Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы в органических материала

    Почти любая пыль тонко измельченного органического материала, а также многих металлов взрывоопасна, поскольку, как мы видели, природа электризации частиц такова, что образование зарядов предотвратить нельзя. К счастью, во многих типах установок имеют место лишь небольшие перемещения твердой фазы, к тому же взвесь оказывается настолько электропроводной, что обеспечивается эффективная разрядка частиц. Даже очень незначительной влажности часто достаточно для того,-чтобы по хорошим изоляторам происходила утечка зарядов. Однако следует отметить, "Что степень влияния этого полезного следствия влажности среды может меняться в зависимости от рабочих условий. Например, изменение относительной влажности со 100 до 40% может увеличить [58] поверхностное сопротивление стекла в 6-Ю6 раз. Заземление [59] всех элементов установки, безусловно, предотвращает мощные внешние разряды. Однако эта мера не исключает электризацию частиц внутри установки, и, следовательно, опасность внутренних взрывов сохраняется. Поэтому нельзя забывать о необходимости изучения закономерностей взрыва во взвесях. К сожалению, наши знания по этому вопросу все еще весьма ограниченны. Существенно больше известно [60, 61] о [c.311]


    В практике анализа органических объектов на содержание примесей металлов, например в нефтях и нефтепродуктах, важное значение имеет приготовление стандартных растворов. Обычно для этих целей применяют металлоорганические соединения или комплексы металлов с органическими лигандами. Стандартные растворы металлов в органических растворителях можно получить также при анодном растворении металлических электродов. Для этого при выбранном потенциале и заданном токе в течение фиксированного времени генерируют ионы металла из материала активного электрода. По количеству электричества , зная объем раствора, можно рассчитать точную концентрацию металла в растворе. [c.533]

    Процесс включает стадии концентрации ценных металлов, содержащихся в сточных водах, посредством бактериальной обработки для поглощения и осаждения металлов из раствора в виде шлама, коагуляции и отделения шлама от воды, обезвоживания шлама и последующее сжигание органического материала с выделением металла. [c.180]

    Схема процесса представлена на рис. 75-Сточные воды 1, содержащие ценные металлы, перерабатываются с целью их выделения. Эти растворы вводятся в систему вместе с добавленными ранее органическими отходами в количестве, достаточном для поддержания роста бактерий. Источником органического материала могут служить сточные городские воды. [c.180]

    Ход определения. Испытуемый органический материал разлагают при выпаривании с азотной и серной кислотами. Добавляют 15 мл воды и немного окса-лата аммония и еще раз выпаривают. Полученный остаток извлекают водой. К 25 мл кислого раствора после разложения прибавляют в делительной воронке 5 мл раствора цитрата, доводят до pH 8—8,5, разбавляют водой до 75 мл и присутствующие в качестве примесей металлы, образующие дитизонаты, экстрагируют раствором дитизона порциями по 10 мл. [c.269]

    Таким образом, внедрение щелочных металлов в материал катода не только способствует улучшению адсорбции нейтральных органических молекул, но одновременно приводит к заметному повышению перенапряжения выделения водорода, что также вызывает снижение доли тока, идущего на процесс выделения водорода. [c.29]

    Разделение. Желательно, чтобы сырье для компостирования содержало максимум органического материала и минимум неорганических остатков. Это особенно важно при переработке ряда отходов, например, городского хозяйства, которые содержат существенные количества меди, свинца, никеля и цинка. Поэтому при работе с такими отходами желательно удалять стекло, металл, пластмассу и другие осколки в той степени, в какой это экономически возможно. При очень маленьких объемах компостирования такое разделение может проводиться вручную. При больших объемах для этих целей применяются различные механизмы. Если для компостирования используется сырой активный ил, он должен быть в основном получен при переработке коммунальных, а не промышленных стоков, во избежание загрязнения тяжелыми металлами. [c.237]


    В книге описаны свойства карбонилов металлов и их производных, теоретические основы процессов их получения и исследования. Впервые систематизирован материал по получению и применению смешанных карбонилов, карбонильных кластеров с я-связью и других новых карбонилов. Несколько разделов посвящено металл-органическим соединениям на основе карбонилов металлов. Рассмотрено применение карбонилов металлов в качестве катализаторов, антидетонаторов и промежуточных продуктов при получении металлорганических соединений и т. д. [c.143]

