также эластомеров из, каучука 5ВН 1,2-10" ). Из этих данных видно, что прочность при растяжении и удлинение уретанового полимера в любом температурном интервале выше его в большой степени зависит от химической структуры полимерной цепи. [c.382]

    Все рассмотренные выше структурные особенности в очень большой степени определяют физические свойства полимерного образца. Мы не стремимся дать исчерпывающую картину структурных свойств, а только укажем на некоторые корреляции. Вязкость раствора и вязкость расплава зависят от таких переменных, как химическая структура, гибкость цепи и особенно молекулярный вес. Растворимость полимера в очень высокой степени определяется специфическим взаимодействием полимера и растворителя, но растворимость также может зависеть от геометрии цепи. Например, атактический полистирол очень хорошо растворим в бензоле, в то время как изотактиче-ская форма практически нерастворима в этом растворителе. Механические свойства твердого полимерного образца особенно сильно зависят от геометрического расположения цепных молекул. При соответствующих условиях некоторые полимеры можно растянуть, и в результате цепи молекул необратимо расположатся более или менее параллельно направлению вытягивания. Разрывная прочность такого образца, измеренная в направлении растяжения, может быть в десятки раз больше, чем у неориентирован- [c.9]

    В настоящее время не существует единого критерия для оценки термостойкости. На практике и в лабораторных условиях используют методы, позволяющие оценивать стабильность полимеров при нагревании по изменению какого-либо показателя, например по потере массы, изменению механической прочности, диэлектрической проницаемости и т. д. В литературе встречается несколько понятий, характеризующих термическую устойчивость полимеров термостойкость, теплостойкость и термостабильность. Использование этих тервшнов связано с необходимостью различать физическую и химическую устойчивость полимеров при нагревании 5,б,и во Если при тепловом воздействии не происходит необратимого изменения химической структуры (старение), то физические свойства полимера обратимы. Физическую устойчивость и способность полимеров сохранять форму при нагревании характеризует понятие теплостойкость. Последняя определяется подвижностью полимерных цепей и количественно выражается модулем упругости. Понятия термостойкость и термостабильность четко не определены и часто употребляются в одном значении, так как оба определяют химическую устойчивость полимерных веществ. Употребление терминов теплостойкость и термостойкость (термостабильность) в разных значениях вряд ли оправдано, так как эти родственные по смыслу понятия характеризуют различные свойства полимера. Поэтому нам кажется более целесообразной терминология, приведенная в работе Автор предлагает различать формоустойчивость и термостабильность. Поскольку последняя зависит не только от температуры опыта, но и от продолжительности теплового воздействия, для практических целей важно [c.4]

    Таким образом, рассмотрение свойств стеклообразных сетчатых полимеров с учетом их химической структуры следует проводить с позиций изменения подвижности элементов структуры вследствие изменения полярности, природы узла, кинетической гибкости межузловых фрагментов. До недавнего времени предсказание характеристик ЭП по их химическому строению 34,. 36, 37, 94, 95] носило лишь качественный характер, основанный на сравнительном сопоставлении. В последние годы получает распространение (особенно после выхода книги Ван-Кревелена [42]) общий принцип аддитивности, базирующийся на суммировании вкладов отдельных атомов, связей и групп, входящих в макромолекулу, в показатели макроскопических свойств тела, состоящего из этих молекул (прочность, плотность, и т. п.) [12]. Для ЭП наиболее эффективным оказался метод групповых вкладов. Работы Б. А. Розенберга с сотр. [26, 27, 431 показали полезность применения принципа аддитивности для расчета некоторых характеристик эпоксиаминных полимеров тем самым подтверждена определяющая роль химической структуры в этих полимерах. Вместе с тем эти же авторы [ 14, 27] доказали, что принцип аддитивности имеет существенные ограничения, так как не учитывает неоднородности структурной организации ЭП. [c.45]

    Так как величина химического сдвига может рассматриваться как мера прочности внутримолекулярной водородной связи в координационном цикле, закономерен вывод о тесной взаимосвязи между эффективностью светостабилизирующего действия вещества и прочностью его внутримолекулярной водородной связи. Увеличение электронной плотности на атоме кислорода карбонильной группы (отрицательная поляризация) и уменьшение электронной плотности на гидроксильной группе (положительная поляризация) увеличивает прочность водородной связи. Отсюда понятно то влияние, которое оказывает химическая структура УФ-абсорберов на их стабилизирующие свойства. Например, известно, что производные фенилсалицилата малоэффективны по сравнению с большинством гидро-ксибензофенонов [22]. [c.136]


Смотреть страницы где упоминается термин Химическая структура и прочност: [c.21]    [c.199]    [c.72]    [c.299]    [c.21]    [c.90]    [c.501]    [c.382]    [c.187]   
Физико-химия полиарилатов (1963) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Прочность химическая

Структура прочность



© 2025 chem21.info Реклама на сайте