    Ион металла может защитить или стабилизировать только те участки органического материала, которые находятся в непосредственной близости к нему, поэтому органические части молекулы полимера должны быть минимальными. Очевидно, этот и предыдущий принципы противоречат друг другу, так что здесь следует искать компромиссные композиции. [c.17]

    Синтетические материалы имеют различную стойкость в кислых, щелочных и органических средах. Фторорганические пластмассы — наиболее коррозионностойкий материал, пе разрушающийся в любой среде. Пластмассы являются хорошим заменителем металлов в условиях сильно агрессивной среды. Так, например, разбавленные кислоты совершенно не действуют на пластмассы, но сильно действуют на металлы. И, наоборот, концентрированные кислоты и щелочи, разрушая пластмассы, почти не влияют на металл. Органические соединения — нефтепродукты, ароматические и хлорированные углеводороды — можно безбоязненно транспортировать по металлическим трубопроводам, но далеко не каждый тип пластмассы может быть применен для этой цели. Многие пластики стареют при долговременном пребывании на солнце. При подборе синтетического материала для трубопроводов неоценимую помощь могут оказать рекомендации организаций— производителей и заводов-потребителей пластмасс. [c.12]

    Для выяснения причин образования губки и механизма действия устраняющих ее добавок при низких плотностях тока в цинкатных электролитах были исследованы зависимость катодной поляризации от времени электролиза, влияние на качество осадка и катодную поляризацию посторонних примесей (карбонаты, окислители и соли металлов, органические вещества и др.) в электролите и анодах в обычной и в водородной атмосфере (рис. 5), с разделением анолита от католита стеклянной диафрагмой (рис. 6), а также влияние способа приготовления электролита, материала и обработки катода и анода. [c.264]

    Одновременно с методом вываривания неорганических веществ были предложены методы сухого озоления или простого сжигания. Сжиганием достигалось полное разрушение органической материи и освобождение мышьяка и металлов из комплексов, образованных ими с белковой молекулой. Однако при температуре сжигания (не ниже 500—550°) многие соединения мышьяка и металлов, представляющие токсикологический интерес, терялись вследствие их улетучивания в виде металлов (Hg) или в виде окислов (Аз. Оз). Другая часть веществ в процессе сжигания давала прочные соединения с составными частями золы или с материалом тигля и тем самым также терялась для дальнейшего исследования. [c.273]

    Хотя ртуть- и оловоорганические соединения эффективны и применяются до сих пор, наметился определенный поворот в сторону не содержащих металлов органических биоцидов вследствие возрастания требований к безвредности. Определяющее значение имеет область использования лакокрасочного материала. При использовании в быту важное значение имеют низкое раздражающее действие и низкая светочувствительность. В случае светлых тонов необходимы биоциды, не вызывающие пожелтения. [c.123]

    Особенность восстановления при участии сольватированных электронов связана с весьма отрицательным значением их стандартного потенциала, сравнительно мало отличающегося от стандартных потенциалов щелочных металлов. Поэтому сольватированные электроны способны реагировать с очень трудно восстанавливаемыми соединениями и инициировать полимеризацию, К настоящему времени накоплен большой фактический материал по восстановлению сольватированными электронами неорганических и о )ганических веществ, указывающий на образование необычных продуктов восстановления, на селективность восстановления. Собраны многочисленные данные препаративного характера и по формальной кинетике, однако еще весьма слабо изучено на молекулярном уровне взаимодействие в системе органическое вещество — протонодонорная добавка (или среда)—сольватированный электрон. На этом пути можно ожидать получения весьма интересных результатов. [c.445]

    Случаи воспламенения химических продуктов (органических красителей и полупродуктов) происходили при ведении процесса сушки вследствие неправильного выбора теплоносителя. Поэтому при сушке продуктов, имеющих низкую температуру воспламенения, важнейшим условием является правильный выбор теплоносителя, температура которого не должна превышать опасных пределов. Форма, размеры и материал оборудования должны быть такими, чтобы на их стенки не налипали органические продукты, так как это может привести к локальным перегревам и воспламенению. Горючие вещества могут воспламениться при воздействии на них концентрированных азотной и серной кислот активные щелочные металлы (натрий и калий) могут воспламениться при воздействии на них воды. Такие металлы нужно хранить в герметичной таре. [c.338]


    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Для муки угол внутреннего трения равен 27—35°, угол трения по металлу 21—22°, по органическому стеклу — 10°. Угол трения движуш,егося сыпучего материала о стенку составляет 80—90% от угла внешнего трения для неподвижного материала. [c.47]

    Изоляционное действие органического защитного слоя определяется химической инертностью материала слоя, механической прочностью, прочностью соединения слоя с металлом, стойкостью к действию температуры, влаги, света и кислорода воздуха. [c.367]

    Для наиболее распространенных материалов, таких, как металлы и сплавы, графит и карбид кремния, огнеупоры и стекла, а также органические полимеры, основные их характеристики затабулированы в каталогах производящих эти материалы фирм и в литературе. В тех же случаях, когда информации оказывается недостаточно (например, свойства данного материала неизвестны или не охвачен нужный температурный диапазон), возникает задача расчета физических свойств материала. [c.188]

    Блочные теплообменные аппараты изготовляют в основном из искусственного графита или графитопласта — пластмассы на основе фенолформальдегидной смолы, в которой в качестве наполнителя использован мелкодисперсный графит. Аппараты обладают рядом ценных свойств они эффективны, так как по теплопроводности графит в 4 раза превосходит коррозионно-стойкую сталь обладают высокой стойкостью к агрессивным средам (кислотам, щелочам, органическим и неорганическим растворителям) относительно дешевы. К их недостаткам следует отнести низкую прочность при растяжении и изгибе материала, из которого их изготовляют, невозможность соединения деталей из этого материала способами, аналогичными пайке или сварке металлов. Основной метод соединения деталей на основе графита — склеивание искусственными смолами. [c.64]

    В настоящее время в промышленно развитых странах сырье нефтяного происхождения обеспечивает производство около 90% продукции органического синтеза, производство которой превысило (суммарно) 100 млн. г в год. Химическое потребление нефти достигнет к 1980 г. 10%, а общее производство продуктов органического синтеза из нефтегазового сырья — 200 млн. т в год. Наиболее многотоннажным является производство пластических масс, суммарное количество которых в 1980 г., по прогнозам, достигнет 100 млн. т [10]. Это больше, чем производство цветных металлов. Производство синтетических смол и пластических масс в Советском Союзе в 1980 г. составит 5,5—6 млн. т [И]. Хорошо известно, что пластические массы как новый конструктивный материал, не имеющий себе аналогов среди природных веществ, получили самое широкое применение в машиностроении, в корабле-, самолето-и автомобилестроении, в производстве строительных материалов и товаров широкого народного потребления, в новой технике, в частности в производстве космических кораблей и электронно-вычислительной техники. Велико потребление нефтяного сырья в производстве и таких многотоннажных синтетических продуктов, как каучук, моющие средства, волокна, уровень мирового производства каждого из которых достигает или превысил 10 млн. т в год. С каждым годом возрастает доля синтетических материалов в производстве одежды, обуви и предметов домашнего обихода. [c.12]

    Особый интерес вызывает влияние природы металла на процесс парафинизации. Систематические исследования, посвященные непосредственно выяснению этого вопроса, практически отсутствуют, имеющиеся отрывочные данные относятся, в основном, к различным сталям /41,43,44/. Более полно исследовано влияние поверхностных свойств металлов на процесс адгезии органических пленок. Этот исследовательский материал с определенным приближением можно использовать при анализе явлений, наблюдающихся при адгезии парафиновых частиц на поверхность металлов. [c.104]

    В зависимости от вида загрязнителя пропорция реагента может составлять всего 10 %. В определенных обстоятельствах возникает необходимость добавления других химических реагентов к основному реагенту, либо увеличения массы основного материала, например глины или асфальта. Процесс D R успешно применяют для ликвидации нефтяных ПШН, очистки земли вокруг верфей (использованной впоследствии для хранения частей резервуаров, танкеров) и мест, загрязненных токсичными металлами, кислыми смолами и другими органическими соединениями. [c.247]

    Электрохимическое фторирование проводят при 5—20 °С в стальной аппаратуре. В качестве анодного материала используют никель, реже монель-металл. Большинство органических веществ образует с фтористым водородом электропроводные растворы, поэтому отпадает необходимость введения электропроводящих добавок. Иногда для повышения электропроводности во фтористом водороде растворяют фториды натрия или калия. [c.223]

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]

    Дырчатые пленки-подложки получают из органического материала и металлов. Органические пленки готовят на предметном стекле, помещенном сначала в сосуд с 27о-ным раствором формвара в этилендихлориде, а затем перенесенном в другой сосуд, в который вдувается влажный воздух. Пузырьки воздуха проникают в размягченную формварную пленку и сильно утончают ее в этих местах. При снятии пленки со стекла (путем погружения стекла в воду) она прорывается в местах, где были сорбированы пузырьки воздуха, с образованием различных по размеру дыр. Протравливая стекло (делая его поверхность шершавой), можно получить пленки с круглыми отверстиями величиной до 0,5— 1,0 мкм. При необходимости такие сетки можно укреплять напылением на них в вакууме слоя металла или угля. Металлические дырчатые пленки (сетки) готовят на основе дырчатых органических пленок путем напыления на последние металла с последующим отделением сетки растворением пластиковых подложек. [c.137]

    Подробнее будут рассмотрены ароматические гетероциклы, роль которых в живой природе очень многообразна и важна, а также структурные ансамбли различных органических молекул — нуклеотидов, углеводов и их фосфорных эфиров, полипептидов и белков, природных макроциклических комплексов с Ре, М , Со, Мо и другими металлами, которые вместе с рядом других донорно-акцепторных молекул входят в структуру биологических аппаратов организма растений и животных и составляют предмет биоорга-ни 1еской химии — одной из важных составных частей биохимии и биологии. В этой области явлений химическая форма движения материи, лежащая в основе неорганической и органической материи, переходит в одну из высших форм движения — биологическую. [c.601]

    В ультраследовом анализе использование ионообменников ограничено по двум причинам а) загрязнением элюата смолой (следы металлов или органического материала из смолы) б) необратимой адсорбцией небольших количеств материала. [c.146]

    Для повышения коррозионной стойкости оборудование изготовляют из легированных сталей, цветных металлов и их сплавов, широко применяют неметаллические антикоррозионные покрытия органического и неорганического происхождения. Кляг-сификация неметаллических защитных материалов приведена в специальной литературе. Материалы неорганического происхождения в основном используют как футеровочные, ими покрывают металлическую поверхность, на которую наносят обычно органический материал. В качестве скрепляющих применяют коррозионностойкие вяжущие материалы. [c.40]

    Очистка сточных вод. Очистное сооружение в принципе представляет собой проточный водоем, в котором при участии грибов и бактерий (аэробных и анаэробных) происходит разложение органических веществ. Загрязнения в сточных водах могут быть различного рода в зависимости от того, что сбрасывается,-только фекалии и бытовые отходы или также навоз, сточные воды боен или другие промышленные отходы. Во многих случаях сточные воды содержат тяжелые металлы или устойчивые органические соединения. Цель очистки сточных вод состоит в освобождении их от твердых и жидких минеральных и органических веществ, прежде чем эти воды попадут в ручьи и реки. Особые усилия требуются для миурализации органического материала микробиологическим путем. [c.509]

    Известные способы получения пористых адсорбентов можно разделить на четыре группы [227, 228] 1) активирование гру-бодисперсиых материалов воздействием химически агрессивных сред, например получение активных углей действием газов-окис-лителей на кокс или пропиткой органического материала некоторыми солями с последующей их химической обработкой 2) коллоидно-химическое выращивание частиц золей с последующим получением из них гелей с рыхлой упаковкой (при высу шиваиии таких гелей образуется структура с боЛьЩим числом пор-зазоров между частицами силикагели, алюмосиликагели и др.) 3) синтез пористых кристаллов — цеолитов, обладающих свойствами молекулярных сит (размеры каналов в таких кристаллах составляют 0,4—1,0 нм) 4) термическое разложение карбонатов, гидроксидов, оксалатов, некоторых полимеров при умеренных, во избежание спекания, температурах (получение активных оксидов, некоторых пористых активных углей, губчатых металлов). Как видно, получение адсорбентов является весьма сложной задачей, для решения которой необходимы значительные энергетические ресурсы, использование дорогостоящих химических реактивов, сложной аппаратуры и больших затрат времеии. [c.154]

    При формировании покрытий на воздухе, перед их нанесением в органосиликатные материалы вводят различные катализаторы соединения, содержащие азот, нафтенаты кобальта, свинца и других металлов, органические перекиси, кремний- и элементоорганические соединения [27]. Из последних наибольшее распространение получили тетрабутоксититан или полибутилтитан, которые вводят в количестве до 2% от сухого остатка материала. [c.202]

    Эластомеры. Скорости выделения газов эластомерами и другими органическими материалами были измерены рядом исследователей. В табл. 8 приведены некоторые данные для наиболее интересных с точки зрения вакуумной технологии материалов этого типа. Дополнительная информация о кривых обезгаживания для эластомеров и эпоксидных смол может быть получена в работах [234] и [235]. После прогрева скорость газовыделения эластомеров имеет значения 10" —10 мм рт. ст.<л-с > см- . Газовыделение тефлона значительно ниже, но, к сожалению, этот полимер не склеивается и течет под давлением, см. разд. 4 Б, 2) и табл. 17. Важное значение при выборе из имеющихся в наличии эластомеров материала для прокладок имеет их термическая стабильность. В идеальном случае эластомер должен выдерживать без разложения нагрев до 400° С, т. е. до температур, требуемых для обезгаживания стекла и металлов. Такого материала не существует. Витон А, сополимер гексафторпропилена и фтористого вини-лидена обладает наиболее приемлемыми компромиссными свойствами. Его можно прогревать до 200° С, т. е. до значительно более высокой температуры, чем выдерживают большинство других синтетических каучу-ков. Как следует из табл. 8, слабый прогрев при температурах 100 — 200° С уменьшает газовыделение эластомеров на один — два порядка. Основным компонентом выделяемых газов являются пары воды в количествах, эквивалентных 100 и более монослоев. Вода сорбируется в тело эластомера и выделяется посредством диффузии. В случае использования ви-тона этот процесс при экспозиции его на воздухе с нормальной влаж- [c.237]

    По своему происхождению самородная сера является вторич-ньпл ггродуктом. В первичной земной коре она входила в состав различных соединений с металлами — сульфидов. С появлением на Земле жидкой воды, свободного кислорода, углекислого газа, органической материи верхняя оболочка земной коры начала разрушаться. Вследствие процессов разрушения сульфиды, окисляясь, превращались в сульфаты. Последние, растворяясь в воде, постепенно вымывались в моря, океаны, различные водоемы и отлагались в них (гипс, мирабилит и др.). Под влиянием дальнейших биохимических воздействий сульфаты подвергались превращениям, например, по схеме  [c.207]

    Таким образом, расщепление сигнала на ядрах платины, во-первых, служит недвусмысленным доказательством прямой связи молекулы этилена с атомом металла (другие методы иселедования также подтверл<дали возможность такой связи, но не так зримо). Во-вторых, небольшое значение константы говорит о слабости и подвижности этой связи. Комплекс этилена с платиной устойчив примерно до 70 °С. Другие же металлы (помните никель ) образуют комплексы, которые удается зафиксировать лишь при криогенных температурах. А при наличии других связанных с металлом органических остатков порой начинается нечто великолепное молекула этилена внедряется в эту связь, удлиняя ее на два атома. Если этилена в среде много, на освободившееся при металле место немедленно садится новая его молекула, которая тоже внедряется... В результате на атоме металла начинает быстро расти молекула полимера — при невысокой температуре, в мягких условиях, при которых сам по себе этилен никогда не превратится в полезный высокомолекулярный материал. Зафиксировать этот поразительный процесс по стадиям, разумеется, почти невозможно, он идет весьма энергично. Но именно так работают промышленные катализаторы, на которых получают полимеры этилена, пропилена и многих других простых веществ. [c.164]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Н пкель. Он обладает хорошими литейными свойствами, легко куется и штампуется. Его сваривают никелевыми электродами в атмос(1)ере инертного газа. Аппаратуру из никеля применяют для процессов щелочного плавления, при переработке органических кислот, а также в тех случаях, когда требуется высокая чистота продукта или недопустимо применение кислотостойких сталей пследствпе нх действия как катализатора, ускоряющего ход нежелательных реакций. Никель — очень дефицитный металл, и для химической аппаратуры как самостоятельный конструкционный материал он применяется редко. [c.21]

    Тантал издавна применяется при производстве электрических лампочек кроме того, в настоящее время его начали применять при изготовлении химической аппаратуры в качестве материала, весьма устойчивого в отношении коррозии. Это—единственный металл, устойчивый к действию соляной кислоты. Тантал обычно встречается вместе с ниобием, который получил применение в атомных реакторах. Благодаря растущей потребности интерес к обоим металлам непрерывно увеличивается. В последние годы разработаны промышленные методы разделения, основанные на фракционированной экстракции по ним получают оба металла высокой степени чистоты. Эти методы гораздо производительнее, чем классический кристаллизационный метод Мариньяка [494] или другой промышленный метод [493] осаждения фторотанталата калия и фторониоби-ата калия из разбавленной фтористоводородной кислоты. По экстракционным методам оба металла переводятся в окисные или хлористые соединения, растворяются во фтористоводородной, соляной или серной кислоте и экстрагируются одним органическим растворителем или смесью из нескольких. [c.449]

    В технике применяют различные средства для предотвращения выдувания грузов при перевозках, а также для связывания пыли в горных работах, шахтах, рудниках, содержащие в своем составе соли щелочных металлов Са,Ка, Mg , различных кислот (соляной, серной и т. д.). Используются также различные органические составы. Известен способ [287] предотвращения выдувания сыпучих материалов путем нанесения на их поверхность состава, включающего полимерное связующее - кубовый остаток ректификации стирола и эмульгатор - натриевые сопи жирных кислот или поливиниловый спирт и воду. Имеется предложение [288]покрывать поверхность сыпучего материала водной суспензией, содержащей сульфат капьция, которая образует корку на поверхности материала. [c.265]

    В большинстве случаев к1П етику процесса обессеривания определяет диссоциация органических сернистых соединений и удаление нз углеродистых материалов сульфидов п сульфатов металлов. В связи с этим представляет интерес проанализировать имеющийся по данному вопросу материал. Сообщается [246], что существует некоторая связь между содержанием серы в жидком сырье и полученным пз него коксом. Однако какой-либо четкой закономерности между этими показателями не наблюдается [3], хотя п имеется общая тенденция к увеличению содержания серы в коксе с новышепием ее содержания в исходном сырье. [c.210]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Битумные и дегтевые вяжущие обладают целым комплексом полезных свойств они термопластичны, водонепроницаемы, погодоустойчивы и являются хорошими изоляторами. К тому же деготь, например, — хороший антисептик. Поэтому они широко применяются в строительстве. Например, при строительстве дорог используется до 75% всего производства органических вяжущих. Это объясняется тем, что дорожное покрытие из бетона на этих вяжущих отличается высокой износоустойчивостью, прочностью при различных климатических и погодных условиях и легкостью очистки дорожного полотна. Органические вяжущие на основе битума и дегтя находят широкое применение также при сооружении полов промышленных зданий, в качестве кровельных, гидро-, тепло- и пароизоляционных покрытий и материалов, приклеивающих мастик, покрасочных составов. Например, органические вяжущие, обладающие высокой адгезией к различным материалам и гидрофобными свойствами, применяют в качестве гидроизоляционных обмазок для защиты фундаментов зданий, трубопроводов, траншей, водохранилищ, бассейнов и т. д. Битум используется в качестве связующего материала при производстве плит из минеральной ваты, котерые применяются для теплоизоляции зданий, холодильных установок и трубопроводов. Органические вяжущие могут использоваться для защиты от коррозии металлов, бетона в виде, например, черных лаков, при сооружении защиты от радиоактивного излучения применяются они и для стабилизации грунтов. Не обходятся без органических вяжущих и другие области народного хозяйства, например лакокрасочная, нефтехимическая (производство пластмасс), электротехническая, металлургическая и др. [c.60]


Смотреть страницы где упоминается термин Металлы в органических материала: [c.97]    [c.95]    [c.289]    [c.262]    [c.213]    [c.468]    [c.73]    [c.430]   
Методы разложения в аналитической химии (1984) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие неметаллических материалов с органическими растворителями, расплавами металлов и солей

Группа веществ, изолируемых после минерализации (разрушения) органического материала, составляющего объект исследования Общие вопросы изолирования соединений металлов из биоматериала

Коррозия металлов и неметаллических материалов в органических кислотах

Оглавление Эмалирование и покрытие металлов органическими материалами

Органические материалы

Органические металлы

Покрытие металлов органическими материалами



© 2025 chem21.info Реклама на сайте